Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvdsexpnn0 Structured version   Visualization version   GIF version

Theorem dvdsexpnn0 42329
Description: dvdsexpnn 42328 generalized to include zero bases. (Contributed by SN, 15-Sep-2024.)
Assertion
Ref Expression
dvdsexpnn0 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 ∈ ℕ) → (𝐴𝐵 ↔ (𝐴𝑁) ∥ (𝐵𝑁)))

Proof of Theorem dvdsexpnn0
StepHypRef Expression
1 elnn0 12451 . . 3 (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0))
2 elnn0 12451 . . 3 (𝐵 ∈ ℕ0 ↔ (𝐵 ∈ ℕ ∨ 𝐵 = 0))
3 dvdsexpnn 42328 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴𝐵 ↔ (𝐴𝑁) ∥ (𝐵𝑁)))
433expia 1121 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝑁 ∈ ℕ → (𝐴𝐵 ↔ (𝐴𝑁) ∥ (𝐵𝑁))))
5 nncn 12201 . . . . . . . 8 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
6 expeq0 14064 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐵𝑁) = 0 ↔ 𝐵 = 0))
75, 6sylan 580 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐵𝑁) = 0 ↔ 𝐵 = 0))
8 0exp 14069 . . . . . . . . . 10 (𝑁 ∈ ℕ → (0↑𝑁) = 0)
98adantl 481 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (0↑𝑁) = 0)
109breq1d 5120 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((0↑𝑁) ∥ (𝐵𝑁) ↔ 0 ∥ (𝐵𝑁)))
11 nnnn0 12456 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
12 nnexpcl 14046 . . . . . . . . . . 11 ((𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐵𝑁) ∈ ℕ)
1311, 12sylan2 593 . . . . . . . . . 10 ((𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐵𝑁) ∈ ℕ)
1413nnzd 12563 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐵𝑁) ∈ ℤ)
15 0dvds 16253 . . . . . . . . 9 ((𝐵𝑁) ∈ ℤ → (0 ∥ (𝐵𝑁) ↔ (𝐵𝑁) = 0))
1614, 15syl 17 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (0 ∥ (𝐵𝑁) ↔ (𝐵𝑁) = 0))
1710, 16bitrd 279 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((0↑𝑁) ∥ (𝐵𝑁) ↔ (𝐵𝑁) = 0))
18 nnz 12557 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
19 0dvds 16253 . . . . . . . . 9 (𝐵 ∈ ℤ → (0 ∥ 𝐵𝐵 = 0))
2018, 19syl 17 . . . . . . . 8 (𝐵 ∈ ℕ → (0 ∥ 𝐵𝐵 = 0))
2120adantr 480 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (0 ∥ 𝐵𝐵 = 0))
227, 17, 213bitr4rd 312 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (0 ∥ 𝐵 ↔ (0↑𝑁) ∥ (𝐵𝑁)))
23 breq1 5113 . . . . . . 7 (𝐴 = 0 → (𝐴𝐵 ↔ 0 ∥ 𝐵))
24 oveq1 7397 . . . . . . . 8 (𝐴 = 0 → (𝐴𝑁) = (0↑𝑁))
2524breq1d 5120 . . . . . . 7 (𝐴 = 0 → ((𝐴𝑁) ∥ (𝐵𝑁) ↔ (0↑𝑁) ∥ (𝐵𝑁)))
2623, 25bibi12d 345 . . . . . 6 (𝐴 = 0 → ((𝐴𝐵 ↔ (𝐴𝑁) ∥ (𝐵𝑁)) ↔ (0 ∥ 𝐵 ↔ (0↑𝑁) ∥ (𝐵𝑁))))
2722, 26imbitrrid 246 . . . . 5 (𝐴 = 0 → ((𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴𝐵 ↔ (𝐴𝑁) ∥ (𝐵𝑁))))
2827expdimp 452 . . . 4 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (𝑁 ∈ ℕ → (𝐴𝐵 ↔ (𝐴𝑁) ∥ (𝐵𝑁))))
29 nnz 12557 . . . . . . . . 9 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
30 dvds0 16248 . . . . . . . . 9 (𝐴 ∈ ℤ → 𝐴 ∥ 0)
3129, 30syl 17 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ∥ 0)
3231adantr 480 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝐴 ∥ 0)
33 nnexpcl 14046 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℕ)
3411, 33sylan2 593 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) ∈ ℕ)
3534nnzd 12563 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) ∈ ℤ)
36 dvds0 16248 . . . . . . . . 9 ((𝐴𝑁) ∈ ℤ → (𝐴𝑁) ∥ 0)
3735, 36syl 17 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) ∥ 0)
388adantl 481 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (0↑𝑁) = 0)
3937, 38breqtrrd 5138 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) ∥ (0↑𝑁))
4032, 392thd 265 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 ∥ 0 ↔ (𝐴𝑁) ∥ (0↑𝑁)))
41 breq2 5114 . . . . . . 7 (𝐵 = 0 → (𝐴𝐵𝐴 ∥ 0))
42 oveq1 7397 . . . . . . . 8 (𝐵 = 0 → (𝐵𝑁) = (0↑𝑁))
4342breq2d 5122 . . . . . . 7 (𝐵 = 0 → ((𝐴𝑁) ∥ (𝐵𝑁) ↔ (𝐴𝑁) ∥ (0↑𝑁)))
4441, 43bibi12d 345 . . . . . 6 (𝐵 = 0 → ((𝐴𝐵 ↔ (𝐴𝑁) ∥ (𝐵𝑁)) ↔ (𝐴 ∥ 0 ↔ (𝐴𝑁) ∥ (0↑𝑁))))
4540, 44syl5ibrcom 247 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐵 = 0 → (𝐴𝐵 ↔ (𝐴𝑁) ∥ (𝐵𝑁))))
4645impancom 451 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 = 0) → (𝑁 ∈ ℕ → (𝐴𝐵 ↔ (𝐴𝑁) ∥ (𝐵𝑁))))
478, 8breq12d 5123 . . . . . 6 (𝑁 ∈ ℕ → ((0↑𝑁) ∥ (0↑𝑁) ↔ 0 ∥ 0))
4847bicomd 223 . . . . 5 (𝑁 ∈ ℕ → (0 ∥ 0 ↔ (0↑𝑁) ∥ (0↑𝑁)))
49 breq12 5115 . . . . . 6 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐴𝐵 ↔ 0 ∥ 0))
50 simpl 482 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 = 0) → 𝐴 = 0)
5150oveq1d 7405 . . . . . . 7 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐴𝑁) = (0↑𝑁))
52 simpr 484 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 = 0) → 𝐵 = 0)
5352oveq1d 7405 . . . . . . 7 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐵𝑁) = (0↑𝑁))
5451, 53breq12d 5123 . . . . . 6 ((𝐴 = 0 ∧ 𝐵 = 0) → ((𝐴𝑁) ∥ (𝐵𝑁) ↔ (0↑𝑁) ∥ (0↑𝑁)))
5549, 54bibi12d 345 . . . . 5 ((𝐴 = 0 ∧ 𝐵 = 0) → ((𝐴𝐵 ↔ (𝐴𝑁) ∥ (𝐵𝑁)) ↔ (0 ∥ 0 ↔ (0↑𝑁) ∥ (0↑𝑁))))
5648, 55imbitrrid 246 . . . 4 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝑁 ∈ ℕ → (𝐴𝐵 ↔ (𝐴𝑁) ∥ (𝐵𝑁))))
574, 28, 46, 56ccase 1037 . . 3 (((𝐴 ∈ ℕ ∨ 𝐴 = 0) ∧ (𝐵 ∈ ℕ ∨ 𝐵 = 0)) → (𝑁 ∈ ℕ → (𝐴𝐵 ↔ (𝐴𝑁) ∥ (𝐵𝑁))))
581, 2, 57syl2anb 598 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝑁 ∈ ℕ → (𝐴𝐵 ↔ (𝐴𝑁) ∥ (𝐵𝑁))))
59583impia 1117 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 ∈ ℕ) → (𝐴𝐵 ↔ (𝐴𝑁) ∥ (𝐵𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5110  (class class class)co 7390  cc 11073  0cc0 11075  cn 12193  0cn0 12449  cz 12536  cexp 14033  cdvds 16229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16230  df-gcd 16472
This theorem is referenced by:  dvdsexpb  42330
  Copyright terms: Public domain W3C validator