Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvrab | Structured version Visualization version GIF version |
Description: Rule to change the bound variable in a restricted class abstraction, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker cbvrabw 3414 when possible. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Mario Carneiro, 9-Oct-2016.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cbvrab.1 | ⊢ Ⅎ𝑥𝐴 |
cbvrab.2 | ⊢ Ⅎ𝑦𝐴 |
cbvrab.3 | ⊢ Ⅎ𝑦𝜑 |
cbvrab.4 | ⊢ Ⅎ𝑥𝜓 |
cbvrab.5 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvrab | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐴 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1918 | . . . 4 ⊢ Ⅎ𝑧(𝑥 ∈ 𝐴 ∧ 𝜑) | |
2 | cbvrab.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfcri 2893 | . . . . 5 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐴 |
4 | nfs1v 2155 | . . . . 5 ⊢ Ⅎ𝑥[𝑧 / 𝑥]𝜑 | |
5 | 3, 4 | nfan 1903 | . . . 4 ⊢ Ⅎ𝑥(𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑) |
6 | eleq1w 2821 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) | |
7 | sbequ12 2247 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) | |
8 | 6, 7 | anbi12d 630 | . . . 4 ⊢ (𝑥 = 𝑧 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑))) |
9 | 1, 5, 8 | cbvab 2815 | . . 3 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑧 ∣ (𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑)} |
10 | cbvrab.2 | . . . . . 6 ⊢ Ⅎ𝑦𝐴 | |
11 | 10 | nfcri 2893 | . . . . 5 ⊢ Ⅎ𝑦 𝑧 ∈ 𝐴 |
12 | cbvrab.3 | . . . . . 6 ⊢ Ⅎ𝑦𝜑 | |
13 | 12 | nfsb 2527 | . . . . 5 ⊢ Ⅎ𝑦[𝑧 / 𝑥]𝜑 |
14 | 11, 13 | nfan 1903 | . . . 4 ⊢ Ⅎ𝑦(𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑) |
15 | nfv 1918 | . . . 4 ⊢ Ⅎ𝑧(𝑦 ∈ 𝐴 ∧ 𝜓) | |
16 | eleq1w 2821 | . . . . 5 ⊢ (𝑧 = 𝑦 → (𝑧 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
17 | sbequ 2087 | . . . . . 6 ⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
18 | cbvrab.4 | . . . . . . 7 ⊢ Ⅎ𝑥𝜓 | |
19 | cbvrab.5 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
20 | 18, 19 | sbie 2506 | . . . . . 6 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
21 | 17, 20 | bitrdi 286 | . . . . 5 ⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ 𝜓)) |
22 | 16, 21 | anbi12d 630 | . . . 4 ⊢ (𝑧 = 𝑦 → ((𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑) ↔ (𝑦 ∈ 𝐴 ∧ 𝜓))) |
23 | 14, 15, 22 | cbvab 2815 | . . 3 ⊢ {𝑧 ∣ (𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑)} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜓)} |
24 | 9, 23 | eqtri 2766 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜓)} |
25 | df-rab 3072 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
26 | df-rab 3072 | . 2 ⊢ {𝑦 ∈ 𝐴 ∣ 𝜓} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜓)} | |
27 | 24, 25, 26 | 3eqtr4i 2776 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐴 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 Ⅎwnf 1787 [wsb 2068 ∈ wcel 2108 {cab 2715 Ⅎwnfc 2886 {crab 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-13 2372 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-rab 3072 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |