Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvdsexpnn0 Structured version   Visualization version   GIF version

Theorem dvdsexpnn0 39883
Description: dvdsexpnn 39882 generalized to include zero bases. (Contributed by SN, 15-Sep-2024.)
Assertion
Ref Expression
dvdsexpnn0 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 ∈ ℕ) → (𝐴𝐵 ↔ (𝐴𝑁) ∥ (𝐵𝑁)))

Proof of Theorem dvdsexpnn0
StepHypRef Expression
1 elnn0 11949 . . 3 (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0))
2 elnn0 11949 . . 3 (𝐵 ∈ ℕ0 ↔ (𝐵 ∈ ℕ ∨ 𝐵 = 0))
3 dvdsexpnn 39882 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴𝐵 ↔ (𝐴𝑁) ∥ (𝐵𝑁)))
433expia 1118 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝑁 ∈ ℕ → (𝐴𝐵 ↔ (𝐴𝑁) ∥ (𝐵𝑁))))
5 nncn 11695 . . . . . . . 8 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
6 expeq0 13522 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐵𝑁) = 0 ↔ 𝐵 = 0))
75, 6sylan 583 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐵𝑁) = 0 ↔ 𝐵 = 0))
8 0exp 13527 . . . . . . . . . 10 (𝑁 ∈ ℕ → (0↑𝑁) = 0)
98adantl 485 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (0↑𝑁) = 0)
109breq1d 5046 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((0↑𝑁) ∥ (𝐵𝑁) ↔ 0 ∥ (𝐵𝑁)))
11 nnnn0 11954 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
12 nnexpcl 13505 . . . . . . . . . . 11 ((𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐵𝑁) ∈ ℕ)
1311, 12sylan2 595 . . . . . . . . . 10 ((𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐵𝑁) ∈ ℕ)
1413nnzd 12138 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐵𝑁) ∈ ℤ)
15 0dvds 15691 . . . . . . . . 9 ((𝐵𝑁) ∈ ℤ → (0 ∥ (𝐵𝑁) ↔ (𝐵𝑁) = 0))
1614, 15syl 17 . . . . . . . 8 ((𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (0 ∥ (𝐵𝑁) ↔ (𝐵𝑁) = 0))
1710, 16bitrd 282 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((0↑𝑁) ∥ (𝐵𝑁) ↔ (𝐵𝑁) = 0))
18 nnz 12056 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
19 0dvds 15691 . . . . . . . . 9 (𝐵 ∈ ℤ → (0 ∥ 𝐵𝐵 = 0))
2018, 19syl 17 . . . . . . . 8 (𝐵 ∈ ℕ → (0 ∥ 𝐵𝐵 = 0))
2120adantr 484 . . . . . . 7 ((𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (0 ∥ 𝐵𝐵 = 0))
227, 17, 213bitr4rd 315 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (0 ∥ 𝐵 ↔ (0↑𝑁) ∥ (𝐵𝑁)))
23 breq1 5039 . . . . . . 7 (𝐴 = 0 → (𝐴𝐵 ↔ 0 ∥ 𝐵))
24 oveq1 7163 . . . . . . . 8 (𝐴 = 0 → (𝐴𝑁) = (0↑𝑁))
2524breq1d 5046 . . . . . . 7 (𝐴 = 0 → ((𝐴𝑁) ∥ (𝐵𝑁) ↔ (0↑𝑁) ∥ (𝐵𝑁)))
2623, 25bibi12d 349 . . . . . 6 (𝐴 = 0 → ((𝐴𝐵 ↔ (𝐴𝑁) ∥ (𝐵𝑁)) ↔ (0 ∥ 𝐵 ↔ (0↑𝑁) ∥ (𝐵𝑁))))
2722, 26syl5ibr 249 . . . . 5 (𝐴 = 0 → ((𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴𝐵 ↔ (𝐴𝑁) ∥ (𝐵𝑁))))
2827expdimp 456 . . . 4 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (𝑁 ∈ ℕ → (𝐴𝐵 ↔ (𝐴𝑁) ∥ (𝐵𝑁))))
29 nnz 12056 . . . . . . . . 9 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
30 dvds0 15686 . . . . . . . . 9 (𝐴 ∈ ℤ → 𝐴 ∥ 0)
3129, 30syl 17 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ∥ 0)
3231adantr 484 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝐴 ∥ 0)
33 nnexpcl 13505 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℕ)
3411, 33sylan2 595 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) ∈ ℕ)
3534nnzd 12138 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) ∈ ℤ)
36 dvds0 15686 . . . . . . . . 9 ((𝐴𝑁) ∈ ℤ → (𝐴𝑁) ∥ 0)
3735, 36syl 17 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) ∥ 0)
388adantl 485 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (0↑𝑁) = 0)
3937, 38breqtrrd 5064 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) ∥ (0↑𝑁))
4032, 392thd 268 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 ∥ 0 ↔ (𝐴𝑁) ∥ (0↑𝑁)))
41 breq2 5040 . . . . . . 7 (𝐵 = 0 → (𝐴𝐵𝐴 ∥ 0))
42 oveq1 7163 . . . . . . . 8 (𝐵 = 0 → (𝐵𝑁) = (0↑𝑁))
4342breq2d 5048 . . . . . . 7 (𝐵 = 0 → ((𝐴𝑁) ∥ (𝐵𝑁) ↔ (𝐴𝑁) ∥ (0↑𝑁)))
4441, 43bibi12d 349 . . . . . 6 (𝐵 = 0 → ((𝐴𝐵 ↔ (𝐴𝑁) ∥ (𝐵𝑁)) ↔ (𝐴 ∥ 0 ↔ (𝐴𝑁) ∥ (0↑𝑁))))
4540, 44syl5ibrcom 250 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐵 = 0 → (𝐴𝐵 ↔ (𝐴𝑁) ∥ (𝐵𝑁))))
4645impancom 455 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 = 0) → (𝑁 ∈ ℕ → (𝐴𝐵 ↔ (𝐴𝑁) ∥ (𝐵𝑁))))
478, 8breq12d 5049 . . . . . 6 (𝑁 ∈ ℕ → ((0↑𝑁) ∥ (0↑𝑁) ↔ 0 ∥ 0))
4847bicomd 226 . . . . 5 (𝑁 ∈ ℕ → (0 ∥ 0 ↔ (0↑𝑁) ∥ (0↑𝑁)))
49 breq12 5041 . . . . . 6 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐴𝐵 ↔ 0 ∥ 0))
50 simpl 486 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 = 0) → 𝐴 = 0)
5150oveq1d 7171 . . . . . . 7 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐴𝑁) = (0↑𝑁))
52 simpr 488 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 = 0) → 𝐵 = 0)
5352oveq1d 7171 . . . . . . 7 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐵𝑁) = (0↑𝑁))
5451, 53breq12d 5049 . . . . . 6 ((𝐴 = 0 ∧ 𝐵 = 0) → ((𝐴𝑁) ∥ (𝐵𝑁) ↔ (0↑𝑁) ∥ (0↑𝑁)))
5549, 54bibi12d 349 . . . . 5 ((𝐴 = 0 ∧ 𝐵 = 0) → ((𝐴𝐵 ↔ (𝐴𝑁) ∥ (𝐵𝑁)) ↔ (0 ∥ 0 ↔ (0↑𝑁) ∥ (0↑𝑁))))
5648, 55syl5ibr 249 . . . 4 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝑁 ∈ ℕ → (𝐴𝐵 ↔ (𝐴𝑁) ∥ (𝐵𝑁))))
574, 28, 46, 56ccase 1033 . . 3 (((𝐴 ∈ ℕ ∨ 𝐴 = 0) ∧ (𝐵 ∈ ℕ ∨ 𝐵 = 0)) → (𝑁 ∈ ℕ → (𝐴𝐵 ↔ (𝐴𝑁) ∥ (𝐵𝑁))))
581, 2, 57syl2anb 600 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝑁 ∈ ℕ → (𝐴𝐵 ↔ (𝐴𝑁) ∥ (𝐵𝑁))))
59583impia 1114 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 ∈ ℕ) → (𝐴𝐵 ↔ (𝐴𝑁) ∥ (𝐵𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111   class class class wbr 5036  (class class class)co 7156  cc 10586  0cc0 10588  cn 11687  0cn0 11947  cz 12033  cexp 13492  cdvds 15668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665  ax-pre-sup 10666
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-2nd 7700  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-er 8305  df-en 8541  df-dom 8542  df-sdom 8543  df-sup 8952  df-inf 8953  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-div 11349  df-nn 11688  df-2 11750  df-3 11751  df-n0 11948  df-z 12034  df-uz 12296  df-rp 12444  df-fl 13224  df-mod 13300  df-seq 13432  df-exp 13493  df-cj 14519  df-re 14520  df-im 14521  df-sqrt 14655  df-abs 14656  df-dvds 15669  df-gcd 15907
This theorem is referenced by:  dvdsexpb  39884
  Copyright terms: Public domain W3C validator