Proof of Theorem prel12g
Step | Hyp | Ref
| Expression |
1 | | preq12nebg 4773 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)))) |
2 | | prid1g 4676 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐷}) |
3 | 2 | 3ad2ant1 1135 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → 𝐴 ∈ {𝐴, 𝐷}) |
4 | 3 | adantr 484 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ 𝐴 = 𝐶) → 𝐴 ∈ {𝐴, 𝐷}) |
5 | | preq1 4649 |
. . . . . . . 8
⊢ (𝐴 = 𝐶 → {𝐴, 𝐷} = {𝐶, 𝐷}) |
6 | 5 | adantl 485 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ 𝐴 = 𝐶) → {𝐴, 𝐷} = {𝐶, 𝐷}) |
7 | 4, 6 | eleqtrd 2840 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ 𝐴 = 𝐶) → 𝐴 ∈ {𝐶, 𝐷}) |
8 | 7 | ex 416 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → (𝐴 = 𝐶 → 𝐴 ∈ {𝐶, 𝐷})) |
9 | | prid2g 4677 |
. . . . . . 7
⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ {𝐶, 𝐵}) |
10 | 9 | 3ad2ant2 1136 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → 𝐵 ∈ {𝐶, 𝐵}) |
11 | | preq2 4650 |
. . . . . . 7
⊢ (𝐵 = 𝐷 → {𝐶, 𝐵} = {𝐶, 𝐷}) |
12 | 11 | eleq2d 2823 |
. . . . . 6
⊢ (𝐵 = 𝐷 → (𝐵 ∈ {𝐶, 𝐵} ↔ 𝐵 ∈ {𝐶, 𝐷})) |
13 | 10, 12 | syl5ibcom 248 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → (𝐵 = 𝐷 → 𝐵 ∈ {𝐶, 𝐷})) |
14 | 8, 13 | anim12d 612 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝐴 ∈ {𝐶, 𝐷} ∧ 𝐵 ∈ {𝐶, 𝐷}))) |
15 | | prid2g 4677 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐶, 𝐴}) |
16 | 15 | 3ad2ant1 1135 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → 𝐴 ∈ {𝐶, 𝐴}) |
17 | | preq2 4650 |
. . . . . . 7
⊢ (𝐴 = 𝐷 → {𝐶, 𝐴} = {𝐶, 𝐷}) |
18 | 17 | eleq2d 2823 |
. . . . . 6
⊢ (𝐴 = 𝐷 → (𝐴 ∈ {𝐶, 𝐴} ↔ 𝐴 ∈ {𝐶, 𝐷})) |
19 | 16, 18 | syl5ibcom 248 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → (𝐴 = 𝐷 → 𝐴 ∈ {𝐶, 𝐷})) |
20 | | prid1g 4676 |
. . . . . . 7
⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ {𝐵, 𝐷}) |
21 | 20 | 3ad2ant2 1136 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → 𝐵 ∈ {𝐵, 𝐷}) |
22 | | preq1 4649 |
. . . . . . 7
⊢ (𝐵 = 𝐶 → {𝐵, 𝐷} = {𝐶, 𝐷}) |
23 | 22 | eleq2d 2823 |
. . . . . 6
⊢ (𝐵 = 𝐶 → (𝐵 ∈ {𝐵, 𝐷} ↔ 𝐵 ∈ {𝐶, 𝐷})) |
24 | 21, 23 | syl5ibcom 248 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → (𝐵 = 𝐶 → 𝐵 ∈ {𝐶, 𝐷})) |
25 | 19, 24 | anim12d 612 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ((𝐴 = 𝐷 ∧ 𝐵 = 𝐶) → (𝐴 ∈ {𝐶, 𝐷} ∧ 𝐵 ∈ {𝐶, 𝐷}))) |
26 | 14, 25 | jaod 859 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → (((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)) → (𝐴 ∈ {𝐶, 𝐷} ∧ 𝐵 ∈ {𝐶, 𝐷}))) |
27 | | elprg 4562 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐶, 𝐷} ↔ (𝐴 = 𝐶 ∨ 𝐴 = 𝐷))) |
28 | 27 | 3ad2ant1 1135 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → (𝐴 ∈ {𝐶, 𝐷} ↔ (𝐴 = 𝐶 ∨ 𝐴 = 𝐷))) |
29 | | elprg 4562 |
. . . . . 6
⊢ (𝐵 ∈ 𝑊 → (𝐵 ∈ {𝐶, 𝐷} ↔ (𝐵 = 𝐶 ∨ 𝐵 = 𝐷))) |
30 | 29 | 3ad2ant2 1136 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → (𝐵 ∈ {𝐶, 𝐷} ↔ (𝐵 = 𝐶 ∨ 𝐵 = 𝐷))) |
31 | 28, 30 | anbi12d 634 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ((𝐴 ∈ {𝐶, 𝐷} ∧ 𝐵 ∈ {𝐶, 𝐷}) ↔ ((𝐴 = 𝐶 ∨ 𝐴 = 𝐷) ∧ (𝐵 = 𝐶 ∨ 𝐵 = 𝐷)))) |
32 | | eqtr3 2763 |
. . . . . . . 8
⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐵) |
33 | | eqneqall 2951 |
. . . . . . . 8
⊢ (𝐴 = 𝐵 → (𝐴 ≠ 𝐵 → ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)))) |
34 | 32, 33 | syl 17 |
. . . . . . 7
⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → (𝐴 ≠ 𝐵 → ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)))) |
35 | | olc 868 |
. . . . . . . 8
⊢ ((𝐴 = 𝐷 ∧ 𝐵 = 𝐶) → ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶))) |
36 | 35 | a1d 25 |
. . . . . . 7
⊢ ((𝐴 = 𝐷 ∧ 𝐵 = 𝐶) → (𝐴 ≠ 𝐵 → ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)))) |
37 | | orc 867 |
. . . . . . . 8
⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶))) |
38 | 37 | a1d 25 |
. . . . . . 7
⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝐴 ≠ 𝐵 → ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)))) |
39 | | eqtr3 2763 |
. . . . . . . 8
⊢ ((𝐴 = 𝐷 ∧ 𝐵 = 𝐷) → 𝐴 = 𝐵) |
40 | 39, 33 | syl 17 |
. . . . . . 7
⊢ ((𝐴 = 𝐷 ∧ 𝐵 = 𝐷) → (𝐴 ≠ 𝐵 → ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)))) |
41 | 34, 36, 38, 40 | ccase 1038 |
. . . . . 6
⊢ (((𝐴 = 𝐶 ∨ 𝐴 = 𝐷) ∧ (𝐵 = 𝐶 ∨ 𝐵 = 𝐷)) → (𝐴 ≠ 𝐵 → ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)))) |
42 | 41 | com12 32 |
. . . . 5
⊢ (𝐴 ≠ 𝐵 → (((𝐴 = 𝐶 ∨ 𝐴 = 𝐷) ∧ (𝐵 = 𝐶 ∨ 𝐵 = 𝐷)) → ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)))) |
43 | 42 | 3ad2ant3 1137 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → (((𝐴 = 𝐶 ∨ 𝐴 = 𝐷) ∧ (𝐵 = 𝐶 ∨ 𝐵 = 𝐷)) → ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)))) |
44 | 31, 43 | sylbid 243 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ((𝐴 ∈ {𝐶, 𝐷} ∧ 𝐵 ∈ {𝐶, 𝐷}) → ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)))) |
45 | 26, 44 | impbid 215 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → (((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)) ↔ (𝐴 ∈ {𝐶, 𝐷} ∧ 𝐵 ∈ {𝐶, 𝐷}))) |
46 | 1, 45 | bitrd 282 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ (𝐴 ∈ {𝐶, 𝐷} ∧ 𝐵 ∈ {𝐶, 𝐷}))) |