![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opeq1d | Structured version Visualization version GIF version |
Description: Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
Ref | Expression |
---|---|
opeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
opeq1d | ⊢ (𝜑 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | opeq1 4897 | . 2 ⊢ (𝐴 = 𝐵 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 〈cop 4654 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 |
This theorem is referenced by: oteq1 4906 oteq2 4907 opth 5496 elsnxp 6322 cbvoprab2 7538 cbvoprab12v 7540 fvproj 8175 unxpdomlem1 9313 djulf1o 9981 djurf1o 9982 mulcanenq 11029 ax1rid 11230 axrnegex 11231 fseq1m1p1 13659 uzrdglem 14008 pfxswrd 14754 swrdccat 14783 swrdccat3blem 14787 cshw0 14842 cshwmodn 14843 s2prop 14956 s4prop 14959 fsum2dlem 15818 fprod2dlem 16028 ruclem1 16279 imasaddvallem 17589 iscatd2 17739 moni 17797 homadmcd 18109 curf1 18295 curf1cl 18298 curf2 18299 hofcl 18329 gsum2dlem2 20013 pzriprnglem10 21524 imasdsf1olem 24404 ovoliunlem1 25556 cxpcn3 26809 nosupbnd2 27779 noinfbnd2 27794 noseqrdglem 28329 axlowdimlem15 28989 axlowdim 28994 nvi 30646 nvop 30708 phop 30850 br8d 32632 fgreu 32690 1stpreimas 32717 rlocval 33231 rloccring 33242 smatfval 33741 smatrcl 33742 smatlem 33743 fmla0xp 35351 mvhfval 35501 mpst123 35508 br8 35718 fvtransport 35996 cbvoprab1vw 36203 cbvoprab2vw 36204 cbvoprab1davw 36237 cbvoprab2davw 36238 cbvoprab12davw 36241 bj-inftyexpitaudisj 37171 rfovcnvf1od 43966 |
Copyright terms: Public domain | W3C validator |