| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opeq1d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
| Ref | Expression |
|---|---|
| opeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| opeq1d | ⊢ (𝜑 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | opeq1 4827 | . 2 ⊢ (𝐴 = 𝐵 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 〈cop 4585 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 |
| This theorem is referenced by: oteq1 4836 oteq2 4837 opth 5423 elsnxp 6243 cbvoprab2 7441 cbvoprab12v 7443 fvproj 8074 unxpdomlem1 9155 djulf1o 9827 djurf1o 9828 mulcanenq 10873 ax1rid 11074 axrnegex 11075 fseq1m1p1 13520 uzrdglem 13882 pfxswrd 14630 swrdccat 14659 swrdccat3blem 14663 cshw0 14718 cshwmodn 14719 s2prop 14832 s4prop 14835 fsum2dlem 15695 fprod2dlem 15905 ruclem1 16158 imasaddvallem 17451 iscatd2 17605 moni 17661 homadmcd 17967 curf1 18149 curf1cl 18152 curf2 18153 hofcl 18183 gsum2dlem2 19868 pzriprnglem10 21415 imasdsf1olem 24277 ovoliunlem1 25419 cxpcn3 26674 nosupbnd2 27644 noinfbnd2 27659 noseqrdglem 28222 axlowdimlem15 28919 axlowdim 28924 nvi 30576 nvop 30638 phop 30780 br8d 32571 fgreu 32629 1stpreimas 32662 rlocval 33212 rloccring 33223 smatfval 33764 smatrcl 33765 smatlem 33766 fmla0xp 35358 mvhfval 35508 mpst123 35515 br8 35731 fvtransport 36008 cbvoprab1vw 36213 cbvoprab2vw 36214 cbvoprab1davw 36247 cbvoprab2davw 36248 cbvoprab12davw 36251 bj-inftyexpitaudisj 37181 rfovcnvf1od 43980 oppcup3lem 49195 tposcurf2val 49290 oppcthinendcALT 49430 concom 49652 |
| Copyright terms: Public domain | W3C validator |