MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvrab Structured version   Visualization version   GIF version

Theorem cbvrab 3440
Description: Rule to change the bound variable in a restricted class abstraction, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2371. Use the weaker cbvrabw 3435 when possible. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Mario Carneiro, 9-Oct-2016.) (New usage is discouraged.)
Hypotheses
Ref Expression
cbvrab.1 𝑥𝐴
cbvrab.2 𝑦𝐴
cbvrab.3 𝑦𝜑
cbvrab.4 𝑥𝜓
cbvrab.5 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvrab {𝑥𝐴𝜑} = {𝑦𝐴𝜓}

Proof of Theorem cbvrab
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfv 1916 . . . 4 𝑧(𝑥𝐴𝜑)
2 cbvrab.1 . . . . . 6 𝑥𝐴
32nfcri 2892 . . . . 5 𝑥 𝑧𝐴
4 nfs1v 2152 . . . . 5 𝑥[𝑧 / 𝑥]𝜑
53, 4nfan 1901 . . . 4 𝑥(𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑)
6 eleq1w 2820 . . . . 5 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
7 sbequ12 2243 . . . . 5 (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑))
86, 7anbi12d 631 . . . 4 (𝑥 = 𝑧 → ((𝑥𝐴𝜑) ↔ (𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑)))
91, 5, 8cbvab 2813 . . 3 {𝑥 ∣ (𝑥𝐴𝜑)} = {𝑧 ∣ (𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑)}
10 cbvrab.2 . . . . . 6 𝑦𝐴
1110nfcri 2892 . . . . 5 𝑦 𝑧𝐴
12 cbvrab.3 . . . . . 6 𝑦𝜑
1312nfsb 2526 . . . . 5 𝑦[𝑧 / 𝑥]𝜑
1411, 13nfan 1901 . . . 4 𝑦(𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑)
15 nfv 1916 . . . 4 𝑧(𝑦𝐴𝜓)
16 eleq1w 2820 . . . . 5 (𝑧 = 𝑦 → (𝑧𝐴𝑦𝐴))
17 sbequ 2085 . . . . . 6 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑))
18 cbvrab.4 . . . . . . 7 𝑥𝜓
19 cbvrab.5 . . . . . . 7 (𝑥 = 𝑦 → (𝜑𝜓))
2018, 19sbie 2505 . . . . . 6 ([𝑦 / 𝑥]𝜑𝜓)
2117, 20bitrdi 286 . . . . 5 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑𝜓))
2216, 21anbi12d 631 . . . 4 (𝑧 = 𝑦 → ((𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑) ↔ (𝑦𝐴𝜓)))
2314, 15, 22cbvab 2813 . . 3 {𝑧 ∣ (𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑)} = {𝑦 ∣ (𝑦𝐴𝜓)}
249, 23eqtri 2765 . 2 {𝑥 ∣ (𝑥𝐴𝜑)} = {𝑦 ∣ (𝑦𝐴𝜓)}
25 df-rab 3405 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
26 df-rab 3405 . 2 {𝑦𝐴𝜓} = {𝑦 ∣ (𝑦𝐴𝜓)}
2724, 25, 263eqtr4i 2775 1 {𝑥𝐴𝜑} = {𝑦𝐴𝜓}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wnf 1784  [wsb 2066  wcel 2105  {cab 2714  wnfc 2885  {crab 3404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-13 2371  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1543  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-rab 3405
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator