MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0gcdsq Structured version   Visualization version   GIF version

Theorem nn0gcdsq 16799
Description: Squaring commutes with GCD, in particular two coprime numbers have coprime squares. (Contributed by Stefan O'Rear, 15-Sep-2014.)
Assertion
Ref Expression
nn0gcdsq ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑2) = ((𝐴↑2) gcd (𝐵↑2)))

Proof of Theorem nn0gcdsq
StepHypRef Expression
1 elnn0 12555 . 2 (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0))
2 elnn0 12555 . 2 (𝐵 ∈ ℕ0 ↔ (𝐵 ∈ ℕ ∨ 𝐵 = 0))
3 sqgcd 16609 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵)↑2) = ((𝐴↑2) gcd (𝐵↑2)))
4 nncn 12301 . . . . . . 7 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
5 abssq 15355 . . . . . . 7 (𝐵 ∈ ℂ → ((abs‘𝐵)↑2) = (abs‘(𝐵↑2)))
64, 5syl 17 . . . . . 6 (𝐵 ∈ ℕ → ((abs‘𝐵)↑2) = (abs‘(𝐵↑2)))
7 nnz 12660 . . . . . . . 8 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
8 gcd0id 16565 . . . . . . . 8 (𝐵 ∈ ℤ → (0 gcd 𝐵) = (abs‘𝐵))
97, 8syl 17 . . . . . . 7 (𝐵 ∈ ℕ → (0 gcd 𝐵) = (abs‘𝐵))
109oveq1d 7463 . . . . . 6 (𝐵 ∈ ℕ → ((0 gcd 𝐵)↑2) = ((abs‘𝐵)↑2))
11 sq0 14241 . . . . . . . . 9 (0↑2) = 0
1211a1i 11 . . . . . . . 8 (𝐵 ∈ ℕ → (0↑2) = 0)
1312oveq1d 7463 . . . . . . 7 (𝐵 ∈ ℕ → ((0↑2) gcd (𝐵↑2)) = (0 gcd (𝐵↑2)))
14 zsqcl 14179 . . . . . . . 8 (𝐵 ∈ ℤ → (𝐵↑2) ∈ ℤ)
15 gcd0id 16565 . . . . . . . 8 ((𝐵↑2) ∈ ℤ → (0 gcd (𝐵↑2)) = (abs‘(𝐵↑2)))
167, 14, 153syl 18 . . . . . . 7 (𝐵 ∈ ℕ → (0 gcd (𝐵↑2)) = (abs‘(𝐵↑2)))
1713, 16eqtrd 2780 . . . . . 6 (𝐵 ∈ ℕ → ((0↑2) gcd (𝐵↑2)) = (abs‘(𝐵↑2)))
186, 10, 173eqtr4d 2790 . . . . 5 (𝐵 ∈ ℕ → ((0 gcd 𝐵)↑2) = ((0↑2) gcd (𝐵↑2)))
1918adantl 481 . . . 4 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → ((0 gcd 𝐵)↑2) = ((0↑2) gcd (𝐵↑2)))
20 oveq1 7455 . . . . . . 7 (𝐴 = 0 → (𝐴 gcd 𝐵) = (0 gcd 𝐵))
2120oveq1d 7463 . . . . . 6 (𝐴 = 0 → ((𝐴 gcd 𝐵)↑2) = ((0 gcd 𝐵)↑2))
22 oveq1 7455 . . . . . . 7 (𝐴 = 0 → (𝐴↑2) = (0↑2))
2322oveq1d 7463 . . . . . 6 (𝐴 = 0 → ((𝐴↑2) gcd (𝐵↑2)) = ((0↑2) gcd (𝐵↑2)))
2421, 23eqeq12d 2756 . . . . 5 (𝐴 = 0 → (((𝐴 gcd 𝐵)↑2) = ((𝐴↑2) gcd (𝐵↑2)) ↔ ((0 gcd 𝐵)↑2) = ((0↑2) gcd (𝐵↑2))))
2524adantr 480 . . . 4 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (((𝐴 gcd 𝐵)↑2) = ((𝐴↑2) gcd (𝐵↑2)) ↔ ((0 gcd 𝐵)↑2) = ((0↑2) gcd (𝐵↑2))))
2619, 25mpbird 257 . . 3 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵)↑2) = ((𝐴↑2) gcd (𝐵↑2)))
27 nncn 12301 . . . . . . 7 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
28 abssq 15355 . . . . . . 7 (𝐴 ∈ ℂ → ((abs‘𝐴)↑2) = (abs‘(𝐴↑2)))
2927, 28syl 17 . . . . . 6 (𝐴 ∈ ℕ → ((abs‘𝐴)↑2) = (abs‘(𝐴↑2)))
30 nnz 12660 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
31 gcdid0 16566 . . . . . . . 8 (𝐴 ∈ ℤ → (𝐴 gcd 0) = (abs‘𝐴))
3230, 31syl 17 . . . . . . 7 (𝐴 ∈ ℕ → (𝐴 gcd 0) = (abs‘𝐴))
3332oveq1d 7463 . . . . . 6 (𝐴 ∈ ℕ → ((𝐴 gcd 0)↑2) = ((abs‘𝐴)↑2))
3411a1i 11 . . . . . . . 8 (𝐴 ∈ ℕ → (0↑2) = 0)
3534oveq2d 7464 . . . . . . 7 (𝐴 ∈ ℕ → ((𝐴↑2) gcd (0↑2)) = ((𝐴↑2) gcd 0))
36 zsqcl 14179 . . . . . . . 8 (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ)
37 gcdid0 16566 . . . . . . . 8 ((𝐴↑2) ∈ ℤ → ((𝐴↑2) gcd 0) = (abs‘(𝐴↑2)))
3830, 36, 373syl 18 . . . . . . 7 (𝐴 ∈ ℕ → ((𝐴↑2) gcd 0) = (abs‘(𝐴↑2)))
3935, 38eqtrd 2780 . . . . . 6 (𝐴 ∈ ℕ → ((𝐴↑2) gcd (0↑2)) = (abs‘(𝐴↑2)))
4029, 33, 393eqtr4d 2790 . . . . 5 (𝐴 ∈ ℕ → ((𝐴 gcd 0)↑2) = ((𝐴↑2) gcd (0↑2)))
4140adantr 480 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 = 0) → ((𝐴 gcd 0)↑2) = ((𝐴↑2) gcd (0↑2)))
42 oveq2 7456 . . . . . . 7 (𝐵 = 0 → (𝐴 gcd 𝐵) = (𝐴 gcd 0))
4342oveq1d 7463 . . . . . 6 (𝐵 = 0 → ((𝐴 gcd 𝐵)↑2) = ((𝐴 gcd 0)↑2))
44 oveq1 7455 . . . . . . 7 (𝐵 = 0 → (𝐵↑2) = (0↑2))
4544oveq2d 7464 . . . . . 6 (𝐵 = 0 → ((𝐴↑2) gcd (𝐵↑2)) = ((𝐴↑2) gcd (0↑2)))
4643, 45eqeq12d 2756 . . . . 5 (𝐵 = 0 → (((𝐴 gcd 𝐵)↑2) = ((𝐴↑2) gcd (𝐵↑2)) ↔ ((𝐴 gcd 0)↑2) = ((𝐴↑2) gcd (0↑2))))
4746adantl 481 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 = 0) → (((𝐴 gcd 𝐵)↑2) = ((𝐴↑2) gcd (𝐵↑2)) ↔ ((𝐴 gcd 0)↑2) = ((𝐴↑2) gcd (0↑2))))
4841, 47mpbird 257 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 = 0) → ((𝐴 gcd 𝐵)↑2) = ((𝐴↑2) gcd (𝐵↑2)))
49 gcd0val 16543 . . . . . 6 (0 gcd 0) = 0
5049oveq1i 7458 . . . . 5 ((0 gcd 0)↑2) = (0↑2)
5111, 11oveq12i 7460 . . . . . 6 ((0↑2) gcd (0↑2)) = (0 gcd 0)
5251, 49eqtri 2768 . . . . 5 ((0↑2) gcd (0↑2)) = 0
5311, 50, 523eqtr4i 2778 . . . 4 ((0 gcd 0)↑2) = ((0↑2) gcd (0↑2))
54 oveq12 7457 . . . . 5 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐴 gcd 𝐵) = (0 gcd 0))
5554oveq1d 7463 . . . 4 ((𝐴 = 0 ∧ 𝐵 = 0) → ((𝐴 gcd 𝐵)↑2) = ((0 gcd 0)↑2))
5622, 44oveqan12d 7467 . . . 4 ((𝐴 = 0 ∧ 𝐵 = 0) → ((𝐴↑2) gcd (𝐵↑2)) = ((0↑2) gcd (0↑2)))
5753, 55, 563eqtr4a 2806 . . 3 ((𝐴 = 0 ∧ 𝐵 = 0) → ((𝐴 gcd 𝐵)↑2) = ((𝐴↑2) gcd (𝐵↑2)))
583, 26, 48, 57ccase 1038 . 2 (((𝐴 ∈ ℕ ∨ 𝐴 = 0) ∧ (𝐵 ∈ ℕ ∨ 𝐵 = 0)) → ((𝐴 gcd 𝐵)↑2) = ((𝐴↑2) gcd (𝐵↑2)))
591, 2, 58syl2anb 597 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑2) = ((𝐴↑2) gcd (𝐵↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  cfv 6573  (class class class)co 7448  cc 11182  0cc0 11184  cn 12293  2c2 12348  0cn0 12553  cz 12639  cexp 14112  abscabs 15283   gcd cgcd 16540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-gcd 16541
This theorem is referenced by:  zgcdsq  16800
  Copyright terms: Public domain W3C validator