MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0rppwr Structured version   Visualization version   GIF version

Theorem nn0rppwr 16531
Description: If 𝐴 and 𝐵 are relatively prime, then so are 𝐴𝑁 and 𝐵𝑁. rppwr 16530 extended to nonnegative integers. Less general than rpexp12i 16694. (Contributed by Steven Nguyen, 4-Apr-2023.)
Assertion
Ref Expression
nn0rppwr ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1))

Proof of Theorem nn0rppwr
StepHypRef Expression
1 elnn0 12444 . 2 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 elnn0 12444 . . . . 5 (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0))
3 elnn0 12444 . . . . 5 (𝐵 ∈ ℕ0 ↔ (𝐵 ∈ ℕ ∨ 𝐵 = 0))
4 rppwr 16530 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1))
543expia 1121 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝑁 ∈ ℕ → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1)))
6 simp1l 1198 . . . . . . . . . . 11 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → 𝐴 = 0)
76oveq1d 7402 . . . . . . . . . 10 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐴𝑁) = (0↑𝑁))
8 0exp 14062 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (0↑𝑁) = 0)
983ad2ant2 1134 . . . . . . . . . 10 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (0↑𝑁) = 0)
107, 9eqtrd 2764 . . . . . . . . 9 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐴𝑁) = 0)
116oveq1d 7402 . . . . . . . . . . . 12 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐴 gcd 𝐵) = (0 gcd 𝐵))
12 simp3 1138 . . . . . . . . . . . 12 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐴 gcd 𝐵) = 1)
13 simp1r 1199 . . . . . . . . . . . . 13 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → 𝐵 ∈ ℕ)
14 nnz 12550 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
15 gcd0id 16489 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℤ → (0 gcd 𝐵) = (abs‘𝐵))
1614, 15syl 17 . . . . . . . . . . . . . 14 (𝐵 ∈ ℕ → (0 gcd 𝐵) = (abs‘𝐵))
17 nnre 12193 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
18 0red 11177 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℕ → 0 ∈ ℝ)
19 nngt0 12217 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℕ → 0 < 𝐵)
2018, 17, 19ltled 11322 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℕ → 0 ≤ 𝐵)
2117, 20absidd 15389 . . . . . . . . . . . . . 14 (𝐵 ∈ ℕ → (abs‘𝐵) = 𝐵)
2216, 21eqtrd 2764 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ → (0 gcd 𝐵) = 𝐵)
2313, 22syl 17 . . . . . . . . . . . 12 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (0 gcd 𝐵) = 𝐵)
2411, 12, 233eqtr3rd 2773 . . . . . . . . . . 11 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → 𝐵 = 1)
2524oveq1d 7402 . . . . . . . . . 10 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐵𝑁) = (1↑𝑁))
26 nnz 12550 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
27263ad2ant2 1134 . . . . . . . . . . 11 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → 𝑁 ∈ ℤ)
28 1exp 14056 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (1↑𝑁) = 1)
2927, 28syl 17 . . . . . . . . . 10 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (1↑𝑁) = 1)
3025, 29eqtrd 2764 . . . . . . . . 9 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐵𝑁) = 1)
3110, 30oveq12d 7405 . . . . . . . 8 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴𝑁) gcd (𝐵𝑁)) = (0 gcd 1))
32 1z 12563 . . . . . . . . . 10 1 ∈ ℤ
33 gcd0id 16489 . . . . . . . . . 10 (1 ∈ ℤ → (0 gcd 1) = (abs‘1))
3432, 33ax-mp 5 . . . . . . . . 9 (0 gcd 1) = (abs‘1)
35 abs1 15263 . . . . . . . . 9 (abs‘1) = 1
3634, 35eqtri 2752 . . . . . . . 8 (0 gcd 1) = 1
3731, 36eqtrdi 2780 . . . . . . 7 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴𝑁) gcd (𝐵𝑁)) = 1)
38373exp 1119 . . . . . 6 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (𝑁 ∈ ℕ → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1)))
39 simp1r 1199 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → 𝐵 = 0)
4039oveq2d 7403 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐴 gcd 𝐵) = (𝐴 gcd 0))
41 simp3 1138 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐴 gcd 𝐵) = 1)
42 simp1l 1198 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → 𝐴 ∈ ℕ)
4342nnnn0d 12503 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → 𝐴 ∈ ℕ0)
44 nn0gcdid0 16491 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0 → (𝐴 gcd 0) = 𝐴)
4543, 44syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐴 gcd 0) = 𝐴)
4640, 41, 453eqtr3rd 2773 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → 𝐴 = 1)
4746oveq1d 7402 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐴𝑁) = (1↑𝑁))
48263ad2ant2 1134 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → 𝑁 ∈ ℤ)
4948, 28syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (1↑𝑁) = 1)
5047, 49eqtrd 2764 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐴𝑁) = 1)
5139oveq1d 7402 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐵𝑁) = (0↑𝑁))
5283ad2ant2 1134 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (0↑𝑁) = 0)
5351, 52eqtrd 2764 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐵𝑁) = 0)
5450, 53oveq12d 7405 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴𝑁) gcd (𝐵𝑁)) = (1 gcd 0))
55 1nn0 12458 . . . . . . . . 9 1 ∈ ℕ0
56 nn0gcdid0 16491 . . . . . . . . 9 (1 ∈ ℕ0 → (1 gcd 0) = 1)
5755, 56mp1i 13 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (1 gcd 0) = 1)
5854, 57eqtrd 2764 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴𝑁) gcd (𝐵𝑁)) = 1)
59583exp 1119 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 = 0) → (𝑁 ∈ ℕ → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1)))
60 oveq12 7396 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐴 gcd 𝐵) = (0 gcd 0))
61 gcd0val 16467 . . . . . . . . . . . 12 (0 gcd 0) = 0
62 0ne1 12257 . . . . . . . . . . . 12 0 ≠ 1
6361, 62eqnetri 2995 . . . . . . . . . . 11 (0 gcd 0) ≠ 1
6463a1i 11 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 = 0) → (0 gcd 0) ≠ 1)
6560, 64eqnetrd 2992 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐴 gcd 𝐵) ≠ 1)
6665neneqd 2930 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 = 0) → ¬ (𝐴 gcd 𝐵) = 1)
6766pm2.21d 121 . . . . . . 7 ((𝐴 = 0 ∧ 𝐵 = 0) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1))
6867a1d 25 . . . . . 6 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝑁 ∈ ℕ → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1)))
695, 38, 59, 68ccase 1037 . . . . 5 (((𝐴 ∈ ℕ ∨ 𝐴 = 0) ∧ (𝐵 ∈ ℕ ∨ 𝐵 = 0)) → (𝑁 ∈ ℕ → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1)))
702, 3, 69syl2anb 598 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝑁 ∈ ℕ → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1)))
71 oveq2 7395 . . . . . . . . . 10 (𝑁 = 0 → (𝐴𝑁) = (𝐴↑0))
72713ad2ant3 1135 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 = 0) → (𝐴𝑁) = (𝐴↑0))
73 nn0cn 12452 . . . . . . . . . . 11 (𝐴 ∈ ℕ0𝐴 ∈ ℂ)
74733ad2ant1 1133 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 = 0) → 𝐴 ∈ ℂ)
7574exp0d 14105 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 = 0) → (𝐴↑0) = 1)
7672, 75eqtrd 2764 . . . . . . . 8 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 = 0) → (𝐴𝑁) = 1)
77 oveq2 7395 . . . . . . . . . 10 (𝑁 = 0 → (𝐵𝑁) = (𝐵↑0))
78773ad2ant3 1135 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 = 0) → (𝐵𝑁) = (𝐵↑0))
79 nn0cn 12452 . . . . . . . . . . 11 (𝐵 ∈ ℕ0𝐵 ∈ ℂ)
80793ad2ant2 1134 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 = 0) → 𝐵 ∈ ℂ)
8180exp0d 14105 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 = 0) → (𝐵↑0) = 1)
8278, 81eqtrd 2764 . . . . . . . 8 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 = 0) → (𝐵𝑁) = 1)
8376, 82oveq12d 7405 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 = 0) → ((𝐴𝑁) gcd (𝐵𝑁)) = (1 gcd 1))
84 1gcd 16503 . . . . . . . 8 (1 ∈ ℤ → (1 gcd 1) = 1)
8532, 84mp1i 13 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 = 0) → (1 gcd 1) = 1)
8683, 85eqtrd 2764 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 = 0) → ((𝐴𝑁) gcd (𝐵𝑁)) = 1)
87863expia 1121 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝑁 = 0 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1))
8887a1dd 50 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝑁 = 0 → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1)))
8970, 88jaod 859 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1)))
90893impia 1117 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1))
911, 90syl3an3b 1407 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cfv 6511  (class class class)co 7387  cc 11066  0cc0 11068  1c1 11069  cn 12186  0cn0 12442  cz 12529  cexp 14026  abscabs 15200   gcd cgcd 16464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223  df-gcd 16465
This theorem is referenced by:  expgcd  16533
  Copyright terms: Public domain W3C validator