Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvrab | Structured version Visualization version GIF version |
Description: Rule to change the bound variable in a restricted class abstraction, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker cbvrabw 3424 when possible. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Mario Carneiro, 9-Oct-2016.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cbvrab.1 | ⊢ Ⅎ𝑥𝐴 |
cbvrab.2 | ⊢ Ⅎ𝑦𝐴 |
cbvrab.3 | ⊢ Ⅎ𝑦𝜑 |
cbvrab.4 | ⊢ Ⅎ𝑥𝜓 |
cbvrab.5 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvrab | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐴 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1917 | . . . 4 ⊢ Ⅎ𝑧(𝑥 ∈ 𝐴 ∧ 𝜑) | |
2 | cbvrab.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfcri 2894 | . . . . 5 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐴 |
4 | nfs1v 2153 | . . . . 5 ⊢ Ⅎ𝑥[𝑧 / 𝑥]𝜑 | |
5 | 3, 4 | nfan 1902 | . . . 4 ⊢ Ⅎ𝑥(𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑) |
6 | eleq1w 2821 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) | |
7 | sbequ12 2244 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) | |
8 | 6, 7 | anbi12d 631 | . . . 4 ⊢ (𝑥 = 𝑧 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑))) |
9 | 1, 5, 8 | cbvab 2814 | . . 3 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑧 ∣ (𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑)} |
10 | cbvrab.2 | . . . . . 6 ⊢ Ⅎ𝑦𝐴 | |
11 | 10 | nfcri 2894 | . . . . 5 ⊢ Ⅎ𝑦 𝑧 ∈ 𝐴 |
12 | cbvrab.3 | . . . . . 6 ⊢ Ⅎ𝑦𝜑 | |
13 | 12 | nfsb 2527 | . . . . 5 ⊢ Ⅎ𝑦[𝑧 / 𝑥]𝜑 |
14 | 11, 13 | nfan 1902 | . . . 4 ⊢ Ⅎ𝑦(𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑) |
15 | nfv 1917 | . . . 4 ⊢ Ⅎ𝑧(𝑦 ∈ 𝐴 ∧ 𝜓) | |
16 | eleq1w 2821 | . . . . 5 ⊢ (𝑧 = 𝑦 → (𝑧 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
17 | sbequ 2086 | . . . . . 6 ⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
18 | cbvrab.4 | . . . . . . 7 ⊢ Ⅎ𝑥𝜓 | |
19 | cbvrab.5 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
20 | 18, 19 | sbie 2506 | . . . . . 6 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
21 | 17, 20 | bitrdi 287 | . . . . 5 ⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ 𝜓)) |
22 | 16, 21 | anbi12d 631 | . . . 4 ⊢ (𝑧 = 𝑦 → ((𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑) ↔ (𝑦 ∈ 𝐴 ∧ 𝜓))) |
23 | 14, 15, 22 | cbvab 2814 | . . 3 ⊢ {𝑧 ∣ (𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑)} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜓)} |
24 | 9, 23 | eqtri 2766 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜓)} |
25 | df-rab 3073 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
26 | df-rab 3073 | . 2 ⊢ {𝑦 ∈ 𝐴 ∣ 𝜓} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜓)} | |
27 | 24, 25, 26 | 3eqtr4i 2776 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐴 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 Ⅎwnf 1786 [wsb 2067 ∈ wcel 2106 {cab 2715 Ⅎwnfc 2887 {crab 3068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-13 2372 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-rab 3073 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |