| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | nfv 1914 | . . . 4
⊢
Ⅎ𝑤(𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵) | 
| 2 |  | cbvmptfg.1 | . . . . . 6
⊢
Ⅎ𝑥𝐴 | 
| 3 | 2 | nfcri 2897 | . . . . 5
⊢
Ⅎ𝑥 𝑤 ∈ 𝐴 | 
| 4 |  | nfs1v 2156 | . . . . 5
⊢
Ⅎ𝑥[𝑤 / 𝑥]𝑧 = 𝐵 | 
| 5 | 3, 4 | nfan 1899 | . . . 4
⊢
Ⅎ𝑥(𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵) | 
| 6 |  | eleq1w 2824 | . . . . 5
⊢ (𝑥 = 𝑤 → (𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴)) | 
| 7 |  | sbequ12 2251 | . . . . 5
⊢ (𝑥 = 𝑤 → (𝑧 = 𝐵 ↔ [𝑤 / 𝑥]𝑧 = 𝐵)) | 
| 8 | 6, 7 | anbi12d 632 | . . . 4
⊢ (𝑥 = 𝑤 → ((𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵) ↔ (𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵))) | 
| 9 | 1, 5, 8 | cbvopab1g 5218 | . . 3
⊢
{〈𝑥, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵)} = {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵)} | 
| 10 |  | cbvmptfg.2 | . . . . . 6
⊢
Ⅎ𝑦𝐴 | 
| 11 | 10 | nfcri 2897 | . . . . 5
⊢
Ⅎ𝑦 𝑤 ∈ 𝐴 | 
| 12 |  | cbvmptfg.3 | . . . . . . 7
⊢
Ⅎ𝑦𝐵 | 
| 13 | 12 | nfeq2 2923 | . . . . . 6
⊢
Ⅎ𝑦 𝑧 = 𝐵 | 
| 14 | 13 | nfsb 2528 | . . . . 5
⊢
Ⅎ𝑦[𝑤 / 𝑥]𝑧 = 𝐵 | 
| 15 | 11, 14 | nfan 1899 | . . . 4
⊢
Ⅎ𝑦(𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵) | 
| 16 |  | nfv 1914 | . . . 4
⊢
Ⅎ𝑤(𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶) | 
| 17 |  | eleq1w 2824 | . . . . 5
⊢ (𝑤 = 𝑦 → (𝑤 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | 
| 18 |  | sbequ 2083 | . . . . . 6
⊢ (𝑤 = 𝑦 → ([𝑤 / 𝑥]𝑧 = 𝐵 ↔ [𝑦 / 𝑥]𝑧 = 𝐵)) | 
| 19 |  | cbvmptfg.4 | . . . . . . . 8
⊢
Ⅎ𝑥𝐶 | 
| 20 | 19 | nfeq2 2923 | . . . . . . 7
⊢
Ⅎ𝑥 𝑧 = 𝐶 | 
| 21 |  | cbvmptfg.5 | . . . . . . . 8
⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | 
| 22 | 21 | eqeq2d 2748 | . . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑧 = 𝐵 ↔ 𝑧 = 𝐶)) | 
| 23 | 20, 22 | sbie 2507 | . . . . . 6
⊢ ([𝑦 / 𝑥]𝑧 = 𝐵 ↔ 𝑧 = 𝐶) | 
| 24 | 18, 23 | bitrdi 287 | . . . . 5
⊢ (𝑤 = 𝑦 → ([𝑤 / 𝑥]𝑧 = 𝐵 ↔ 𝑧 = 𝐶)) | 
| 25 | 17, 24 | anbi12d 632 | . . . 4
⊢ (𝑤 = 𝑦 → ((𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶))) | 
| 26 | 15, 16, 25 | cbvopab1g 5218 | . . 3
⊢
{〈𝑤, 𝑧〉 ∣ (𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵)} = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶)} | 
| 27 | 9, 26 | eqtri 2765 | . 2
⊢
{〈𝑥, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵)} = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶)} | 
| 28 |  | df-mpt 5226 | . 2
⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵)} | 
| 29 |  | df-mpt 5226 | . 2
⊢ (𝑦 ∈ 𝐴 ↦ 𝐶) = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶)} | 
| 30 | 27, 28, 29 | 3eqtr4i 2775 | 1
⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶) |