Proof of Theorem caovdirg
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | caovdirg.1 | . . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝐾)) → ((𝑥𝐹𝑦)𝐺𝑧) = ((𝑥𝐺𝑧)𝐻(𝑦𝐺𝑧))) | 
| 2 | 1 | ralrimivvva 3204 | . 2
⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝐾 ((𝑥𝐹𝑦)𝐺𝑧) = ((𝑥𝐺𝑧)𝐻(𝑦𝐺𝑧))) | 
| 3 |  | oveq1 7439 | . . . . 5
⊢ (𝑥 = 𝐴 → (𝑥𝐹𝑦) = (𝐴𝐹𝑦)) | 
| 4 | 3 | oveq1d 7447 | . . . 4
⊢ (𝑥 = 𝐴 → ((𝑥𝐹𝑦)𝐺𝑧) = ((𝐴𝐹𝑦)𝐺𝑧)) | 
| 5 |  | oveq1 7439 | . . . . 5
⊢ (𝑥 = 𝐴 → (𝑥𝐺𝑧) = (𝐴𝐺𝑧)) | 
| 6 | 5 | oveq1d 7447 | . . . 4
⊢ (𝑥 = 𝐴 → ((𝑥𝐺𝑧)𝐻(𝑦𝐺𝑧)) = ((𝐴𝐺𝑧)𝐻(𝑦𝐺𝑧))) | 
| 7 | 4, 6 | eqeq12d 2752 | . . 3
⊢ (𝑥 = 𝐴 → (((𝑥𝐹𝑦)𝐺𝑧) = ((𝑥𝐺𝑧)𝐻(𝑦𝐺𝑧)) ↔ ((𝐴𝐹𝑦)𝐺𝑧) = ((𝐴𝐺𝑧)𝐻(𝑦𝐺𝑧)))) | 
| 8 |  | oveq2 7440 | . . . . 5
⊢ (𝑦 = 𝐵 → (𝐴𝐹𝑦) = (𝐴𝐹𝐵)) | 
| 9 | 8 | oveq1d 7447 | . . . 4
⊢ (𝑦 = 𝐵 → ((𝐴𝐹𝑦)𝐺𝑧) = ((𝐴𝐹𝐵)𝐺𝑧)) | 
| 10 |  | oveq1 7439 | . . . . 5
⊢ (𝑦 = 𝐵 → (𝑦𝐺𝑧) = (𝐵𝐺𝑧)) | 
| 11 | 10 | oveq2d 7448 | . . . 4
⊢ (𝑦 = 𝐵 → ((𝐴𝐺𝑧)𝐻(𝑦𝐺𝑧)) = ((𝐴𝐺𝑧)𝐻(𝐵𝐺𝑧))) | 
| 12 | 9, 11 | eqeq12d 2752 | . . 3
⊢ (𝑦 = 𝐵 → (((𝐴𝐹𝑦)𝐺𝑧) = ((𝐴𝐺𝑧)𝐻(𝑦𝐺𝑧)) ↔ ((𝐴𝐹𝐵)𝐺𝑧) = ((𝐴𝐺𝑧)𝐻(𝐵𝐺𝑧)))) | 
| 13 |  | oveq2 7440 | . . . 4
⊢ (𝑧 = 𝐶 → ((𝐴𝐹𝐵)𝐺𝑧) = ((𝐴𝐹𝐵)𝐺𝐶)) | 
| 14 |  | oveq2 7440 | . . . . 5
⊢ (𝑧 = 𝐶 → (𝐴𝐺𝑧) = (𝐴𝐺𝐶)) | 
| 15 |  | oveq2 7440 | . . . . 5
⊢ (𝑧 = 𝐶 → (𝐵𝐺𝑧) = (𝐵𝐺𝐶)) | 
| 16 | 14, 15 | oveq12d 7450 | . . . 4
⊢ (𝑧 = 𝐶 → ((𝐴𝐺𝑧)𝐻(𝐵𝐺𝑧)) = ((𝐴𝐺𝐶)𝐻(𝐵𝐺𝐶))) | 
| 17 | 13, 16 | eqeq12d 2752 | . . 3
⊢ (𝑧 = 𝐶 → (((𝐴𝐹𝐵)𝐺𝑧) = ((𝐴𝐺𝑧)𝐻(𝐵𝐺𝑧)) ↔ ((𝐴𝐹𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐻(𝐵𝐺𝐶)))) | 
| 18 | 7, 12, 17 | rspc3v 3637 | . 2
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝐾) → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝐾 ((𝑥𝐹𝑦)𝐺𝑧) = ((𝑥𝐺𝑧)𝐻(𝑦𝐺𝑧)) → ((𝐴𝐹𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐻(𝐵𝐺𝐶)))) | 
| 19 | 2, 18 | mpan9 506 | 1
⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝐾)) → ((𝐴𝐹𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐻(𝐵𝐺𝐶))) |