| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opeq1d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
| Ref | Expression |
|---|---|
| opeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| opeq1d | ⊢ (𝜑 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | opeq1 4837 | . 2 ⊢ (𝐴 = 𝐵 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 〈cop 4595 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 |
| This theorem is referenced by: oteq1 4846 oteq2 4847 opth 5436 elsnxp 6264 cbvoprab2 7477 cbvoprab12v 7479 fvproj 8113 unxpdomlem1 9197 djulf1o 9865 djurf1o 9866 mulcanenq 10913 ax1rid 11114 axrnegex 11115 fseq1m1p1 13560 uzrdglem 13922 pfxswrd 14671 swrdccat 14700 swrdccat3blem 14704 cshw0 14759 cshwmodn 14760 s2prop 14873 s4prop 14876 fsum2dlem 15736 fprod2dlem 15946 ruclem1 16199 imasaddvallem 17492 iscatd2 17642 moni 17698 homadmcd 18004 curf1 18186 curf1cl 18189 curf2 18190 hofcl 18220 gsum2dlem2 19901 pzriprnglem10 21400 imasdsf1olem 24261 ovoliunlem1 25403 cxpcn3 26658 nosupbnd2 27628 noinfbnd2 27643 noseqrdglem 28199 axlowdimlem15 28883 axlowdim 28888 nvi 30543 nvop 30605 phop 30747 br8d 32538 fgreu 32596 1stpreimas 32629 rlocval 33210 rloccring 33221 smatfval 33785 smatrcl 33786 smatlem 33787 fmla0xp 35370 mvhfval 35520 mpst123 35527 br8 35743 fvtransport 36020 cbvoprab1vw 36225 cbvoprab2vw 36226 cbvoprab1davw 36259 cbvoprab2davw 36260 cbvoprab12davw 36263 bj-inftyexpitaudisj 37193 rfovcnvf1od 43993 oppcup3lem 49195 tposcurf2val 49290 oppcthinendcALT 49430 concom 49652 |
| Copyright terms: Public domain | W3C validator |