Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvoprab123vw Structured version   Visualization version   GIF version

Theorem cbvoprab123vw 36197
Description: Change all bound variables in an operation abstraction, using implicit substitution. (Contributed by GG, 14-Aug-2025.)
Hypothesis
Ref Expression
cbvoprab123vw.1 (((𝑥 = 𝑤𝑦 = 𝑢) ∧ 𝑧 = 𝑣) → (𝜓𝜒))
Assertion
Ref Expression
cbvoprab123vw {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} = {⟨⟨𝑤, 𝑢⟩, 𝑣⟩ ∣ 𝜒}
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑢,𝑣   𝜓,𝑤,𝑢,𝑣   𝜒,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧)   𝜒(𝑤,𝑣,𝑢)

Proof of Theorem cbvoprab123vw
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . . . . . . . 9 (((𝑥 = 𝑤𝑦 = 𝑢) ∧ 𝑧 = 𝑣) → 𝑥 = 𝑤)
2 simplr 768 . . . . . . . . 9 (((𝑥 = 𝑤𝑦 = 𝑢) ∧ 𝑧 = 𝑣) → 𝑦 = 𝑢)
31, 2opeq12d 4905 . . . . . . . 8 (((𝑥 = 𝑤𝑦 = 𝑢) ∧ 𝑧 = 𝑣) → ⟨𝑥, 𝑦⟩ = ⟨𝑤, 𝑢⟩)
4 simpr 484 . . . . . . . 8 (((𝑥 = 𝑤𝑦 = 𝑢) ∧ 𝑧 = 𝑣) → 𝑧 = 𝑣)
53, 4opeq12d 4905 . . . . . . 7 (((𝑥 = 𝑤𝑦 = 𝑢) ∧ 𝑧 = 𝑣) → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ = ⟨⟨𝑤, 𝑢⟩, 𝑣⟩)
65eqeq2d 2751 . . . . . 6 (((𝑥 = 𝑤𝑦 = 𝑢) ∧ 𝑧 = 𝑣) → (𝑡 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ↔ 𝑡 = ⟨⟨𝑤, 𝑢⟩, 𝑣⟩))
7 cbvoprab123vw.1 . . . . . 6 (((𝑥 = 𝑤𝑦 = 𝑢) ∧ 𝑧 = 𝑣) → (𝜓𝜒))
86, 7anbi12d 631 . . . . 5 (((𝑥 = 𝑤𝑦 = 𝑢) ∧ 𝑧 = 𝑣) → ((𝑡 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜓) ↔ (𝑡 = ⟨⟨𝑤, 𝑢⟩, 𝑣⟩ ∧ 𝜒)))
98cbvexdvaw 2038 . . . 4 ((𝑥 = 𝑤𝑦 = 𝑢) → (∃𝑧(𝑡 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜓) ↔ ∃𝑣(𝑡 = ⟨⟨𝑤, 𝑢⟩, 𝑣⟩ ∧ 𝜒)))
109cbvex2vw 2040 . . 3 (∃𝑥𝑦𝑧(𝑡 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜓) ↔ ∃𝑤𝑢𝑣(𝑡 = ⟨⟨𝑤, 𝑢⟩, 𝑣⟩ ∧ 𝜒))
1110abbii 2812 . 2 {𝑡 ∣ ∃𝑥𝑦𝑧(𝑡 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜓)} = {𝑡 ∣ ∃𝑤𝑢𝑣(𝑡 = ⟨⟨𝑤, 𝑢⟩, 𝑣⟩ ∧ 𝜒)}
12 df-oprab 7447 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} = {𝑡 ∣ ∃𝑥𝑦𝑧(𝑡 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜓)}
13 df-oprab 7447 . 2 {⟨⟨𝑤, 𝑢⟩, 𝑣⟩ ∣ 𝜒} = {𝑡 ∣ ∃𝑤𝑢𝑣(𝑡 = ⟨⟨𝑤, 𝑢⟩, 𝑣⟩ ∧ 𝜒)}
1411, 12, 133eqtr4i 2778 1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} = {⟨⟨𝑤, 𝑢⟩, 𝑣⟩ ∣ 𝜒}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  {cab 2717  cop 4654  {coprab 7444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-oprab 7447
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator