MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodmo Structured version   Visualization version   GIF version

Theorem prodmo 15153
Description: A product has at most one limit. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypotheses
Ref Expression
prodmo.1 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
prodmo.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
prodmo.3 𝐺 = (𝑗 ∈ ℕ ↦ (𝑓𝑗) / 𝑘𝐵)
Assertion
Ref Expression
prodmo (𝜑 → ∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚))))
Distinct variable groups:   𝐴,𝑘,𝑛   𝑘,𝐹,𝑛   𝜑,𝑘,𝑛   𝐴,𝑓,𝑗,𝑚,𝑥   𝐵,𝑓,𝑗,𝑚   𝑓,𝐹,𝑗,𝑘,𝑚   𝜑,𝑓,𝑥   𝑥,𝐹   𝑗,𝐺,𝑥   𝑗,𝑘,𝑚,𝜑,𝑥   𝑥,𝑛,𝜑   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦)   𝐵(𝑥,𝑦,𝑘,𝑛)   𝐹(𝑦)   𝐺(𝑦,𝑓,𝑘,𝑚,𝑛)

Proof of Theorem prodmo
Dummy variables 𝑎 𝑔 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpb 1129 . . . . . . 7 ((𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) → (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥))
21reximi 3190 . . . . . 6 (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) → ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥))
3 3simpb 1129 . . . . . . 7 ((𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧) → (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧))
43reximi 3190 . . . . . 6 (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧) → ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧))
5 fveq2 6501 . . . . . . . . . . . 12 (𝑚 = 𝑤 → (ℤ𝑚) = (ℤ𝑤))
65sseq2d 3891 . . . . . . . . . . 11 (𝑚 = 𝑤 → (𝐴 ⊆ (ℤ𝑚) ↔ 𝐴 ⊆ (ℤ𝑤)))
7 seqeq1 13190 . . . . . . . . . . . 12 (𝑚 = 𝑤 → seq𝑚( · , 𝐹) = seq𝑤( · , 𝐹))
87breq1d 4940 . . . . . . . . . . 11 (𝑚 = 𝑤 → (seq𝑚( · , 𝐹) ⇝ 𝑧 ↔ seq𝑤( · , 𝐹) ⇝ 𝑧))
96, 8anbi12d 621 . . . . . . . . . 10 (𝑚 = 𝑤 → ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧) ↔ (𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))
109cbvrexv 3384 . . . . . . . . 9 (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧) ↔ ∃𝑤 ∈ ℤ (𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧))
1110anbi2i 613 . . . . . . . 8 ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑤 ∈ ℤ (𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))
12 reeanv 3308 . . . . . . . 8 (∃𝑚 ∈ ℤ ∃𝑤 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑤 ∈ ℤ (𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))
1311, 12bitr4i 270 . . . . . . 7 ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) ↔ ∃𝑚 ∈ ℤ ∃𝑤 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))
14 simprlr 767 . . . . . . . . . . . . 13 (((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧))) → seq𝑚( · , 𝐹) ⇝ 𝑥)
1514adantl 474 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) → seq𝑚( · , 𝐹) ⇝ 𝑥)
16 prodmo.1 . . . . . . . . . . . . 13 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
17 prodmo.2 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
1817adantlr 702 . . . . . . . . . . . . 13 (((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
19 simprll 766 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) → 𝑚 ∈ ℤ)
20 simprlr 767 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) → 𝑤 ∈ ℤ)
21 simprll 766 . . . . . . . . . . . . . 14 (((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧))) → 𝐴 ⊆ (ℤ𝑚))
2221adantl 474 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) → 𝐴 ⊆ (ℤ𝑚))
23 simprrl 768 . . . . . . . . . . . . . 14 (((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧))) → 𝐴 ⊆ (ℤ𝑤))
2423adantl 474 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) → 𝐴 ⊆ (ℤ𝑤))
2516, 18, 19, 20, 22, 24prodrb 15149 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) → (seq𝑚( · , 𝐹) ⇝ 𝑥 ↔ seq𝑤( · , 𝐹) ⇝ 𝑥))
2615, 25mpbid 224 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) → seq𝑤( · , 𝐹) ⇝ 𝑥)
27 simprrr 769 . . . . . . . . . . . 12 (((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧))) → seq𝑤( · , 𝐹) ⇝ 𝑧)
2827adantl 474 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) → seq𝑤( · , 𝐹) ⇝ 𝑧)
29 climuni 14773 . . . . . . . . . . 11 ((seq𝑤( · , 𝐹) ⇝ 𝑥 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧) → 𝑥 = 𝑧)
3026, 28, 29syl2anc 576 . . . . . . . . . 10 ((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) → 𝑥 = 𝑧)
3130expcom 406 . . . . . . . . 9 (((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧))) → (𝜑𝑥 = 𝑧))
3231ex 405 . . . . . . . 8 ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) → (((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)) → (𝜑𝑥 = 𝑧)))
3332rexlimivv 3237 . . . . . . 7 (∃𝑚 ∈ ℤ ∃𝑤 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)) → (𝜑𝑥 = 𝑧))
3413, 33sylbi 209 . . . . . 6 ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) → (𝜑𝑥 = 𝑧))
352, 4, 34syl2an 586 . . . . 5 ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) → (𝜑𝑥 = 𝑧))
36 prodmo.3 . . . . . . . . . 10 𝐺 = (𝑗 ∈ ℕ ↦ (𝑓𝑗) / 𝑘𝐵)
3716, 17, 36prodmolem2 15152 . . . . . . . . 9 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚)) → 𝑧 = 𝑥))
38 equcomi 1974 . . . . . . . . 9 (𝑧 = 𝑥𝑥 = 𝑧)
3937, 38syl6 35 . . . . . . . 8 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚)) → 𝑥 = 𝑧))
4039expimpd 446 . . . . . . 7 (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚))) → 𝑥 = 𝑧))
4140com12 32 . . . . . 6 ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚))) → (𝜑𝑥 = 𝑧))
4241ancoms 451 . . . . 5 ((∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) → (𝜑𝑥 = 𝑧))
4316, 17, 36prodmolem2 15152 . . . . . . 7 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚)) → 𝑥 = 𝑧))
4443expimpd 446 . . . . . 6 (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚))) → 𝑥 = 𝑧))
4544com12 32 . . . . 5 ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚))) → (𝜑𝑥 = 𝑧))
46 reeanv 3308 . . . . . . . 8 (∃𝑚 ∈ ℕ ∃𝑤 ∈ ℕ (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑔(𝑔:(1...𝑤)–1-1-onto𝐴𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ (𝑔𝑗) / 𝑘𝐵))‘𝑤))) ↔ (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑤 ∈ ℕ ∃𝑔(𝑔:(1...𝑤)–1-1-onto𝐴𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ (𝑔𝑗) / 𝑘𝐵))‘𝑤))))
47 exdistrv 1914 . . . . . . . . 9 (∃𝑓𝑔((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑤)–1-1-onto𝐴𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ (𝑔𝑗) / 𝑘𝐵))‘𝑤))) ↔ (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑔(𝑔:(1...𝑤)–1-1-onto𝐴𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ (𝑔𝑗) / 𝑘𝐵))‘𝑤))))
48472rexbii 3195 . . . . . . . 8 (∃𝑚 ∈ ℕ ∃𝑤 ∈ ℕ ∃𝑓𝑔((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑤)–1-1-onto𝐴𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ (𝑔𝑗) / 𝑘𝐵))‘𝑤))) ↔ ∃𝑚 ∈ ℕ ∃𝑤 ∈ ℕ (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑔(𝑔:(1...𝑤)–1-1-onto𝐴𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ (𝑔𝑗) / 𝑘𝐵))‘𝑤))))
49 oveq2 6986 . . . . . . . . . . . . . 14 (𝑚 = 𝑤 → (1...𝑚) = (1...𝑤))
5049f1oeq2d 6442 . . . . . . . . . . . . 13 (𝑚 = 𝑤 → (𝑓:(1...𝑚)–1-1-onto𝐴𝑓:(1...𝑤)–1-1-onto𝐴))
51 fveq2 6501 . . . . . . . . . . . . . 14 (𝑚 = 𝑤 → (seq1( · , 𝐺)‘𝑚) = (seq1( · , 𝐺)‘𝑤))
5251eqeq2d 2788 . . . . . . . . . . . . 13 (𝑚 = 𝑤 → (𝑧 = (seq1( · , 𝐺)‘𝑚) ↔ 𝑧 = (seq1( · , 𝐺)‘𝑤)))
5350, 52anbi12d 621 . . . . . . . . . . . 12 (𝑚 = 𝑤 → ((𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚)) ↔ (𝑓:(1...𝑤)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑤))))
5453exbidv 1880 . . . . . . . . . . 11 (𝑚 = 𝑤 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑤)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑤))))
55 f1oeq1 6435 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (𝑓:(1...𝑤)–1-1-onto𝐴𝑔:(1...𝑤)–1-1-onto𝐴))
56 fveq1 6500 . . . . . . . . . . . . . . . . . . 19 (𝑓 = 𝑔 → (𝑓𝑗) = (𝑔𝑗))
5756csbeq1d 3795 . . . . . . . . . . . . . . . . . 18 (𝑓 = 𝑔(𝑓𝑗) / 𝑘𝐵 = (𝑔𝑗) / 𝑘𝐵)
5857mpteq2dv 5024 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑔 → (𝑗 ∈ ℕ ↦ (𝑓𝑗) / 𝑘𝐵) = (𝑗 ∈ ℕ ↦ (𝑔𝑗) / 𝑘𝐵))
5936, 58syl5eq 2826 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑔𝐺 = (𝑗 ∈ ℕ ↦ (𝑔𝑗) / 𝑘𝐵))
6059seqeq3d 13195 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → seq1( · , 𝐺) = seq1( · , (𝑗 ∈ ℕ ↦ (𝑔𝑗) / 𝑘𝐵)))
6160fveq1d 6503 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → (seq1( · , 𝐺)‘𝑤) = (seq1( · , (𝑗 ∈ ℕ ↦ (𝑔𝑗) / 𝑘𝐵))‘𝑤))
6261eqeq2d 2788 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (𝑧 = (seq1( · , 𝐺)‘𝑤) ↔ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ (𝑔𝑗) / 𝑘𝐵))‘𝑤)))
6355, 62anbi12d 621 . . . . . . . . . . . 12 (𝑓 = 𝑔 → ((𝑓:(1...𝑤)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑤)) ↔ (𝑔:(1...𝑤)–1-1-onto𝐴𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ (𝑔𝑗) / 𝑘𝐵))‘𝑤))))
6463cbvexvw 1994 . . . . . . . . . . 11 (∃𝑓(𝑓:(1...𝑤)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑤)) ↔ ∃𝑔(𝑔:(1...𝑤)–1-1-onto𝐴𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ (𝑔𝑗) / 𝑘𝐵))‘𝑤)))
6554, 64syl6bb 279 . . . . . . . . . 10 (𝑚 = 𝑤 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚)) ↔ ∃𝑔(𝑔:(1...𝑤)–1-1-onto𝐴𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ (𝑔𝑗) / 𝑘𝐵))‘𝑤))))
6665cbvrexv 3384 . . . . . . . . 9 (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚)) ↔ ∃𝑤 ∈ ℕ ∃𝑔(𝑔:(1...𝑤)–1-1-onto𝐴𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ (𝑔𝑗) / 𝑘𝐵))‘𝑤)))
6766anbi2i 613 . . . . . . . 8 ((∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚))) ↔ (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑤 ∈ ℕ ∃𝑔(𝑔:(1...𝑤)–1-1-onto𝐴𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ (𝑔𝑗) / 𝑘𝐵))‘𝑤))))
6846, 48, 673bitr4i 295 . . . . . . 7 (∃𝑚 ∈ ℕ ∃𝑤 ∈ ℕ ∃𝑓𝑔((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑤)–1-1-onto𝐴𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ (𝑔𝑗) / 𝑘𝐵))‘𝑤))) ↔ (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚))))
69 an4 643 . . . . . . . . . 10 (((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑤)–1-1-onto𝐴𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ (𝑔𝑗) / 𝑘𝐵))‘𝑤))) ↔ ((𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑤)–1-1-onto𝐴) ∧ (𝑥 = (seq1( · , 𝐺)‘𝑚) ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ (𝑔𝑗) / 𝑘𝐵))‘𝑤))))
7017ad4ant14 739 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑤)–1-1-onto𝐴)) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
71 fveq2 6501 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑎 → (𝑓𝑗) = (𝑓𝑎))
7271csbeq1d 3795 . . . . . . . . . . . . . . 15 (𝑗 = 𝑎(𝑓𝑗) / 𝑘𝐵 = (𝑓𝑎) / 𝑘𝐵)
7372cbvmptv 5029 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ ↦ (𝑓𝑗) / 𝑘𝐵) = (𝑎 ∈ ℕ ↦ (𝑓𝑎) / 𝑘𝐵)
7436, 73eqtri 2802 . . . . . . . . . . . . 13 𝐺 = (𝑎 ∈ ℕ ↦ (𝑓𝑎) / 𝑘𝐵)
75 fveq2 6501 . . . . . . . . . . . . . . 15 (𝑗 = 𝑎 → (𝑔𝑗) = (𝑔𝑎))
7675csbeq1d 3795 . . . . . . . . . . . . . 14 (𝑗 = 𝑎(𝑔𝑗) / 𝑘𝐵 = (𝑔𝑎) / 𝑘𝐵)
7776cbvmptv 5029 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ ↦ (𝑔𝑗) / 𝑘𝐵) = (𝑎 ∈ ℕ ↦ (𝑔𝑎) / 𝑘𝐵)
78 simplr 756 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑤)–1-1-onto𝐴)) → (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ))
79 simprl 758 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑤)–1-1-onto𝐴)) → 𝑓:(1...𝑚)–1-1-onto𝐴)
80 simprr 760 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑤)–1-1-onto𝐴)) → 𝑔:(1...𝑤)–1-1-onto𝐴)
8116, 70, 74, 77, 78, 79, 80prodmolem3 15150 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑤)–1-1-onto𝐴)) → (seq1( · , 𝐺)‘𝑚) = (seq1( · , (𝑗 ∈ ℕ ↦ (𝑔𝑗) / 𝑘𝐵))‘𝑤))
82 eqeq12 2791 . . . . . . . . . . . 12 ((𝑥 = (seq1( · , 𝐺)‘𝑚) ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ (𝑔𝑗) / 𝑘𝐵))‘𝑤)) → (𝑥 = 𝑧 ↔ (seq1( · , 𝐺)‘𝑚) = (seq1( · , (𝑗 ∈ ℕ ↦ (𝑔𝑗) / 𝑘𝐵))‘𝑤)))
8381, 82syl5ibrcom 239 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑤)–1-1-onto𝐴)) → ((𝑥 = (seq1( · , 𝐺)‘𝑚) ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ (𝑔𝑗) / 𝑘𝐵))‘𝑤)) → 𝑥 = 𝑧))
8483expimpd 446 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (((𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑤)–1-1-onto𝐴) ∧ (𝑥 = (seq1( · , 𝐺)‘𝑚) ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ (𝑔𝑗) / 𝑘𝐵))‘𝑤))) → 𝑥 = 𝑧))
8569, 84syl5bi 234 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑤)–1-1-onto𝐴𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ (𝑔𝑗) / 𝑘𝐵))‘𝑤))) → 𝑥 = 𝑧))
8685exlimdvv 1893 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (∃𝑓𝑔((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑤)–1-1-onto𝐴𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ (𝑔𝑗) / 𝑘𝐵))‘𝑤))) → 𝑥 = 𝑧))
8786rexlimdvva 3239 . . . . . . 7 (𝜑 → (∃𝑚 ∈ ℕ ∃𝑤 ∈ ℕ ∃𝑓𝑔((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑤)–1-1-onto𝐴𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ (𝑔𝑗) / 𝑘𝐵))‘𝑤))) → 𝑥 = 𝑧))
8868, 87syl5bir 235 . . . . . 6 (𝜑 → ((∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚))) → 𝑥 = 𝑧))
8988com12 32 . . . . 5 ((∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚))) → (𝜑𝑥 = 𝑧))
9035, 42, 45, 89ccase 1018 . . . 4 (((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚))) ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚)))) → (𝜑𝑥 = 𝑧))
9190com12 32 . . 3 (𝜑 → (((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚))) ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚)))) → 𝑥 = 𝑧))
9291alrimivv 1887 . 2 (𝜑 → ∀𝑥𝑧(((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚))) ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚)))) → 𝑥 = 𝑧))
93 breq2 4934 . . . . . 6 (𝑥 = 𝑧 → (seq𝑚( · , 𝐹) ⇝ 𝑥 ↔ seq𝑚( · , 𝐹) ⇝ 𝑧))
94933anbi3d 1421 . . . . 5 (𝑥 = 𝑧 → ((𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)))
9594rexbidv 3242 . . . 4 (𝑥 = 𝑧 → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)))
96 eqeq1 2782 . . . . . . 7 (𝑥 = 𝑧 → (𝑥 = (seq1( · , 𝐺)‘𝑚) ↔ 𝑧 = (seq1( · , 𝐺)‘𝑚)))
9796anbi2d 619 . . . . . 6 (𝑥 = 𝑧 → ((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚))))
9897exbidv 1880 . . . . 5 (𝑥 = 𝑧 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚))))
9998rexbidv 3242 . . . 4 (𝑥 = 𝑧 → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚))))
10095, 99orbi12d 902 . . 3 (𝑥 = 𝑧 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚)))))
101100mo4 2581 . 2 (∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚))) ↔ ∀𝑥𝑧(((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚))) ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚)))) → 𝑥 = 𝑧))
10292, 101sylibr 226 1 (𝜑 → ∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  wo 833  w3a 1068  wal 1505   = wceq 1507  wex 1742  wcel 2050  ∃*wmo 2545  wne 2967  wrex 3089  csb 3788  wss 3831  ifcif 4351   class class class wbr 4930  cmpt 5009  1-1-ontowf1o 6189  cfv 6190  (class class class)co 6978  cc 10335  0cc0 10337  1c1 10338   · cmul 10342  cn 11441  cz 11796  cuz 12061  ...cfz 12711  seqcseq 13187  cli 14705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5050  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281  ax-inf2 8900  ax-cnex 10393  ax-resscn 10394  ax-1cn 10395  ax-icn 10396  ax-addcl 10397  ax-addrcl 10398  ax-mulcl 10399  ax-mulrcl 10400  ax-mulcom 10401  ax-addass 10402  ax-mulass 10403  ax-distr 10404  ax-i2m1 10405  ax-1ne0 10406  ax-1rid 10407  ax-rnegex 10408  ax-rrecex 10409  ax-cnre 10410  ax-pre-lttri 10411  ax-pre-lttrn 10412  ax-pre-ltadd 10413  ax-pre-mulgt0 10414  ax-pre-sup 10415
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-tp 4447  df-op 4449  df-uni 4714  df-int 4751  df-iun 4795  df-br 4931  df-opab 4993  df-mpt 5010  df-tr 5032  df-id 5313  df-eprel 5318  df-po 5327  df-so 5328  df-fr 5367  df-se 5368  df-we 5369  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-pred 5988  df-ord 6034  df-on 6035  df-lim 6036  df-suc 6037  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-isom 6199  df-riota 6939  df-ov 6981  df-oprab 6982  df-mpo 6983  df-om 7399  df-1st 7503  df-2nd 7504  df-wrecs 7752  df-recs 7814  df-rdg 7852  df-1o 7907  df-oadd 7911  df-er 8091  df-en 8309  df-dom 8310  df-sdom 8311  df-fin 8312  df-sup 8703  df-oi 8771  df-card 9164  df-pnf 10478  df-mnf 10479  df-xr 10480  df-ltxr 10481  df-le 10482  df-sub 10674  df-neg 10675  df-div 11101  df-nn 11442  df-2 11506  df-3 11507  df-n0 11711  df-z 11797  df-uz 12062  df-rp 12208  df-fz 12712  df-fzo 12853  df-seq 13188  df-exp 13248  df-hash 13509  df-cj 14322  df-re 14323  df-im 14324  df-sqrt 14458  df-abs 14459  df-clim 14709
This theorem is referenced by:  fprod  15158
  Copyright terms: Public domain W3C validator