| Step | Hyp | Ref
| Expression |
| 1 | | prex 5412 |
. . . . 5
⊢ {𝑆, {𝒫 ∪ 𝑆}}
∈ V |
| 2 | | vex 3468 |
. . . . . . . 8
⊢ 𝑥 ∈ V |
| 3 | 2 | elpr 4631 |
. . . . . . 7
⊢ (𝑥 ∈ {𝑆, {𝒫 ∪
𝑆}} ↔ (𝑥 = 𝑆 ∨ 𝑥 = {𝒫 ∪
𝑆})) |
| 4 | | vex 3468 |
. . . . . . . 8
⊢ 𝑦 ∈ V |
| 5 | 4 | elpr 4631 |
. . . . . . 7
⊢ (𝑦 ∈ {𝑆, {𝒫 ∪
𝑆}} ↔ (𝑦 = 𝑆 ∨ 𝑦 = {𝒫 ∪
𝑆})) |
| 6 | | eqtr3 2758 |
. . . . . . . . 9
⊢ ((𝑥 = 𝑆 ∧ 𝑦 = 𝑆) → 𝑥 = 𝑦) |
| 7 | 6 | orcd 873 |
. . . . . . . 8
⊢ ((𝑥 = 𝑆 ∧ 𝑦 = 𝑆) → (𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅)) |
| 8 | | ineq12 4195 |
. . . . . . . . . 10
⊢ ((𝑥 = {𝒫 ∪ 𝑆}
∧ 𝑦 = 𝑆) → (𝑥 ∩ 𝑦) = ({𝒫 ∪
𝑆} ∩ 𝑆)) |
| 9 | | incom 4189 |
. . . . . . . . . . 11
⊢
({𝒫 ∪ 𝑆} ∩ 𝑆) = (𝑆 ∩ {𝒫 ∪ 𝑆}) |
| 10 | | pwuninel 8279 |
. . . . . . . . . . . 12
⊢ ¬
𝒫 ∪ 𝑆 ∈ 𝑆 |
| 11 | | disjsn 4692 |
. . . . . . . . . . . 12
⊢ ((𝑆 ∩ {𝒫 ∪ 𝑆})
= ∅ ↔ ¬ 𝒫 ∪ 𝑆 ∈ 𝑆) |
| 12 | 10, 11 | mpbir 231 |
. . . . . . . . . . 11
⊢ (𝑆 ∩ {𝒫 ∪ 𝑆})
= ∅ |
| 13 | 9, 12 | eqtri 2759 |
. . . . . . . . . 10
⊢
({𝒫 ∪ 𝑆} ∩ 𝑆) = ∅ |
| 14 | 8, 13 | eqtrdi 2787 |
. . . . . . . . 9
⊢ ((𝑥 = {𝒫 ∪ 𝑆}
∧ 𝑦 = 𝑆) → (𝑥 ∩ 𝑦) = ∅) |
| 15 | 14 | olcd 874 |
. . . . . . . 8
⊢ ((𝑥 = {𝒫 ∪ 𝑆}
∧ 𝑦 = 𝑆) → (𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅)) |
| 16 | | ineq12 4195 |
. . . . . . . . . 10
⊢ ((𝑥 = 𝑆 ∧ 𝑦 = {𝒫 ∪
𝑆}) → (𝑥 ∩ 𝑦) = (𝑆 ∩ {𝒫 ∪ 𝑆})) |
| 17 | 16, 12 | eqtrdi 2787 |
. . . . . . . . 9
⊢ ((𝑥 = 𝑆 ∧ 𝑦 = {𝒫 ∪
𝑆}) → (𝑥 ∩ 𝑦) = ∅) |
| 18 | 17 | olcd 874 |
. . . . . . . 8
⊢ ((𝑥 = 𝑆 ∧ 𝑦 = {𝒫 ∪
𝑆}) → (𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅)) |
| 19 | | eqtr3 2758 |
. . . . . . . . 9
⊢ ((𝑥 = {𝒫 ∪ 𝑆}
∧ 𝑦 = {𝒫 ∪ 𝑆})
→ 𝑥 = 𝑦) |
| 20 | 19 | orcd 873 |
. . . . . . . 8
⊢ ((𝑥 = {𝒫 ∪ 𝑆}
∧ 𝑦 = {𝒫 ∪ 𝑆})
→ (𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅)) |
| 21 | 7, 15, 18, 20 | ccase 1037 |
. . . . . . 7
⊢ (((𝑥 = 𝑆 ∨ 𝑥 = {𝒫 ∪
𝑆}) ∧ (𝑦 = 𝑆 ∨ 𝑦 = {𝒫 ∪
𝑆})) → (𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅)) |
| 22 | 3, 5, 21 | syl2anb 598 |
. . . . . 6
⊢ ((𝑥 ∈ {𝑆, {𝒫 ∪
𝑆}} ∧ 𝑦 ∈ {𝑆, {𝒫 ∪
𝑆}}) → (𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅)) |
| 23 | 22 | rgen2 3185 |
. . . . 5
⊢
∀𝑥 ∈
{𝑆, {𝒫 ∪ 𝑆}}∀𝑦 ∈ {𝑆, {𝒫 ∪
𝑆}} (𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅) |
| 24 | | baspartn 22897 |
. . . . 5
⊢ (({𝑆, {𝒫 ∪ 𝑆}}
∈ V ∧ ∀𝑥
∈ {𝑆, {𝒫 ∪ 𝑆}}∀𝑦 ∈ {𝑆, {𝒫 ∪
𝑆}} (𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅)) → {𝑆, {𝒫 ∪
𝑆}} ∈
TopBases) |
| 25 | 1, 23, 24 | mp2an 692 |
. . . 4
⊢ {𝑆, {𝒫 ∪ 𝑆}}
∈ TopBases |
| 26 | | tgcl 22912 |
. . . 4
⊢ ({𝑆, {𝒫 ∪ 𝑆}}
∈ TopBases → (topGen‘{𝑆, {𝒫 ∪
𝑆}}) ∈
Top) |
| 27 | 25, 26 | mp1i 13 |
. . 3
⊢ (𝑆 ∈ 𝑉 → (topGen‘{𝑆, {𝒫 ∪
𝑆}}) ∈
Top) |
| 28 | | prfi 9340 |
. . . . . 6
⊢ {𝑆, {𝒫 ∪ 𝑆}}
∈ Fin |
| 29 | | pwfi 9334 |
. . . . . 6
⊢ ({𝑆, {𝒫 ∪ 𝑆}}
∈ Fin ↔ 𝒫 {𝑆, {𝒫 ∪
𝑆}} ∈
Fin) |
| 30 | 28, 29 | mpbi 230 |
. . . . 5
⊢ 𝒫
{𝑆, {𝒫 ∪ 𝑆}}
∈ Fin |
| 31 | | tgdom 22921 |
. . . . . 6
⊢ ({𝑆, {𝒫 ∪ 𝑆}}
∈ V → (topGen‘{𝑆, {𝒫 ∪
𝑆}}) ≼ 𝒫
{𝑆, {𝒫 ∪ 𝑆}}) |
| 32 | 1, 31 | ax-mp 5 |
. . . . 5
⊢
(topGen‘{𝑆,
{𝒫 ∪ 𝑆}}) ≼ 𝒫 {𝑆, {𝒫 ∪
𝑆}} |
| 33 | | domfi 9208 |
. . . . 5
⊢
((𝒫 {𝑆,
{𝒫 ∪ 𝑆}} ∈ Fin ∧ (topGen‘{𝑆, {𝒫 ∪ 𝑆}})
≼ 𝒫 {𝑆,
{𝒫 ∪ 𝑆}}) → (topGen‘{𝑆, {𝒫 ∪
𝑆}}) ∈
Fin) |
| 34 | 30, 32, 33 | mp2an 692 |
. . . 4
⊢
(topGen‘{𝑆,
{𝒫 ∪ 𝑆}}) ∈ Fin |
| 35 | 34 | a1i 11 |
. . 3
⊢ (𝑆 ∈ 𝑉 → (topGen‘{𝑆, {𝒫 ∪
𝑆}}) ∈
Fin) |
| 36 | 27, 35 | elind 4180 |
. 2
⊢ (𝑆 ∈ 𝑉 → (topGen‘{𝑆, {𝒫 ∪
𝑆}}) ∈ (Top ∩
Fin)) |
| 37 | | fincmp 23336 |
. 2
⊢
((topGen‘{𝑆,
{𝒫 ∪ 𝑆}}) ∈ (Top ∩ Fin) →
(topGen‘{𝑆,
{𝒫 ∪ 𝑆}}) ∈ Comp) |
| 38 | 36, 37 | syl 17 |
1
⊢ (𝑆 ∈ 𝑉 → (topGen‘{𝑆, {𝒫 ∪
𝑆}}) ∈
Comp) |