MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvmptg Structured version   Visualization version   GIF version

Theorem cbvmptg 5278
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2380. See cbvmpt 5277 for a version with more disjoint variable conditions, but not requiring ax-13 2380. (Contributed by NM, 11-Sep-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
cbvmptg.1 𝑦𝐵
cbvmptg.2 𝑥𝐶
cbvmptg.3 (𝑥 = 𝑦𝐵 = 𝐶)
Assertion
Ref Expression
cbvmptg (𝑥𝐴𝐵) = (𝑦𝐴𝐶)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem cbvmptg
StepHypRef Expression
1 nfcv 2908 . 2 𝑥𝐴
2 nfcv 2908 . 2 𝑦𝐴
3 cbvmptg.1 . 2 𝑦𝐵
4 cbvmptg.2 . 2 𝑥𝐶
5 cbvmptg.3 . 2 (𝑥 = 𝑦𝐵 = 𝐶)
61, 2, 3, 4, 5cbvmptfg 5276 1 (𝑥𝐴𝐵) = (𝑦𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wnfc 2893  cmpt 5249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-13 2380  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-opab 5229  df-mpt 5250
This theorem is referenced by:  cbvmptvg  5281
  Copyright terms: Public domain W3C validator