| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opeq1d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
| Ref | Expression |
|---|---|
| opeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| opeq1d | ⊢ (𝜑 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | opeq1 4825 | . 2 ⊢ (𝐴 = 𝐵 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 〈cop 4582 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 |
| This theorem is referenced by: oteq1 4834 oteq2 4835 opth 5416 elsnxp 6238 cbvoprab2 7434 cbvoprab12v 7436 fvproj 8064 unxpdomlem1 9140 djulf1o 9805 djurf1o 9806 mulcanenq 10851 ax1rid 11052 axrnegex 11053 fseq1m1p1 13499 uzrdglem 13864 pfxswrd 14613 swrdccat 14642 swrdccat3blem 14646 cshw0 14701 cshwmodn 14702 s2prop 14814 s4prop 14817 fsum2dlem 15677 fprod2dlem 15887 ruclem1 16140 imasaddvallem 17433 iscatd2 17587 moni 17643 homadmcd 17949 curf1 18131 curf1cl 18134 curf2 18135 hofcl 18165 gsum2dlem2 19884 pzriprnglem10 21428 imasdsf1olem 24289 ovoliunlem1 25431 cxpcn3 26686 nosupbnd2 27656 noinfbnd2 27671 noseqrdglem 28236 axlowdimlem15 28935 axlowdim 28940 nvi 30592 nvop 30654 phop 30796 br8d 32589 fgreu 32652 1stpreimas 32685 rlocval 33224 rloccring 33235 smatfval 33806 smatrcl 33807 smatlem 33808 fmla0xp 35425 mvhfval 35575 mpst123 35582 br8 35798 fvtransport 36072 cbvoprab1vw 36277 cbvoprab2vw 36278 cbvoprab1davw 36311 cbvoprab2davw 36312 cbvoprab12davw 36315 bj-inftyexpitaudisj 37245 rfovcnvf1od 44043 oppcup3lem 49244 tposcurf2val 49339 oppcthinendcALT 49479 concom 49701 |
| Copyright terms: Public domain | W3C validator |