![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvmptvOLD | Structured version Visualization version GIF version |
Description: Obsolete version of cbvmptv 5262 as of 17-Nov-2024. (Contributed by Mario Carneiro, 19-Feb-2013.) Add disjoint variable condition to avoid ax-13 2365. See cbvmptvg 5264 for a less restrictive version requiring more axioms. (Revised by GG, 17-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cbvmptvOLD.1 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
cbvmptvOLD | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2891 | . 2 ⊢ Ⅎ𝑦𝐵 | |
2 | nfcv 2891 | . 2 ⊢ Ⅎ𝑥𝐶 | |
3 | cbvmptvOLD.1 | . 2 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
4 | 1, 2, 3 | cbvmpt 5260 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ↦ cmpt 5232 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-opab 5212 df-mpt 5233 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |