Step | Hyp | Ref
| Expression |
1 | | prex 5350 |
. . . . 5
⊢ {𝑆, {𝒫 ∪ 𝑆}}
∈ V |
2 | | vex 3426 |
. . . . . . . 8
⊢ 𝑥 ∈ V |
3 | 2 | elpr 4581 |
. . . . . . 7
⊢ (𝑥 ∈ {𝑆, {𝒫 ∪
𝑆}} ↔ (𝑥 = 𝑆 ∨ 𝑥 = {𝒫 ∪
𝑆})) |
4 | | vex 3426 |
. . . . . . . 8
⊢ 𝑦 ∈ V |
5 | 4 | elpr 4581 |
. . . . . . 7
⊢ (𝑦 ∈ {𝑆, {𝒫 ∪
𝑆}} ↔ (𝑦 = 𝑆 ∨ 𝑦 = {𝒫 ∪
𝑆})) |
6 | | eqtr3 2764 |
. . . . . . . . 9
⊢ ((𝑥 = 𝑆 ∧ 𝑦 = 𝑆) → 𝑥 = 𝑦) |
7 | 6 | orcd 869 |
. . . . . . . 8
⊢ ((𝑥 = 𝑆 ∧ 𝑦 = 𝑆) → (𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅)) |
8 | | ineq12 4138 |
. . . . . . . . . 10
⊢ ((𝑥 = {𝒫 ∪ 𝑆}
∧ 𝑦 = 𝑆) → (𝑥 ∩ 𝑦) = ({𝒫 ∪
𝑆} ∩ 𝑆)) |
9 | | incom 4131 |
. . . . . . . . . . 11
⊢
({𝒫 ∪ 𝑆} ∩ 𝑆) = (𝑆 ∩ {𝒫 ∪ 𝑆}) |
10 | | pwuninel 8062 |
. . . . . . . . . . . 12
⊢ ¬
𝒫 ∪ 𝑆 ∈ 𝑆 |
11 | | disjsn 4644 |
. . . . . . . . . . . 12
⊢ ((𝑆 ∩ {𝒫 ∪ 𝑆})
= ∅ ↔ ¬ 𝒫 ∪ 𝑆 ∈ 𝑆) |
12 | 10, 11 | mpbir 230 |
. . . . . . . . . . 11
⊢ (𝑆 ∩ {𝒫 ∪ 𝑆})
= ∅ |
13 | 9, 12 | eqtri 2766 |
. . . . . . . . . 10
⊢
({𝒫 ∪ 𝑆} ∩ 𝑆) = ∅ |
14 | 8, 13 | eqtrdi 2795 |
. . . . . . . . 9
⊢ ((𝑥 = {𝒫 ∪ 𝑆}
∧ 𝑦 = 𝑆) → (𝑥 ∩ 𝑦) = ∅) |
15 | 14 | olcd 870 |
. . . . . . . 8
⊢ ((𝑥 = {𝒫 ∪ 𝑆}
∧ 𝑦 = 𝑆) → (𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅)) |
16 | | ineq12 4138 |
. . . . . . . . . 10
⊢ ((𝑥 = 𝑆 ∧ 𝑦 = {𝒫 ∪
𝑆}) → (𝑥 ∩ 𝑦) = (𝑆 ∩ {𝒫 ∪ 𝑆})) |
17 | 16, 12 | eqtrdi 2795 |
. . . . . . . . 9
⊢ ((𝑥 = 𝑆 ∧ 𝑦 = {𝒫 ∪
𝑆}) → (𝑥 ∩ 𝑦) = ∅) |
18 | 17 | olcd 870 |
. . . . . . . 8
⊢ ((𝑥 = 𝑆 ∧ 𝑦 = {𝒫 ∪
𝑆}) → (𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅)) |
19 | | eqtr3 2764 |
. . . . . . . . 9
⊢ ((𝑥 = {𝒫 ∪ 𝑆}
∧ 𝑦 = {𝒫 ∪ 𝑆})
→ 𝑥 = 𝑦) |
20 | 19 | orcd 869 |
. . . . . . . 8
⊢ ((𝑥 = {𝒫 ∪ 𝑆}
∧ 𝑦 = {𝒫 ∪ 𝑆})
→ (𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅)) |
21 | 7, 15, 18, 20 | ccase 1034 |
. . . . . . 7
⊢ (((𝑥 = 𝑆 ∨ 𝑥 = {𝒫 ∪
𝑆}) ∧ (𝑦 = 𝑆 ∨ 𝑦 = {𝒫 ∪
𝑆})) → (𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅)) |
22 | 3, 5, 21 | syl2anb 597 |
. . . . . 6
⊢ ((𝑥 ∈ {𝑆, {𝒫 ∪
𝑆}} ∧ 𝑦 ∈ {𝑆, {𝒫 ∪
𝑆}}) → (𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅)) |
23 | 22 | rgen2 3126 |
. . . . 5
⊢
∀𝑥 ∈
{𝑆, {𝒫 ∪ 𝑆}}∀𝑦 ∈ {𝑆, {𝒫 ∪
𝑆}} (𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅) |
24 | | baspartn 22012 |
. . . . 5
⊢ (({𝑆, {𝒫 ∪ 𝑆}}
∈ V ∧ ∀𝑥
∈ {𝑆, {𝒫 ∪ 𝑆}}∀𝑦 ∈ {𝑆, {𝒫 ∪
𝑆}} (𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅)) → {𝑆, {𝒫 ∪
𝑆}} ∈
TopBases) |
25 | 1, 23, 24 | mp2an 688 |
. . . 4
⊢ {𝑆, {𝒫 ∪ 𝑆}}
∈ TopBases |
26 | | tgcl 22027 |
. . . 4
⊢ ({𝑆, {𝒫 ∪ 𝑆}}
∈ TopBases → (topGen‘{𝑆, {𝒫 ∪
𝑆}}) ∈
Top) |
27 | 25, 26 | mp1i 13 |
. . 3
⊢ (𝑆 ∈ 𝑉 → (topGen‘{𝑆, {𝒫 ∪
𝑆}}) ∈
Top) |
28 | | prfi 9019 |
. . . . . 6
⊢ {𝑆, {𝒫 ∪ 𝑆}}
∈ Fin |
29 | | pwfi 8923 |
. . . . . 6
⊢ ({𝑆, {𝒫 ∪ 𝑆}}
∈ Fin ↔ 𝒫 {𝑆, {𝒫 ∪
𝑆}} ∈
Fin) |
30 | 28, 29 | mpbi 229 |
. . . . 5
⊢ 𝒫
{𝑆, {𝒫 ∪ 𝑆}}
∈ Fin |
31 | | tgdom 22036 |
. . . . . 6
⊢ ({𝑆, {𝒫 ∪ 𝑆}}
∈ V → (topGen‘{𝑆, {𝒫 ∪
𝑆}}) ≼ 𝒫
{𝑆, {𝒫 ∪ 𝑆}}) |
32 | 1, 31 | ax-mp 5 |
. . . . 5
⊢
(topGen‘{𝑆,
{𝒫 ∪ 𝑆}}) ≼ 𝒫 {𝑆, {𝒫 ∪
𝑆}} |
33 | | domfi 8935 |
. . . . 5
⊢
((𝒫 {𝑆,
{𝒫 ∪ 𝑆}} ∈ Fin ∧ (topGen‘{𝑆, {𝒫 ∪ 𝑆}})
≼ 𝒫 {𝑆,
{𝒫 ∪ 𝑆}}) → (topGen‘{𝑆, {𝒫 ∪
𝑆}}) ∈
Fin) |
34 | 30, 32, 33 | mp2an 688 |
. . . 4
⊢
(topGen‘{𝑆,
{𝒫 ∪ 𝑆}}) ∈ Fin |
35 | 34 | a1i 11 |
. . 3
⊢ (𝑆 ∈ 𝑉 → (topGen‘{𝑆, {𝒫 ∪
𝑆}}) ∈
Fin) |
36 | 27, 35 | elind 4124 |
. 2
⊢ (𝑆 ∈ 𝑉 → (topGen‘{𝑆, {𝒫 ∪
𝑆}}) ∈ (Top ∩
Fin)) |
37 | | fincmp 22452 |
. 2
⊢
((topGen‘{𝑆,
{𝒫 ∪ 𝑆}}) ∈ (Top ∩ Fin) →
(topGen‘{𝑆,
{𝒫 ∪ 𝑆}}) ∈ Comp) |
38 | 36, 37 | syl 17 |
1
⊢ (𝑆 ∈ 𝑉 → (topGen‘{𝑆, {𝒫 ∪
𝑆}}) ∈
Comp) |