| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvmptg | Structured version Visualization version GIF version | ||
| Description: Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2377. See cbvmpt 5228 for a version with more disjoint variable conditions, but not requiring ax-13 2377. (Contributed by NM, 11-Sep-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cbvmptg.1 | ⊢ Ⅎ𝑦𝐵 |
| cbvmptg.2 | ⊢ Ⅎ𝑥𝐶 |
| cbvmptg.3 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| cbvmptg | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2899 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2899 | . 2 ⊢ Ⅎ𝑦𝐴 | |
| 3 | cbvmptg.1 | . 2 ⊢ Ⅎ𝑦𝐵 | |
| 4 | cbvmptg.2 | . 2 ⊢ Ⅎ𝑥𝐶 | |
| 5 | cbvmptg.3 | . 2 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
| 6 | 1, 2, 3, 4, 5 | cbvmptfg 5227 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 Ⅎwnfc 2884 ↦ cmpt 5206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-13 2377 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-opab 5187 df-mpt 5207 |
| This theorem is referenced by: cbvmptvg 5232 |
| Copyright terms: Public domain | W3C validator |