| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opeq1d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
| Ref | Expression |
|---|---|
| opeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| opeq1d | ⊢ (𝜑 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | opeq1 4826 | . 2 ⊢ (𝐴 = 𝐵 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 〈cop 4583 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 |
| This theorem is referenced by: oteq1 4835 oteq2 4836 opth 5421 elsnxp 6245 cbvoprab2 7442 cbvoprab12v 7444 fvproj 8072 unxpdomlem1 9149 djulf1o 9814 djurf1o 9815 mulcanenq 10860 ax1rid 11061 axrnegex 11062 fseq1m1p1 13503 uzrdglem 13868 pfxswrd 14617 swrdccat 14646 swrdccat3blem 14650 cshw0 14705 cshwmodn 14706 s2prop 14818 s4prop 14821 fsum2dlem 15681 fprod2dlem 15891 ruclem1 16144 imasaddvallem 17437 iscatd2 17591 moni 17647 homadmcd 17953 curf1 18135 curf1cl 18138 curf2 18139 hofcl 18169 gsum2dlem2 19887 pzriprnglem10 21431 imasdsf1olem 24291 ovoliunlem1 25433 cxpcn3 26688 nosupbnd2 27658 noinfbnd2 27673 noseqrdglem 28238 axlowdimlem15 28938 axlowdim 28943 nvi 30598 nvop 30660 phop 30802 br8d 32595 fgreu 32658 1stpreimas 32693 rlocval 33235 rloccring 33246 smatfval 33831 smatrcl 33832 smatlem 33833 fmla0xp 35450 mvhfval 35600 mpst123 35607 br8 35823 fvtransport 36099 cbvoprab1vw 36304 cbvoprab2vw 36305 cbvoprab1davw 36338 cbvoprab2davw 36339 cbvoprab12davw 36342 bj-inftyexpitaudisj 37272 rfovcnvf1od 44124 oppcup3lem 49334 tposcurf2val 49429 oppcthinendcALT 49569 concom 49791 |
| Copyright terms: Public domain | W3C validator |