Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvmptg | Structured version Visualization version GIF version |
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2372. See cbvmpt 5181 for a version with more disjoint variable conditions, but not requiring ax-13 2372. (Contributed by NM, 11-Sep-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cbvmptg.1 | ⊢ Ⅎ𝑦𝐵 |
cbvmptg.2 | ⊢ Ⅎ𝑥𝐶 |
cbvmptg.3 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
cbvmptg | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2906 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2906 | . 2 ⊢ Ⅎ𝑦𝐴 | |
3 | cbvmptg.1 | . 2 ⊢ Ⅎ𝑦𝐵 | |
4 | cbvmptg.2 | . 2 ⊢ Ⅎ𝑥𝐶 | |
5 | cbvmptg.3 | . 2 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
6 | 1, 2, 3, 4, 5 | cbvmptfg 5180 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 Ⅎwnfc 2886 ↦ cmpt 5153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-13 2372 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-opab 5133 df-mpt 5154 |
This theorem is referenced by: cbvmptvg 5185 |
Copyright terms: Public domain | W3C validator |