| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opeq1d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
| Ref | Expression |
|---|---|
| opeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| opeq1d | ⊢ (𝜑 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | opeq1 4840 | . 2 ⊢ (𝐴 = 𝐵 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 〈cop 4598 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 |
| This theorem is referenced by: oteq1 4849 oteq2 4850 opth 5439 elsnxp 6267 cbvoprab2 7480 cbvoprab12v 7482 fvproj 8116 unxpdomlem1 9204 djulf1o 9872 djurf1o 9873 mulcanenq 10920 ax1rid 11121 axrnegex 11122 fseq1m1p1 13567 uzrdglem 13929 pfxswrd 14678 swrdccat 14707 swrdccat3blem 14711 cshw0 14766 cshwmodn 14767 s2prop 14880 s4prop 14883 fsum2dlem 15743 fprod2dlem 15953 ruclem1 16206 imasaddvallem 17499 iscatd2 17649 moni 17705 homadmcd 18011 curf1 18193 curf1cl 18196 curf2 18197 hofcl 18227 gsum2dlem2 19908 pzriprnglem10 21407 imasdsf1olem 24268 ovoliunlem1 25410 cxpcn3 26665 nosupbnd2 27635 noinfbnd2 27650 noseqrdglem 28206 axlowdimlem15 28890 axlowdim 28895 nvi 30550 nvop 30612 phop 30754 br8d 32545 fgreu 32603 1stpreimas 32636 rlocval 33217 rloccring 33228 smatfval 33792 smatrcl 33793 smatlem 33794 fmla0xp 35377 mvhfval 35527 mpst123 35534 br8 35750 fvtransport 36027 cbvoprab1vw 36232 cbvoprab2vw 36233 cbvoprab1davw 36266 cbvoprab2davw 36267 cbvoprab12davw 36270 bj-inftyexpitaudisj 37200 rfovcnvf1od 44000 oppcup3lem 49199 tposcurf2val 49294 oppcthinendcALT 49434 concom 49656 |
| Copyright terms: Public domain | W3C validator |