MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caovdirg Structured version   Visualization version   GIF version

Theorem caovdirg 7575
Description: Convert an operation reverse distributive law to class notation. (Contributed by Mario Carneiro, 19-Oct-2014.)
Hypothesis
Ref Expression
caovdirg.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝐾)) → ((𝑥𝐹𝑦)𝐺𝑧) = ((𝑥𝐺𝑧)𝐻(𝑦𝐺𝑧)))
Assertion
Ref Expression
caovdirg ((𝜑 ∧ (𝐴𝑆𝐵𝑆𝐶𝐾)) → ((𝐴𝐹𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐻(𝐵𝐺𝐶)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧   𝑥,𝐻,𝑦,𝑧   𝑥,𝐾,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧

Proof of Theorem caovdirg
StepHypRef Expression
1 caovdirg.1 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝐾)) → ((𝑥𝐹𝑦)𝐺𝑧) = ((𝑥𝐺𝑧)𝐻(𝑦𝐺𝑧)))
21ralrimivvva 3197 . 2 (𝜑 → ∀𝑥𝑆𝑦𝑆𝑧𝐾 ((𝑥𝐹𝑦)𝐺𝑧) = ((𝑥𝐺𝑧)𝐻(𝑦𝐺𝑧)))
3 oveq1 7368 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐹𝑦) = (𝐴𝐹𝑦))
43oveq1d 7376 . . . 4 (𝑥 = 𝐴 → ((𝑥𝐹𝑦)𝐺𝑧) = ((𝐴𝐹𝑦)𝐺𝑧))
5 oveq1 7368 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐺𝑧) = (𝐴𝐺𝑧))
65oveq1d 7376 . . . 4 (𝑥 = 𝐴 → ((𝑥𝐺𝑧)𝐻(𝑦𝐺𝑧)) = ((𝐴𝐺𝑧)𝐻(𝑦𝐺𝑧)))
74, 6eqeq12d 2749 . . 3 (𝑥 = 𝐴 → (((𝑥𝐹𝑦)𝐺𝑧) = ((𝑥𝐺𝑧)𝐻(𝑦𝐺𝑧)) ↔ ((𝐴𝐹𝑦)𝐺𝑧) = ((𝐴𝐺𝑧)𝐻(𝑦𝐺𝑧))))
8 oveq2 7369 . . . . 5 (𝑦 = 𝐵 → (𝐴𝐹𝑦) = (𝐴𝐹𝐵))
98oveq1d 7376 . . . 4 (𝑦 = 𝐵 → ((𝐴𝐹𝑦)𝐺𝑧) = ((𝐴𝐹𝐵)𝐺𝑧))
10 oveq1 7368 . . . . 5 (𝑦 = 𝐵 → (𝑦𝐺𝑧) = (𝐵𝐺𝑧))
1110oveq2d 7377 . . . 4 (𝑦 = 𝐵 → ((𝐴𝐺𝑧)𝐻(𝑦𝐺𝑧)) = ((𝐴𝐺𝑧)𝐻(𝐵𝐺𝑧)))
129, 11eqeq12d 2749 . . 3 (𝑦 = 𝐵 → (((𝐴𝐹𝑦)𝐺𝑧) = ((𝐴𝐺𝑧)𝐻(𝑦𝐺𝑧)) ↔ ((𝐴𝐹𝐵)𝐺𝑧) = ((𝐴𝐺𝑧)𝐻(𝐵𝐺𝑧))))
13 oveq2 7369 . . . 4 (𝑧 = 𝐶 → ((𝐴𝐹𝐵)𝐺𝑧) = ((𝐴𝐹𝐵)𝐺𝐶))
14 oveq2 7369 . . . . 5 (𝑧 = 𝐶 → (𝐴𝐺𝑧) = (𝐴𝐺𝐶))
15 oveq2 7369 . . . . 5 (𝑧 = 𝐶 → (𝐵𝐺𝑧) = (𝐵𝐺𝐶))
1614, 15oveq12d 7379 . . . 4 (𝑧 = 𝐶 → ((𝐴𝐺𝑧)𝐻(𝐵𝐺𝑧)) = ((𝐴𝐺𝐶)𝐻(𝐵𝐺𝐶)))
1713, 16eqeq12d 2749 . . 3 (𝑧 = 𝐶 → (((𝐴𝐹𝐵)𝐺𝑧) = ((𝐴𝐺𝑧)𝐻(𝐵𝐺𝑧)) ↔ ((𝐴𝐹𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐻(𝐵𝐺𝐶))))
187, 12, 17rspc3v 3595 . 2 ((𝐴𝑆𝐵𝑆𝐶𝐾) → (∀𝑥𝑆𝑦𝑆𝑧𝐾 ((𝑥𝐹𝑦)𝐺𝑧) = ((𝑥𝐺𝑧)𝐻(𝑦𝐺𝑧)) → ((𝐴𝐹𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐻(𝐵𝐺𝐶))))
192, 18mpan9 508 1 ((𝜑 ∧ (𝐴𝑆𝐵𝑆𝐶𝐾)) → ((𝐴𝐹𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐻(𝐵𝐺𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  wral 3061  (class class class)co 7361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3062  df-rab 3407  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-br 5110  df-iota 6452  df-fv 6508  df-ov 7364
This theorem is referenced by:  caovdird  7576  srgdilem  19931  ringdilem  19988
  Copyright terms: Public domain W3C validator