Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opeq1d | Structured version Visualization version GIF version |
Description: Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
Ref | Expression |
---|---|
opeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
opeq1d | ⊢ (𝜑 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | opeq1 4801 | . 2 ⊢ (𝐴 = 𝐵 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 〈cop 4564 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 |
This theorem is referenced by: oteq1 4810 oteq2 4811 opth 5385 elsnxp 6183 cbvoprab2 7341 fvproj 7946 unxpdomlem1 8956 djulf1o 9601 djurf1o 9602 mulcanenq 10647 ax1rid 10848 axrnegex 10849 fseq1m1p1 13260 uzrdglem 13605 pfxswrd 14347 swrdccat 14376 swrdccat3blem 14380 cshw0 14435 cshwmodn 14436 s2prop 14548 s4prop 14551 fsum2dlem 15410 fprod2dlem 15618 ruclem1 15868 imasaddvallem 17157 iscatd2 17307 moni 17365 homadmcd 17673 curf1 17859 curf1cl 17862 curf2 17863 hofcl 17893 gsum2dlem2 19487 imasdsf1olem 23434 ovoliunlem1 24571 cxpcn3 25806 axlowdimlem15 27227 axlowdim 27232 nvi 28877 nvop 28939 phop 29081 br8d 30851 fgreu 30911 1stpreimas 30940 smatfval 31647 smatrcl 31648 smatlem 31649 fmla0xp 33245 mvhfval 33395 mpst123 33402 br8 33629 frxp3 33724 xpord3pred 33725 nosupbnd2 33846 noinfbnd2 33861 fvtransport 34261 bj-inftyexpitaudisj 35303 rfovcnvf1od 41501 |
Copyright terms: Public domain | W3C validator |