| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opeq1d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
| Ref | Expression |
|---|---|
| opeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| opeq1d | ⊢ (𝜑 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | opeq1 4849 | . 2 ⊢ (𝐴 = 𝐵 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 〈cop 4607 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 |
| This theorem is referenced by: oteq1 4858 oteq2 4859 opth 5451 elsnxp 6280 cbvoprab2 7495 cbvoprab12v 7497 fvproj 8133 unxpdomlem1 9258 djulf1o 9926 djurf1o 9927 mulcanenq 10974 ax1rid 11175 axrnegex 11176 fseq1m1p1 13616 uzrdglem 13975 pfxswrd 14724 swrdccat 14753 swrdccat3blem 14757 cshw0 14812 cshwmodn 14813 s2prop 14926 s4prop 14929 fsum2dlem 15786 fprod2dlem 15996 ruclem1 16249 imasaddvallem 17543 iscatd2 17693 moni 17749 homadmcd 18055 curf1 18237 curf1cl 18240 curf2 18241 hofcl 18271 gsum2dlem2 19952 pzriprnglem10 21451 imasdsf1olem 24312 ovoliunlem1 25455 cxpcn3 26710 nosupbnd2 27680 noinfbnd2 27695 noseqrdglem 28251 axlowdimlem15 28935 axlowdim 28940 nvi 30595 nvop 30657 phop 30799 br8d 32590 fgreu 32650 1stpreimas 32683 rlocval 33254 rloccring 33265 smatfval 33826 smatrcl 33827 smatlem 33828 fmla0xp 35405 mvhfval 35555 mpst123 35562 br8 35773 fvtransport 36050 cbvoprab1vw 36255 cbvoprab2vw 36256 cbvoprab1davw 36289 cbvoprab2davw 36290 cbvoprab12davw 36293 bj-inftyexpitaudisj 37223 rfovcnvf1od 44028 oppcup3lem 49139 tposcurf2val 49212 oppcthinendcALT 49327 concom 49533 |
| Copyright terms: Public domain | W3C validator |