|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > cbvrab | Structured version Visualization version GIF version | ||
| Description: Rule to change the bound variable in a restricted class abstraction, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2376. Use the weaker cbvrabw 3472 when possible. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Mario Carneiro, 9-Oct-2016.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| cbvrab.1 | ⊢ Ⅎ𝑥𝐴 | 
| cbvrab.2 | ⊢ Ⅎ𝑦𝐴 | 
| cbvrab.3 | ⊢ Ⅎ𝑦𝜑 | 
| cbvrab.4 | ⊢ Ⅎ𝑥𝜓 | 
| cbvrab.5 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | 
| Ref | Expression | 
|---|---|
| cbvrab | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐴 ∣ 𝜓} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfv 1913 | . . . 4 ⊢ Ⅎ𝑧(𝑥 ∈ 𝐴 ∧ 𝜑) | |
| 2 | cbvrab.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | nfcri 2896 | . . . . 5 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐴 | 
| 4 | nfs1v 2155 | . . . . 5 ⊢ Ⅎ𝑥[𝑧 / 𝑥]𝜑 | |
| 5 | 3, 4 | nfan 1898 | . . . 4 ⊢ Ⅎ𝑥(𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑) | 
| 6 | eleq1w 2823 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) | |
| 7 | sbequ12 2250 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) | |
| 8 | 6, 7 | anbi12d 632 | . . . 4 ⊢ (𝑥 = 𝑧 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑))) | 
| 9 | 1, 5, 8 | cbvab 2813 | . . 3 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑧 ∣ (𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑)} | 
| 10 | cbvrab.2 | . . . . . 6 ⊢ Ⅎ𝑦𝐴 | |
| 11 | 10 | nfcri 2896 | . . . . 5 ⊢ Ⅎ𝑦 𝑧 ∈ 𝐴 | 
| 12 | cbvrab.3 | . . . . . 6 ⊢ Ⅎ𝑦𝜑 | |
| 13 | 12 | nfsb 2527 | . . . . 5 ⊢ Ⅎ𝑦[𝑧 / 𝑥]𝜑 | 
| 14 | 11, 13 | nfan 1898 | . . . 4 ⊢ Ⅎ𝑦(𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑) | 
| 15 | nfv 1913 | . . . 4 ⊢ Ⅎ𝑧(𝑦 ∈ 𝐴 ∧ 𝜓) | |
| 16 | eleq1w 2823 | . . . . 5 ⊢ (𝑧 = 𝑦 → (𝑧 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 17 | sbequ 2082 | . . . . . 6 ⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
| 18 | cbvrab.4 | . . . . . . 7 ⊢ Ⅎ𝑥𝜓 | |
| 19 | cbvrab.5 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 20 | 18, 19 | sbie 2506 | . . . . . 6 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) | 
| 21 | 17, 20 | bitrdi 287 | . . . . 5 ⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ 𝜓)) | 
| 22 | 16, 21 | anbi12d 632 | . . . 4 ⊢ (𝑧 = 𝑦 → ((𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑) ↔ (𝑦 ∈ 𝐴 ∧ 𝜓))) | 
| 23 | 14, 15, 22 | cbvab 2813 | . . 3 ⊢ {𝑧 ∣ (𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑)} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜓)} | 
| 24 | 9, 23 | eqtri 2764 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜓)} | 
| 25 | df-rab 3436 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 26 | df-rab 3436 | . 2 ⊢ {𝑦 ∈ 𝐴 ∣ 𝜓} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜓)} | |
| 27 | 24, 25, 26 | 3eqtr4i 2774 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐴 ∣ 𝜓} | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 Ⅎwnf 1782 [wsb 2063 ∈ wcel 2107 {cab 2713 Ⅎwnfc 2889 {crab 3435 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-13 2376 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-rab 3436 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |