Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvmpo2davw2 Structured version   Visualization version   GIF version

Theorem cbvmpo2davw2 36335
Description: Change second bound variable and domains in a maps-to function. Deduction form. (Contributed by GG, 14-Aug-2025.)
Hypotheses
Ref Expression
cbvmpo2davw2.1 ((𝜑𝑦 = 𝑧) → 𝐸 = 𝐹)
cbvmpo2davw2.2 ((𝜑𝑦 = 𝑧) → 𝐶 = 𝐷)
cbvmpo2davw2.3 ((𝜑𝑦 = 𝑧) → 𝐴 = 𝐵)
Assertion
Ref Expression
cbvmpo2davw2 (𝜑 → (𝑥𝐴, 𝑦𝐶𝐸) = (𝑥𝐵, 𝑧𝐷𝐹))
Distinct variable groups:   𝜑,𝑥,𝑦,𝑧   𝑧,𝐴   𝑦,𝐵   𝑧,𝐶   𝑦,𝐷   𝑧,𝐸   𝑦,𝐹
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑧)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑧)   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑧)

Proof of Theorem cbvmpo2davw2
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 cbvmpo2davw2.3 . . . . . 6 ((𝜑𝑦 = 𝑧) → 𝐴 = 𝐵)
21eleq2d 2817 . . . . 5 ((𝜑𝑦 = 𝑧) → (𝑥𝐴𝑥𝐵))
3 simpr 484 . . . . . 6 ((𝜑𝑦 = 𝑧) → 𝑦 = 𝑧)
4 cbvmpo2davw2.2 . . . . . 6 ((𝜑𝑦 = 𝑧) → 𝐶 = 𝐷)
53, 4eleq12d 2825 . . . . 5 ((𝜑𝑦 = 𝑧) → (𝑦𝐶𝑧𝐷))
62, 5anbi12d 632 . . . 4 ((𝜑𝑦 = 𝑧) → ((𝑥𝐴𝑦𝐶) ↔ (𝑥𝐵𝑧𝐷)))
7 cbvmpo2davw2.1 . . . . 5 ((𝜑𝑦 = 𝑧) → 𝐸 = 𝐹)
87eqeq2d 2742 . . . 4 ((𝜑𝑦 = 𝑧) → (𝑡 = 𝐸𝑡 = 𝐹))
96, 8anbi12d 632 . . 3 ((𝜑𝑦 = 𝑧) → (((𝑥𝐴𝑦𝐶) ∧ 𝑡 = 𝐸) ↔ ((𝑥𝐵𝑧𝐷) ∧ 𝑡 = 𝐹)))
109cbvoprab2davw 36314 . 2 (𝜑 → {⟨⟨𝑥, 𝑦⟩, 𝑡⟩ ∣ ((𝑥𝐴𝑦𝐶) ∧ 𝑡 = 𝐸)} = {⟨⟨𝑥, 𝑧⟩, 𝑡⟩ ∣ ((𝑥𝐵𝑧𝐷) ∧ 𝑡 = 𝐹)})
11 df-mpo 7351 . 2 (𝑥𝐴, 𝑦𝐶𝐸) = {⟨⟨𝑥, 𝑦⟩, 𝑡⟩ ∣ ((𝑥𝐴𝑦𝐶) ∧ 𝑡 = 𝐸)}
12 df-mpo 7351 . 2 (𝑥𝐵, 𝑧𝐷𝐹) = {⟨⟨𝑥, 𝑧⟩, 𝑡⟩ ∣ ((𝑥𝐵𝑧𝐷) ∧ 𝑡 = 𝐹)}
1310, 11, 123eqtr4g 2791 1 (𝜑 → (𝑥𝐴, 𝑦𝐶𝐸) = (𝑥𝐵, 𝑧𝐷𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {coprab 7347  cmpo 7348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-oprab 7350  df-mpo 7351
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator