Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvoprab23vw Structured version   Visualization version   GIF version

Theorem cbvoprab23vw 36204
Description: Change the second and third bound variables in an operation abstraction, using implicit substitution. (Contributed by GG, 14-Aug-2025.)
Hypothesis
Ref Expression
cbvoprab23vw.1 ((𝑦 = 𝑤𝑧 = 𝑣) → (𝜓𝜒))
Assertion
Ref Expression
cbvoprab23vw {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} = {⟨⟨𝑥, 𝑤⟩, 𝑣⟩ ∣ 𝜒}
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣   𝜓,𝑤,𝑣   𝜒,𝑦,𝑧
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧)   𝜒(𝑥,𝑤,𝑣)

Proof of Theorem cbvoprab23vw
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 opeq2 4850 . . . . . . . . 9 (𝑦 = 𝑤 → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑤⟩)
21adantr 480 . . . . . . . 8 ((𝑦 = 𝑤𝑧 = 𝑣) → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑤⟩)
3 simpr 484 . . . . . . . 8 ((𝑦 = 𝑤𝑧 = 𝑣) → 𝑧 = 𝑣)
42, 3opeq12d 4857 . . . . . . 7 ((𝑦 = 𝑤𝑧 = 𝑣) → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ = ⟨⟨𝑥, 𝑤⟩, 𝑣⟩)
54eqeq2d 2746 . . . . . 6 ((𝑦 = 𝑤𝑧 = 𝑣) → (𝑡 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ↔ 𝑡 = ⟨⟨𝑥, 𝑤⟩, 𝑣⟩))
6 cbvoprab23vw.1 . . . . . 6 ((𝑦 = 𝑤𝑧 = 𝑣) → (𝜓𝜒))
75, 6anbi12d 632 . . . . 5 ((𝑦 = 𝑤𝑧 = 𝑣) → ((𝑡 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜓) ↔ (𝑡 = ⟨⟨𝑥, 𝑤⟩, 𝑣⟩ ∧ 𝜒)))
87cbvex2vw 2040 . . . 4 (∃𝑦𝑧(𝑡 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜓) ↔ ∃𝑤𝑣(𝑡 = ⟨⟨𝑥, 𝑤⟩, 𝑣⟩ ∧ 𝜒))
98exbii 1848 . . 3 (∃𝑥𝑦𝑧(𝑡 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜓) ↔ ∃𝑥𝑤𝑣(𝑡 = ⟨⟨𝑥, 𝑤⟩, 𝑣⟩ ∧ 𝜒))
109abbii 2802 . 2 {𝑡 ∣ ∃𝑥𝑦𝑧(𝑡 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜓)} = {𝑡 ∣ ∃𝑥𝑤𝑣(𝑡 = ⟨⟨𝑥, 𝑤⟩, 𝑣⟩ ∧ 𝜒)}
11 df-oprab 7407 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} = {𝑡 ∣ ∃𝑥𝑦𝑧(𝑡 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜓)}
12 df-oprab 7407 . 2 {⟨⟨𝑥, 𝑤⟩, 𝑣⟩ ∣ 𝜒} = {𝑡 ∣ ∃𝑥𝑤𝑣(𝑡 = ⟨⟨𝑥, 𝑤⟩, 𝑣⟩ ∧ 𝜒)}
1310, 11, 123eqtr4i 2768 1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} = {⟨⟨𝑥, 𝑤⟩, 𝑣⟩ ∣ 𝜒}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  {cab 2713  cop 4607  {coprab 7404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-oprab 7407
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator