MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvrmowOLD Structured version   Visualization version   GIF version

Theorem cbvrmowOLD 3375
Description: Obsolete version of cbvrmow 3374 as of 23-May-2024. (Contributed by NM, 16-Jun-2017.) (Revised by Gino Giotto, 10-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
cbvrmowOLD.1 𝑦𝜑
cbvrmowOLD.2 𝑥𝜓
cbvrmowOLD.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvrmowOLD (∃*𝑥𝐴 𝜑 ↔ ∃*𝑦𝐴 𝜓)
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem cbvrmowOLD
StepHypRef Expression
1 cbvrmowOLD.1 . . . 4 𝑦𝜑
2 cbvrmowOLD.2 . . . 4 𝑥𝜓
3 cbvrmowOLD.3 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
41, 2, 3cbvrexw 3372 . . 3 (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐴 𝜓)
51, 2, 3cbvreuw 3373 . . 3 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑦𝐴 𝜓)
64, 5imbi12i 350 . 2 ((∃𝑥𝐴 𝜑 → ∃!𝑥𝐴 𝜑) ↔ (∃𝑦𝐴 𝜓 → ∃!𝑦𝐴 𝜓))
7 rmo5 3363 . 2 (∃*𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 → ∃!𝑥𝐴 𝜑))
8 rmo5 3363 . 2 (∃*𝑦𝐴 𝜓 ↔ (∃𝑦𝐴 𝜓 → ∃!𝑦𝐴 𝜓))
96, 7, 83bitr4i 302 1 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑦𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wnf 1789  wrex 3066  ∃!wreu 3067  ∃*wrmo 3068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-10 2140  ax-11 2157  ax-12 2174
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1544  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clel 2817  df-nfc 2890  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator