Step | Hyp | Ref
| Expression |
1 | | 3simpb 1148 |
. . . . . . 7
⊢ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) → (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) |
2 | 1 | reximi 3178 |
. . . . . 6
⊢
(∃𝑚 ∈
ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) → ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) |
3 | | 3simpb 1148 |
. . . . . . 7
⊢ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧) → (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) |
4 | 3 | reximi 3178 |
. . . . . 6
⊢
(∃𝑚 ∈
ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧) → ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) |
5 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑤 → (ℤ≥‘𝑚) =
(ℤ≥‘𝑤)) |
6 | 5 | sseq2d 3953 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑤 → (𝐴 ⊆ (ℤ≥‘𝑚) ↔ 𝐴 ⊆ (ℤ≥‘𝑤))) |
7 | | seqeq1 13724 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑤 → seq𝑚( · , 𝐹) = seq𝑤( · , 𝐹)) |
8 | 7 | breq1d 5084 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑤 → (seq𝑚( · , 𝐹) ⇝ 𝑧 ↔ seq𝑤( · , 𝐹) ⇝ 𝑧)) |
9 | 6, 8 | anbi12d 631 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑤 → ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧) ↔ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧))) |
10 | 9 | cbvrexvw 3384 |
. . . . . . . . 9
⊢
(∃𝑚 ∈
ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧) ↔ ∃𝑤 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)) |
11 | 10 | anbi2i 623 |
. . . . . . . 8
⊢
((∃𝑚 ∈
ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑤 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧))) |
12 | | reeanv 3294 |
. . . . . . . 8
⊢
(∃𝑚 ∈
ℤ ∃𝑤 ∈
ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑤 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧))) |
13 | 11, 12 | bitr4i 277 |
. . . . . . 7
⊢
((∃𝑚 ∈
ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) ↔ ∃𝑚 ∈ ℤ ∃𝑤 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧))) |
14 | | simprlr 777 |
. . . . . . . . . . . . 13
⊢ (((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧))) → seq𝑚( · , 𝐹) ⇝ 𝑥) |
15 | 14 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) → seq𝑚( · , 𝐹) ⇝ 𝑥) |
16 | | prodmo.1 |
. . . . . . . . . . . . 13
⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1)) |
17 | | prodmo.2 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
18 | 17 | adantlr 712 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
19 | | simprll 776 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) → 𝑚 ∈ ℤ) |
20 | | simprlr 777 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) → 𝑤 ∈ ℤ) |
21 | | simprll 776 |
. . . . . . . . . . . . . 14
⊢ (((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧))) → 𝐴 ⊆ (ℤ≥‘𝑚)) |
22 | 21 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) → 𝐴 ⊆ (ℤ≥‘𝑚)) |
23 | | simprrl 778 |
. . . . . . . . . . . . . 14
⊢ (((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧))) → 𝐴 ⊆ (ℤ≥‘𝑤)) |
24 | 23 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) → 𝐴 ⊆ (ℤ≥‘𝑤)) |
25 | 16, 18, 19, 20, 22, 24 | prodrb 15642 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) → (seq𝑚( · , 𝐹) ⇝ 𝑥 ↔ seq𝑤( · , 𝐹) ⇝ 𝑥)) |
26 | 15, 25 | mpbid 231 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) → seq𝑤( · , 𝐹) ⇝ 𝑥) |
27 | | simprrr 779 |
. . . . . . . . . . . 12
⊢ (((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧))) → seq𝑤( · , 𝐹) ⇝ 𝑧) |
28 | 27 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) → seq𝑤( · , 𝐹) ⇝ 𝑧) |
29 | | climuni 15261 |
. . . . . . . . . . 11
⊢
((seq𝑤( · ,
𝐹) ⇝ 𝑥 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧) → 𝑥 = 𝑧) |
30 | 26, 28, 29 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) → 𝑥 = 𝑧) |
31 | 30 | expcom 414 |
. . . . . . . . 9
⊢ (((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧))) → (𝜑 → 𝑥 = 𝑧)) |
32 | 31 | ex 413 |
. . . . . . . 8
⊢ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) → (((𝐴 ⊆
(ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)) → (𝜑 → 𝑥 = 𝑧))) |
33 | 32 | rexlimivv 3221 |
. . . . . . 7
⊢
(∃𝑚 ∈
ℤ ∃𝑤 ∈
ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)) → (𝜑 → 𝑥 = 𝑧)) |
34 | 13, 33 | sylbi 216 |
. . . . . 6
⊢
((∃𝑚 ∈
ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) → (𝜑 → 𝑥 = 𝑧)) |
35 | 2, 4, 34 | syl2an 596 |
. . . . 5
⊢
((∃𝑚 ∈
ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) → (𝜑 → 𝑥 = 𝑧)) |
36 | | prodmo.3 |
. . . . . . . . . 10
⊢ 𝐺 = (𝑗 ∈ ℕ ↦ ⦋(𝑓‘𝑗) / 𝑘⦌𝐵) |
37 | 16, 17, 36 | prodmolem2 15645 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) → 𝑧 = 𝑥)) |
38 | | equcomi 2020 |
. . . . . . . . 9
⊢ (𝑧 = 𝑥 → 𝑥 = 𝑧) |
39 | 37, 38 | syl6 35 |
. . . . . . . 8
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) → 𝑥 = 𝑧)) |
40 | 39 | expimpd 454 |
. . . . . . 7
⊢ (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚))) → 𝑥 = 𝑧)) |
41 | 40 | com12 32 |
. . . . . 6
⊢
((∃𝑚 ∈
ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚))) → (𝜑 → 𝑥 = 𝑧)) |
42 | 41 | ancoms 459 |
. . . . 5
⊢
((∃𝑚 ∈
ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) → (𝜑 → 𝑥 = 𝑧)) |
43 | 16, 17, 36 | prodmolem2 15645 |
. . . . . . 7
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)) → 𝑥 = 𝑧)) |
44 | 43 | expimpd 454 |
. . . . . 6
⊢ (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚))) → 𝑥 = 𝑧)) |
45 | 44 | com12 32 |
. . . . 5
⊢
((∃𝑚 ∈
ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚))) → (𝜑 → 𝑥 = 𝑧)) |
46 | | reeanv 3294 |
. . . . . . . 8
⊢
(∃𝑚 ∈
ℕ ∃𝑤 ∈
ℕ (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑔(𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ ⦋(𝑔‘𝑗) / 𝑘⦌𝐵))‘𝑤))) ↔ (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑤 ∈ ℕ ∃𝑔(𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ ⦋(𝑔‘𝑗) / 𝑘⦌𝐵))‘𝑤)))) |
47 | | exdistrv 1959 |
. . . . . . . . 9
⊢
(∃𝑓∃𝑔((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ ⦋(𝑔‘𝑗) / 𝑘⦌𝐵))‘𝑤))) ↔ (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑔(𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ ⦋(𝑔‘𝑗) / 𝑘⦌𝐵))‘𝑤)))) |
48 | 47 | 2rexbii 3182 |
. . . . . . . 8
⊢
(∃𝑚 ∈
ℕ ∃𝑤 ∈
ℕ ∃𝑓∃𝑔((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ ⦋(𝑔‘𝑗) / 𝑘⦌𝐵))‘𝑤))) ↔ ∃𝑚 ∈ ℕ ∃𝑤 ∈ ℕ (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑔(𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ ⦋(𝑔‘𝑗) / 𝑘⦌𝐵))‘𝑤)))) |
49 | | oveq2 7283 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑤 → (1...𝑚) = (1...𝑤)) |
50 | 49 | f1oeq2d 6712 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑤 → (𝑓:(1...𝑚)–1-1-onto→𝐴 ↔ 𝑓:(1...𝑤)–1-1-onto→𝐴)) |
51 | | fveq2 6774 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑤 → (seq1( · , 𝐺)‘𝑚) = (seq1( · , 𝐺)‘𝑤)) |
52 | 51 | eqeq2d 2749 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑤 → (𝑧 = (seq1( · , 𝐺)‘𝑚) ↔ 𝑧 = (seq1( · , 𝐺)‘𝑤))) |
53 | 50, 52 | anbi12d 631 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑤 → ((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)) ↔ (𝑓:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑤)))) |
54 | 53 | exbidv 1924 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑤 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑤)))) |
55 | | f1oeq1 6704 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑔 → (𝑓:(1...𝑤)–1-1-onto→𝐴 ↔ 𝑔:(1...𝑤)–1-1-onto→𝐴)) |
56 | | fveq1 6773 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 = 𝑔 → (𝑓‘𝑗) = (𝑔‘𝑗)) |
57 | 56 | csbeq1d 3836 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 = 𝑔 → ⦋(𝑓‘𝑗) / 𝑘⦌𝐵 = ⦋(𝑔‘𝑗) / 𝑘⦌𝐵) |
58 | 57 | mpteq2dv 5176 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 = 𝑔 → (𝑗 ∈ ℕ ↦ ⦋(𝑓‘𝑗) / 𝑘⦌𝐵) = (𝑗 ∈ ℕ ↦ ⦋(𝑔‘𝑗) / 𝑘⦌𝐵)) |
59 | 36, 58 | eqtrid 2790 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = 𝑔 → 𝐺 = (𝑗 ∈ ℕ ↦ ⦋(𝑔‘𝑗) / 𝑘⦌𝐵)) |
60 | 59 | seqeq3d 13729 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝑔 → seq1( · , 𝐺) = seq1( · , (𝑗 ∈ ℕ ↦ ⦋(𝑔‘𝑗) / 𝑘⦌𝐵))) |
61 | 60 | fveq1d 6776 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑔 → (seq1( · , 𝐺)‘𝑤) = (seq1( · , (𝑗 ∈ ℕ ↦ ⦋(𝑔‘𝑗) / 𝑘⦌𝐵))‘𝑤)) |
62 | 61 | eqeq2d 2749 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑔 → (𝑧 = (seq1( · , 𝐺)‘𝑤) ↔ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ ⦋(𝑔‘𝑗) / 𝑘⦌𝐵))‘𝑤))) |
63 | 55, 62 | anbi12d 631 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑔 → ((𝑓:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑤)) ↔ (𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ ⦋(𝑔‘𝑗) / 𝑘⦌𝐵))‘𝑤)))) |
64 | 63 | cbvexvw 2040 |
. . . . . . . . . . 11
⊢
(∃𝑓(𝑓:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑤)) ↔ ∃𝑔(𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ ⦋(𝑔‘𝑗) / 𝑘⦌𝐵))‘𝑤))) |
65 | 54, 64 | bitrdi 287 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑤 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)) ↔ ∃𝑔(𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ ⦋(𝑔‘𝑗) / 𝑘⦌𝐵))‘𝑤)))) |
66 | 65 | cbvrexvw 3384 |
. . . . . . . . 9
⊢
(∃𝑚 ∈
ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)) ↔ ∃𝑤 ∈ ℕ ∃𝑔(𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ ⦋(𝑔‘𝑗) / 𝑘⦌𝐵))‘𝑤))) |
67 | 66 | anbi2i 623 |
. . . . . . . 8
⊢
((∃𝑚 ∈
ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚))) ↔ (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑤 ∈ ℕ ∃𝑔(𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ ⦋(𝑔‘𝑗) / 𝑘⦌𝐵))‘𝑤)))) |
68 | 46, 48, 67 | 3bitr4i 303 |
. . . . . . 7
⊢
(∃𝑚 ∈
ℕ ∃𝑤 ∈
ℕ ∃𝑓∃𝑔((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ ⦋(𝑔‘𝑗) / 𝑘⦌𝐵))‘𝑤))) ↔ (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)))) |
69 | | an4 653 |
. . . . . . . . . 10
⊢ (((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ ⦋(𝑔‘𝑗) / 𝑘⦌𝐵))‘𝑤))) ↔ ((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑤)–1-1-onto→𝐴) ∧ (𝑥 = (seq1( · , 𝐺)‘𝑚) ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ ⦋(𝑔‘𝑗) / 𝑘⦌𝐵))‘𝑤)))) |
70 | 17 | ad4ant14 749 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑤)–1-1-onto→𝐴)) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
71 | | fveq2 6774 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝑎 → (𝑓‘𝑗) = (𝑓‘𝑎)) |
72 | 71 | csbeq1d 3836 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑎 → ⦋(𝑓‘𝑗) / 𝑘⦌𝐵 = ⦋(𝑓‘𝑎) / 𝑘⦌𝐵) |
73 | 72 | cbvmptv 5187 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ ℕ ↦
⦋(𝑓‘𝑗) / 𝑘⦌𝐵) = (𝑎 ∈ ℕ ↦ ⦋(𝑓‘𝑎) / 𝑘⦌𝐵) |
74 | 36, 73 | eqtri 2766 |
. . . . . . . . . . . . 13
⊢ 𝐺 = (𝑎 ∈ ℕ ↦ ⦋(𝑓‘𝑎) / 𝑘⦌𝐵) |
75 | | fveq2 6774 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑎 → (𝑔‘𝑗) = (𝑔‘𝑎)) |
76 | 75 | csbeq1d 3836 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑎 → ⦋(𝑔‘𝑗) / 𝑘⦌𝐵 = ⦋(𝑔‘𝑎) / 𝑘⦌𝐵) |
77 | 76 | cbvmptv 5187 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ ℕ ↦
⦋(𝑔‘𝑗) / 𝑘⦌𝐵) = (𝑎 ∈ ℕ ↦ ⦋(𝑔‘𝑎) / 𝑘⦌𝐵) |
78 | | simplr 766 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑤)–1-1-onto→𝐴)) → (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ)) |
79 | | simprl 768 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑤)–1-1-onto→𝐴)) → 𝑓:(1...𝑚)–1-1-onto→𝐴) |
80 | | simprr 770 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑤)–1-1-onto→𝐴)) → 𝑔:(1...𝑤)–1-1-onto→𝐴) |
81 | 16, 70, 74, 77, 78, 79, 80 | prodmolem3 15643 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑤)–1-1-onto→𝐴)) → (seq1( · ,
𝐺)‘𝑚) = (seq1( · , (𝑗 ∈ ℕ ↦ ⦋(𝑔‘𝑗) / 𝑘⦌𝐵))‘𝑤)) |
82 | | eqeq12 2755 |
. . . . . . . . . . . 12
⊢ ((𝑥 = (seq1( · , 𝐺)‘𝑚) ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ ⦋(𝑔‘𝑗) / 𝑘⦌𝐵))‘𝑤)) → (𝑥 = 𝑧 ↔ (seq1( · , 𝐺)‘𝑚) = (seq1( · , (𝑗 ∈ ℕ ↦ ⦋(𝑔‘𝑗) / 𝑘⦌𝐵))‘𝑤))) |
83 | 81, 82 | syl5ibrcom 246 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑤)–1-1-onto→𝐴)) → ((𝑥 = (seq1( · , 𝐺)‘𝑚) ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ ⦋(𝑔‘𝑗) / 𝑘⦌𝐵))‘𝑤)) → 𝑥 = 𝑧)) |
84 | 83 | expimpd 454 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑤)–1-1-onto→𝐴) ∧ (𝑥 = (seq1( · , 𝐺)‘𝑚) ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ ⦋(𝑔‘𝑗) / 𝑘⦌𝐵))‘𝑤))) → 𝑥 = 𝑧)) |
85 | 69, 84 | syl5bi 241 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ ⦋(𝑔‘𝑗) / 𝑘⦌𝐵))‘𝑤))) → 𝑥 = 𝑧)) |
86 | 85 | exlimdvv 1937 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (∃𝑓∃𝑔((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ ⦋(𝑔‘𝑗) / 𝑘⦌𝐵))‘𝑤))) → 𝑥 = 𝑧)) |
87 | 86 | rexlimdvva 3223 |
. . . . . . 7
⊢ (𝜑 → (∃𝑚 ∈ ℕ ∃𝑤 ∈ ℕ ∃𝑓∃𝑔((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ ⦋(𝑔‘𝑗) / 𝑘⦌𝐵))‘𝑤))) → 𝑥 = 𝑧)) |
88 | 68, 87 | syl5bir 242 |
. . . . . 6
⊢ (𝜑 → ((∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚))) → 𝑥 = 𝑧)) |
89 | 88 | com12 32 |
. . . . 5
⊢
((∃𝑚 ∈
ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚))) → (𝜑 → 𝑥 = 𝑧)) |
90 | 35, 42, 45, 89 | ccase 1035 |
. . . 4
⊢
(((∃𝑚 ∈
ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚))) ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)))) → (𝜑 → 𝑥 = 𝑧)) |
91 | 90 | com12 32 |
. . 3
⊢ (𝜑 → (((∃𝑚 ∈ ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚))) ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)))) → 𝑥 = 𝑧)) |
92 | 91 | alrimivv 1931 |
. 2
⊢ (𝜑 → ∀𝑥∀𝑧(((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚))) ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)))) → 𝑥 = 𝑧)) |
93 | | breq2 5078 |
. . . . . 6
⊢ (𝑥 = 𝑧 → (seq𝑚( · , 𝐹) ⇝ 𝑥 ↔ seq𝑚( · , 𝐹) ⇝ 𝑧)) |
94 | 93 | 3anbi3d 1441 |
. . . . 5
⊢ (𝑥 = 𝑧 → ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧))) |
95 | 94 | rexbidv 3226 |
. . . 4
⊢ (𝑥 = 𝑧 → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧))) |
96 | | eqeq1 2742 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → (𝑥 = (seq1( · , 𝐺)‘𝑚) ↔ 𝑧 = (seq1( · , 𝐺)‘𝑚))) |
97 | 96 | anbi2d 629 |
. . . . . 6
⊢ (𝑥 = 𝑧 → ((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)))) |
98 | 97 | exbidv 1924 |
. . . . 5
⊢ (𝑥 = 𝑧 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)))) |
99 | 98 | rexbidv 3226 |
. . . 4
⊢ (𝑥 = 𝑧 → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)))) |
100 | 95, 99 | orbi12d 916 |
. . 3
⊢ (𝑥 = 𝑧 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚))))) |
101 | 100 | mo4 2566 |
. 2
⊢
(∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚))) ↔ ∀𝑥∀𝑧(((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚))) ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)))) → 𝑥 = 𝑧)) |
102 | 92, 101 | sylibr 233 |
1
⊢ (𝜑 → ∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)))) |