Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kelac2lem Structured version   Visualization version   GIF version

Theorem kelac2lem 43167
Description: Lemma for kelac2 43168 and dfac21 43169: knob topologies are compact. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
kelac2lem (𝑆𝑉 → (topGen‘{𝑆, {𝒫 𝑆}}) ∈ Comp)

Proof of Theorem kelac2lem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prex 5373 . . . . 5 {𝑆, {𝒫 𝑆}} ∈ V
2 vex 3440 . . . . . . . 8 𝑥 ∈ V
32elpr 4598 . . . . . . 7 (𝑥 ∈ {𝑆, {𝒫 𝑆}} ↔ (𝑥 = 𝑆𝑥 = {𝒫 𝑆}))
4 vex 3440 . . . . . . . 8 𝑦 ∈ V
54elpr 4598 . . . . . . 7 (𝑦 ∈ {𝑆, {𝒫 𝑆}} ↔ (𝑦 = 𝑆𝑦 = {𝒫 𝑆}))
6 eqtr3 2753 . . . . . . . . 9 ((𝑥 = 𝑆𝑦 = 𝑆) → 𝑥 = 𝑦)
76orcd 873 . . . . . . . 8 ((𝑥 = 𝑆𝑦 = 𝑆) → (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅))
8 ineq12 4162 . . . . . . . . . 10 ((𝑥 = {𝒫 𝑆} ∧ 𝑦 = 𝑆) → (𝑥𝑦) = ({𝒫 𝑆} ∩ 𝑆))
9 incom 4156 . . . . . . . . . . 11 ({𝒫 𝑆} ∩ 𝑆) = (𝑆 ∩ {𝒫 𝑆})
10 pwuninel 8205 . . . . . . . . . . . 12 ¬ 𝒫 𝑆𝑆
11 disjsn 4661 . . . . . . . . . . . 12 ((𝑆 ∩ {𝒫 𝑆}) = ∅ ↔ ¬ 𝒫 𝑆𝑆)
1210, 11mpbir 231 . . . . . . . . . . 11 (𝑆 ∩ {𝒫 𝑆}) = ∅
139, 12eqtri 2754 . . . . . . . . . 10 ({𝒫 𝑆} ∩ 𝑆) = ∅
148, 13eqtrdi 2782 . . . . . . . . 9 ((𝑥 = {𝒫 𝑆} ∧ 𝑦 = 𝑆) → (𝑥𝑦) = ∅)
1514olcd 874 . . . . . . . 8 ((𝑥 = {𝒫 𝑆} ∧ 𝑦 = 𝑆) → (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅))
16 ineq12 4162 . . . . . . . . . 10 ((𝑥 = 𝑆𝑦 = {𝒫 𝑆}) → (𝑥𝑦) = (𝑆 ∩ {𝒫 𝑆}))
1716, 12eqtrdi 2782 . . . . . . . . 9 ((𝑥 = 𝑆𝑦 = {𝒫 𝑆}) → (𝑥𝑦) = ∅)
1817olcd 874 . . . . . . . 8 ((𝑥 = 𝑆𝑦 = {𝒫 𝑆}) → (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅))
19 eqtr3 2753 . . . . . . . . 9 ((𝑥 = {𝒫 𝑆} ∧ 𝑦 = {𝒫 𝑆}) → 𝑥 = 𝑦)
2019orcd 873 . . . . . . . 8 ((𝑥 = {𝒫 𝑆} ∧ 𝑦 = {𝒫 𝑆}) → (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅))
217, 15, 18, 20ccase 1037 . . . . . . 7 (((𝑥 = 𝑆𝑥 = {𝒫 𝑆}) ∧ (𝑦 = 𝑆𝑦 = {𝒫 𝑆})) → (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅))
223, 5, 21syl2anb 598 . . . . . 6 ((𝑥 ∈ {𝑆, {𝒫 𝑆}} ∧ 𝑦 ∈ {𝑆, {𝒫 𝑆}}) → (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅))
2322rgen2 3172 . . . . 5 𝑥 ∈ {𝑆, {𝒫 𝑆}}∀𝑦 ∈ {𝑆, {𝒫 𝑆}} (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅)
24 baspartn 22869 . . . . 5 (({𝑆, {𝒫 𝑆}} ∈ V ∧ ∀𝑥 ∈ {𝑆, {𝒫 𝑆}}∀𝑦 ∈ {𝑆, {𝒫 𝑆}} (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅)) → {𝑆, {𝒫 𝑆}} ∈ TopBases)
251, 23, 24mp2an 692 . . . 4 {𝑆, {𝒫 𝑆}} ∈ TopBases
26 tgcl 22884 . . . 4 ({𝑆, {𝒫 𝑆}} ∈ TopBases → (topGen‘{𝑆, {𝒫 𝑆}}) ∈ Top)
2725, 26mp1i 13 . . 3 (𝑆𝑉 → (topGen‘{𝑆, {𝒫 𝑆}}) ∈ Top)
28 prfi 9208 . . . . . 6 {𝑆, {𝒫 𝑆}} ∈ Fin
29 pwfi 9203 . . . . . 6 ({𝑆, {𝒫 𝑆}} ∈ Fin ↔ 𝒫 {𝑆, {𝒫 𝑆}} ∈ Fin)
3028, 29mpbi 230 . . . . 5 𝒫 {𝑆, {𝒫 𝑆}} ∈ Fin
31 tgdom 22893 . . . . . 6 ({𝑆, {𝒫 𝑆}} ∈ V → (topGen‘{𝑆, {𝒫 𝑆}}) ≼ 𝒫 {𝑆, {𝒫 𝑆}})
321, 31ax-mp 5 . . . . 5 (topGen‘{𝑆, {𝒫 𝑆}}) ≼ 𝒫 {𝑆, {𝒫 𝑆}}
33 domfi 9098 . . . . 5 ((𝒫 {𝑆, {𝒫 𝑆}} ∈ Fin ∧ (topGen‘{𝑆, {𝒫 𝑆}}) ≼ 𝒫 {𝑆, {𝒫 𝑆}}) → (topGen‘{𝑆, {𝒫 𝑆}}) ∈ Fin)
3430, 32, 33mp2an 692 . . . 4 (topGen‘{𝑆, {𝒫 𝑆}}) ∈ Fin
3534a1i 11 . . 3 (𝑆𝑉 → (topGen‘{𝑆, {𝒫 𝑆}}) ∈ Fin)
3627, 35elind 4147 . 2 (𝑆𝑉 → (topGen‘{𝑆, {𝒫 𝑆}}) ∈ (Top ∩ Fin))
37 fincmp 23308 . 2 ((topGen‘{𝑆, {𝒫 𝑆}}) ∈ (Top ∩ Fin) → (topGen‘{𝑆, {𝒫 𝑆}}) ∈ Comp)
3836, 37syl 17 1 (𝑆𝑉 → (topGen‘{𝑆, {𝒫 𝑆}}) ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  cin 3896  c0 4280  𝒫 cpw 4547  {csn 4573  {cpr 4575   cuni 4856   class class class wbr 5089  cfv 6481  cdom 8867  Fincfn 8869  topGenctg 17341  Topctop 22808  TopBasesctb 22860  Compccmp 23301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-om 7797  df-1o 8385  df-2o 8386  df-en 8870  df-dom 8871  df-fin 8873  df-topgen 17347  df-top 22809  df-bases 22861  df-cmp 23302
This theorem is referenced by:  kelac2  43168  dfac21  43169
  Copyright terms: Public domain W3C validator