| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvmptg | Structured version Visualization version GIF version | ||
| Description: Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2374. See cbvmpt 5195 for a version with more disjoint variable conditions, but not requiring ax-13 2374. (Contributed by NM, 11-Sep-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cbvmptg.1 | ⊢ Ⅎ𝑦𝐵 |
| cbvmptg.2 | ⊢ Ⅎ𝑥𝐶 |
| cbvmptg.3 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| cbvmptg | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2895 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2895 | . 2 ⊢ Ⅎ𝑦𝐴 | |
| 3 | cbvmptg.1 | . 2 ⊢ Ⅎ𝑦𝐵 | |
| 4 | cbvmptg.2 | . 2 ⊢ Ⅎ𝑥𝐶 | |
| 5 | cbvmptg.3 | . 2 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
| 6 | 1, 2, 3, 4, 5 | cbvmptfg 5194 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 Ⅎwnfc 2880 ↦ cmpt 5174 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-13 2374 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-opab 5156 df-mpt 5175 |
| This theorem is referenced by: cbvmptvg 5198 |
| Copyright terms: Public domain | W3C validator |