Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kelac2lem Structured version   Visualization version   GIF version

Theorem kelac2lem 40805
Description: Lemma for kelac2 40806 and dfac21 40807: knob topologies are compact. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
kelac2lem (𝑆𝑉 → (topGen‘{𝑆, {𝒫 𝑆}}) ∈ Comp)

Proof of Theorem kelac2lem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prex 5350 . . . . 5 {𝑆, {𝒫 𝑆}} ∈ V
2 vex 3426 . . . . . . . 8 𝑥 ∈ V
32elpr 4581 . . . . . . 7 (𝑥 ∈ {𝑆, {𝒫 𝑆}} ↔ (𝑥 = 𝑆𝑥 = {𝒫 𝑆}))
4 vex 3426 . . . . . . . 8 𝑦 ∈ V
54elpr 4581 . . . . . . 7 (𝑦 ∈ {𝑆, {𝒫 𝑆}} ↔ (𝑦 = 𝑆𝑦 = {𝒫 𝑆}))
6 eqtr3 2764 . . . . . . . . 9 ((𝑥 = 𝑆𝑦 = 𝑆) → 𝑥 = 𝑦)
76orcd 869 . . . . . . . 8 ((𝑥 = 𝑆𝑦 = 𝑆) → (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅))
8 ineq12 4138 . . . . . . . . . 10 ((𝑥 = {𝒫 𝑆} ∧ 𝑦 = 𝑆) → (𝑥𝑦) = ({𝒫 𝑆} ∩ 𝑆))
9 incom 4131 . . . . . . . . . . 11 ({𝒫 𝑆} ∩ 𝑆) = (𝑆 ∩ {𝒫 𝑆})
10 pwuninel 8062 . . . . . . . . . . . 12 ¬ 𝒫 𝑆𝑆
11 disjsn 4644 . . . . . . . . . . . 12 ((𝑆 ∩ {𝒫 𝑆}) = ∅ ↔ ¬ 𝒫 𝑆𝑆)
1210, 11mpbir 230 . . . . . . . . . . 11 (𝑆 ∩ {𝒫 𝑆}) = ∅
139, 12eqtri 2766 . . . . . . . . . 10 ({𝒫 𝑆} ∩ 𝑆) = ∅
148, 13eqtrdi 2795 . . . . . . . . 9 ((𝑥 = {𝒫 𝑆} ∧ 𝑦 = 𝑆) → (𝑥𝑦) = ∅)
1514olcd 870 . . . . . . . 8 ((𝑥 = {𝒫 𝑆} ∧ 𝑦 = 𝑆) → (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅))
16 ineq12 4138 . . . . . . . . . 10 ((𝑥 = 𝑆𝑦 = {𝒫 𝑆}) → (𝑥𝑦) = (𝑆 ∩ {𝒫 𝑆}))
1716, 12eqtrdi 2795 . . . . . . . . 9 ((𝑥 = 𝑆𝑦 = {𝒫 𝑆}) → (𝑥𝑦) = ∅)
1817olcd 870 . . . . . . . 8 ((𝑥 = 𝑆𝑦 = {𝒫 𝑆}) → (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅))
19 eqtr3 2764 . . . . . . . . 9 ((𝑥 = {𝒫 𝑆} ∧ 𝑦 = {𝒫 𝑆}) → 𝑥 = 𝑦)
2019orcd 869 . . . . . . . 8 ((𝑥 = {𝒫 𝑆} ∧ 𝑦 = {𝒫 𝑆}) → (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅))
217, 15, 18, 20ccase 1034 . . . . . . 7 (((𝑥 = 𝑆𝑥 = {𝒫 𝑆}) ∧ (𝑦 = 𝑆𝑦 = {𝒫 𝑆})) → (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅))
223, 5, 21syl2anb 597 . . . . . 6 ((𝑥 ∈ {𝑆, {𝒫 𝑆}} ∧ 𝑦 ∈ {𝑆, {𝒫 𝑆}}) → (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅))
2322rgen2 3126 . . . . 5 𝑥 ∈ {𝑆, {𝒫 𝑆}}∀𝑦 ∈ {𝑆, {𝒫 𝑆}} (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅)
24 baspartn 22012 . . . . 5 (({𝑆, {𝒫 𝑆}} ∈ V ∧ ∀𝑥 ∈ {𝑆, {𝒫 𝑆}}∀𝑦 ∈ {𝑆, {𝒫 𝑆}} (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅)) → {𝑆, {𝒫 𝑆}} ∈ TopBases)
251, 23, 24mp2an 688 . . . 4 {𝑆, {𝒫 𝑆}} ∈ TopBases
26 tgcl 22027 . . . 4 ({𝑆, {𝒫 𝑆}} ∈ TopBases → (topGen‘{𝑆, {𝒫 𝑆}}) ∈ Top)
2725, 26mp1i 13 . . 3 (𝑆𝑉 → (topGen‘{𝑆, {𝒫 𝑆}}) ∈ Top)
28 prfi 9019 . . . . . 6 {𝑆, {𝒫 𝑆}} ∈ Fin
29 pwfi 8923 . . . . . 6 ({𝑆, {𝒫 𝑆}} ∈ Fin ↔ 𝒫 {𝑆, {𝒫 𝑆}} ∈ Fin)
3028, 29mpbi 229 . . . . 5 𝒫 {𝑆, {𝒫 𝑆}} ∈ Fin
31 tgdom 22036 . . . . . 6 ({𝑆, {𝒫 𝑆}} ∈ V → (topGen‘{𝑆, {𝒫 𝑆}}) ≼ 𝒫 {𝑆, {𝒫 𝑆}})
321, 31ax-mp 5 . . . . 5 (topGen‘{𝑆, {𝒫 𝑆}}) ≼ 𝒫 {𝑆, {𝒫 𝑆}}
33 domfi 8935 . . . . 5 ((𝒫 {𝑆, {𝒫 𝑆}} ∈ Fin ∧ (topGen‘{𝑆, {𝒫 𝑆}}) ≼ 𝒫 {𝑆, {𝒫 𝑆}}) → (topGen‘{𝑆, {𝒫 𝑆}}) ∈ Fin)
3430, 32, 33mp2an 688 . . . 4 (topGen‘{𝑆, {𝒫 𝑆}}) ∈ Fin
3534a1i 11 . . 3 (𝑆𝑉 → (topGen‘{𝑆, {𝒫 𝑆}}) ∈ Fin)
3627, 35elind 4124 . 2 (𝑆𝑉 → (topGen‘{𝑆, {𝒫 𝑆}}) ∈ (Top ∩ Fin))
37 fincmp 22452 . 2 ((topGen‘{𝑆, {𝒫 𝑆}}) ∈ (Top ∩ Fin) → (topGen‘{𝑆, {𝒫 𝑆}}) ∈ Comp)
3836, 37syl 17 1 (𝑆𝑉 → (topGen‘{𝑆, {𝒫 𝑆}}) ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  cin 3882  c0 4253  𝒫 cpw 4530  {csn 4558  {cpr 4560   cuni 4836   class class class wbr 5070  cfv 6418  cdom 8689  Fincfn 8691  topGenctg 17065  Topctop 21950  TopBasesctb 22003  Compccmp 22445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-1o 8267  df-en 8692  df-dom 8693  df-fin 8695  df-topgen 17071  df-top 21951  df-bases 22004  df-cmp 22446
This theorem is referenced by:  kelac2  40806  dfac21  40807
  Copyright terms: Public domain W3C validator