Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kelac2lem Structured version   Visualization version   GIF version

Theorem kelac2lem 39657
Description: Lemma for kelac2 39658 and dfac21 39659: knob topologies are compact. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
kelac2lem (𝑆𝑉 → (topGen‘{𝑆, {𝒫 𝑆}}) ∈ Comp)

Proof of Theorem kelac2lem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prex 5324 . . . . 5 {𝑆, {𝒫 𝑆}} ∈ V
2 vex 3497 . . . . . . . 8 𝑥 ∈ V
32elpr 4583 . . . . . . 7 (𝑥 ∈ {𝑆, {𝒫 𝑆}} ↔ (𝑥 = 𝑆𝑥 = {𝒫 𝑆}))
4 vex 3497 . . . . . . . 8 𝑦 ∈ V
54elpr 4583 . . . . . . 7 (𝑦 ∈ {𝑆, {𝒫 𝑆}} ↔ (𝑦 = 𝑆𝑦 = {𝒫 𝑆}))
6 eqtr3 2843 . . . . . . . . 9 ((𝑥 = 𝑆𝑦 = 𝑆) → 𝑥 = 𝑦)
76orcd 869 . . . . . . . 8 ((𝑥 = 𝑆𝑦 = 𝑆) → (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅))
8 ineq12 4183 . . . . . . . . . 10 ((𝑥 = {𝒫 𝑆} ∧ 𝑦 = 𝑆) → (𝑥𝑦) = ({𝒫 𝑆} ∩ 𝑆))
9 incom 4177 . . . . . . . . . . 11 ({𝒫 𝑆} ∩ 𝑆) = (𝑆 ∩ {𝒫 𝑆})
10 pwuninel 7935 . . . . . . . . . . . 12 ¬ 𝒫 𝑆𝑆
11 disjsn 4640 . . . . . . . . . . . 12 ((𝑆 ∩ {𝒫 𝑆}) = ∅ ↔ ¬ 𝒫 𝑆𝑆)
1210, 11mpbir 233 . . . . . . . . . . 11 (𝑆 ∩ {𝒫 𝑆}) = ∅
139, 12eqtri 2844 . . . . . . . . . 10 ({𝒫 𝑆} ∩ 𝑆) = ∅
148, 13syl6eq 2872 . . . . . . . . 9 ((𝑥 = {𝒫 𝑆} ∧ 𝑦 = 𝑆) → (𝑥𝑦) = ∅)
1514olcd 870 . . . . . . . 8 ((𝑥 = {𝒫 𝑆} ∧ 𝑦 = 𝑆) → (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅))
16 ineq12 4183 . . . . . . . . . 10 ((𝑥 = 𝑆𝑦 = {𝒫 𝑆}) → (𝑥𝑦) = (𝑆 ∩ {𝒫 𝑆}))
1716, 12syl6eq 2872 . . . . . . . . 9 ((𝑥 = 𝑆𝑦 = {𝒫 𝑆}) → (𝑥𝑦) = ∅)
1817olcd 870 . . . . . . . 8 ((𝑥 = 𝑆𝑦 = {𝒫 𝑆}) → (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅))
19 eqtr3 2843 . . . . . . . . 9 ((𝑥 = {𝒫 𝑆} ∧ 𝑦 = {𝒫 𝑆}) → 𝑥 = 𝑦)
2019orcd 869 . . . . . . . 8 ((𝑥 = {𝒫 𝑆} ∧ 𝑦 = {𝒫 𝑆}) → (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅))
217, 15, 18, 20ccase 1032 . . . . . . 7 (((𝑥 = 𝑆𝑥 = {𝒫 𝑆}) ∧ (𝑦 = 𝑆𝑦 = {𝒫 𝑆})) → (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅))
223, 5, 21syl2anb 599 . . . . . 6 ((𝑥 ∈ {𝑆, {𝒫 𝑆}} ∧ 𝑦 ∈ {𝑆, {𝒫 𝑆}}) → (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅))
2322rgen2 3203 . . . . 5 𝑥 ∈ {𝑆, {𝒫 𝑆}}∀𝑦 ∈ {𝑆, {𝒫 𝑆}} (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅)
24 baspartn 21556 . . . . 5 (({𝑆, {𝒫 𝑆}} ∈ V ∧ ∀𝑥 ∈ {𝑆, {𝒫 𝑆}}∀𝑦 ∈ {𝑆, {𝒫 𝑆}} (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅)) → {𝑆, {𝒫 𝑆}} ∈ TopBases)
251, 23, 24mp2an 690 . . . 4 {𝑆, {𝒫 𝑆}} ∈ TopBases
26 tgcl 21571 . . . 4 ({𝑆, {𝒫 𝑆}} ∈ TopBases → (topGen‘{𝑆, {𝒫 𝑆}}) ∈ Top)
2725, 26mp1i 13 . . 3 (𝑆𝑉 → (topGen‘{𝑆, {𝒫 𝑆}}) ∈ Top)
28 prfi 8787 . . . . . 6 {𝑆, {𝒫 𝑆}} ∈ Fin
29 pwfi 8813 . . . . . 6 ({𝑆, {𝒫 𝑆}} ∈ Fin ↔ 𝒫 {𝑆, {𝒫 𝑆}} ∈ Fin)
3028, 29mpbi 232 . . . . 5 𝒫 {𝑆, {𝒫 𝑆}} ∈ Fin
31 tgdom 21580 . . . . . 6 ({𝑆, {𝒫 𝑆}} ∈ V → (topGen‘{𝑆, {𝒫 𝑆}}) ≼ 𝒫 {𝑆, {𝒫 𝑆}})
321, 31ax-mp 5 . . . . 5 (topGen‘{𝑆, {𝒫 𝑆}}) ≼ 𝒫 {𝑆, {𝒫 𝑆}}
33 domfi 8733 . . . . 5 ((𝒫 {𝑆, {𝒫 𝑆}} ∈ Fin ∧ (topGen‘{𝑆, {𝒫 𝑆}}) ≼ 𝒫 {𝑆, {𝒫 𝑆}}) → (topGen‘{𝑆, {𝒫 𝑆}}) ∈ Fin)
3430, 32, 33mp2an 690 . . . 4 (topGen‘{𝑆, {𝒫 𝑆}}) ∈ Fin
3534a1i 11 . . 3 (𝑆𝑉 → (topGen‘{𝑆, {𝒫 𝑆}}) ∈ Fin)
3627, 35elind 4170 . 2 (𝑆𝑉 → (topGen‘{𝑆, {𝒫 𝑆}}) ∈ (Top ∩ Fin))
37 fincmp 21995 . 2 ((topGen‘{𝑆, {𝒫 𝑆}}) ∈ (Top ∩ Fin) → (topGen‘{𝑆, {𝒫 𝑆}}) ∈ Comp)
3836, 37syl 17 1 (𝑆𝑉 → (topGen‘{𝑆, {𝒫 𝑆}}) ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843   = wceq 1533  wcel 2110  wral 3138  Vcvv 3494  cin 3934  c0 4290  𝒫 cpw 4538  {csn 4560  {cpr 4562   cuni 4831   class class class wbr 5058  cfv 6349  cdom 8501  Fincfn 8503  topGenctg 16705  Topctop 21495  TopBasesctb 21547  Compccmp 21988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-topgen 16711  df-top 21496  df-bases 21548  df-cmp 21989
This theorem is referenced by:  kelac2  39658  dfac21  39659
  Copyright terms: Public domain W3C validator