![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opeq1d | Structured version Visualization version GIF version |
Description: Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
Ref | Expression |
---|---|
opeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
opeq1d | ⊢ (𝜑 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | opeq1 4636 | . 2 ⊢ (𝐴 = 𝐵 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 〈cop 4404 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-rab 3099 df-v 3400 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 |
This theorem is referenced by: oteq1 4645 oteq2 4646 opth 5176 elsnxp 5931 cbvoprab2 7005 unxpdomlem1 8452 djulf1o 9071 djurf1o 9072 mulcanenq 10117 ax1rid 10318 axrnegex 10319 fseq1m1p1 12733 uzrdglem 13075 swrd0swrdOLD 13815 pfxswrd 13816 swrdccat 13865 swrdccatOLD 13866 swrdccat3aOLD 13870 swrdccat3blem 13871 cshw0 13945 cshwmodn 13946 s2prop 14058 s4prop 14061 fsum2dlem 14906 fprod2dlem 15113 ruclem1 15364 imasaddvallem 16575 iscatd2 16727 moni 16781 homadmcd 17077 curf1 17251 curf1cl 17254 curf2 17255 hofcl 17285 gsum2dlem2 18756 imasdsf1olem 22586 ovoliunlem1 23706 cxpcn3 24929 axlowdimlem15 26305 axlowdim 26310 nvi 28041 nvop 28103 phop 28245 br8d 29985 fgreu 30037 1stpreimas 30049 smatfval 30459 smatrcl 30460 smatlem 30461 fvproj 30497 mvhfval 32029 mpst123 32036 br8 32240 nosupbnd2 32451 fvtransport 32728 bj-inftyexpitaudisj 33682 rfovcnvf1od 39254 |
Copyright terms: Public domain | W3C validator |