Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nn0rppwr Structured version   Visualization version   GIF version

Theorem nn0rppwr 40333
Description: If 𝐴 and 𝐵 are relatively prime, then so are 𝐴𝑁 and 𝐵𝑁. rppwr 16269 extended to nonnegative integers. Less general than rpexp12i 16429. (Contributed by Steven Nguyen, 4-Apr-2023.)
Assertion
Ref Expression
nn0rppwr ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1))

Proof of Theorem nn0rppwr
StepHypRef Expression
1 elnn0 12235 . 2 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 elnn0 12235 . . . . 5 (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0))
3 elnn0 12235 . . . . 5 (𝐵 ∈ ℕ0 ↔ (𝐵 ∈ ℕ ∨ 𝐵 = 0))
4 rppwr 16269 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1))
543expia 1120 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝑁 ∈ ℕ → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1)))
6 simp1l 1196 . . . . . . . . . . 11 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → 𝐴 = 0)
76oveq1d 7290 . . . . . . . . . 10 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐴𝑁) = (0↑𝑁))
8 0exp 13818 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (0↑𝑁) = 0)
983ad2ant2 1133 . . . . . . . . . 10 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (0↑𝑁) = 0)
107, 9eqtrd 2778 . . . . . . . . 9 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐴𝑁) = 0)
116oveq1d 7290 . . . . . . . . . . . 12 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐴 gcd 𝐵) = (0 gcd 𝐵))
12 simp3 1137 . . . . . . . . . . . 12 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐴 gcd 𝐵) = 1)
13 simp1r 1197 . . . . . . . . . . . . 13 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → 𝐵 ∈ ℕ)
14 nnz 12342 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
15 gcd0id 16226 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℤ → (0 gcd 𝐵) = (abs‘𝐵))
1614, 15syl 17 . . . . . . . . . . . . . 14 (𝐵 ∈ ℕ → (0 gcd 𝐵) = (abs‘𝐵))
17 nnre 11980 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
18 0red 10978 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℕ → 0 ∈ ℝ)
19 nngt0 12004 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℕ → 0 < 𝐵)
2018, 17, 19ltled 11123 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℕ → 0 ≤ 𝐵)
2117, 20absidd 15134 . . . . . . . . . . . . . 14 (𝐵 ∈ ℕ → (abs‘𝐵) = 𝐵)
2216, 21eqtrd 2778 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ → (0 gcd 𝐵) = 𝐵)
2313, 22syl 17 . . . . . . . . . . . 12 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (0 gcd 𝐵) = 𝐵)
2411, 12, 233eqtr3rd 2787 . . . . . . . . . . 11 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → 𝐵 = 1)
2524oveq1d 7290 . . . . . . . . . 10 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐵𝑁) = (1↑𝑁))
26 nnz 12342 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
27263ad2ant2 1133 . . . . . . . . . . 11 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → 𝑁 ∈ ℤ)
28 1exp 13812 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (1↑𝑁) = 1)
2927, 28syl 17 . . . . . . . . . 10 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (1↑𝑁) = 1)
3025, 29eqtrd 2778 . . . . . . . . 9 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐵𝑁) = 1)
3110, 30oveq12d 7293 . . . . . . . 8 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴𝑁) gcd (𝐵𝑁)) = (0 gcd 1))
32 1z 12350 . . . . . . . . . 10 1 ∈ ℤ
33 gcd0id 16226 . . . . . . . . . 10 (1 ∈ ℤ → (0 gcd 1) = (abs‘1))
3432, 33ax-mp 5 . . . . . . . . 9 (0 gcd 1) = (abs‘1)
35 abs1 15009 . . . . . . . . 9 (abs‘1) = 1
3634, 35eqtri 2766 . . . . . . . 8 (0 gcd 1) = 1
3731, 36eqtrdi 2794 . . . . . . 7 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴𝑁) gcd (𝐵𝑁)) = 1)
38373exp 1118 . . . . . 6 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (𝑁 ∈ ℕ → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1)))
39 simp1r 1197 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → 𝐵 = 0)
4039oveq2d 7291 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐴 gcd 𝐵) = (𝐴 gcd 0))
41 simp3 1137 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐴 gcd 𝐵) = 1)
42 simp1l 1196 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → 𝐴 ∈ ℕ)
4342nnnn0d 12293 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → 𝐴 ∈ ℕ0)
44 nn0gcdid0 16228 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0 → (𝐴 gcd 0) = 𝐴)
4543, 44syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐴 gcd 0) = 𝐴)
4640, 41, 453eqtr3rd 2787 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → 𝐴 = 1)
4746oveq1d 7290 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐴𝑁) = (1↑𝑁))
48263ad2ant2 1133 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → 𝑁 ∈ ℤ)
4948, 28syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (1↑𝑁) = 1)
5047, 49eqtrd 2778 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐴𝑁) = 1)
5139oveq1d 7290 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐵𝑁) = (0↑𝑁))
5283ad2ant2 1133 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (0↑𝑁) = 0)
5351, 52eqtrd 2778 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐵𝑁) = 0)
5450, 53oveq12d 7293 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴𝑁) gcd (𝐵𝑁)) = (1 gcd 0))
55 1nn0 12249 . . . . . . . . 9 1 ∈ ℕ0
56 nn0gcdid0 16228 . . . . . . . . 9 (1 ∈ ℕ0 → (1 gcd 0) = 1)
5755, 56mp1i 13 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (1 gcd 0) = 1)
5854, 57eqtrd 2778 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴𝑁) gcd (𝐵𝑁)) = 1)
59583exp 1118 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 = 0) → (𝑁 ∈ ℕ → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1)))
60 oveq12 7284 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐴 gcd 𝐵) = (0 gcd 0))
61 gcd0val 16204 . . . . . . . . . . . 12 (0 gcd 0) = 0
62 0ne1 12044 . . . . . . . . . . . 12 0 ≠ 1
6361, 62eqnetri 3014 . . . . . . . . . . 11 (0 gcd 0) ≠ 1
6463a1i 11 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 = 0) → (0 gcd 0) ≠ 1)
6560, 64eqnetrd 3011 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐴 gcd 𝐵) ≠ 1)
6665neneqd 2948 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 = 0) → ¬ (𝐴 gcd 𝐵) = 1)
6766pm2.21d 121 . . . . . . 7 ((𝐴 = 0 ∧ 𝐵 = 0) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1))
6867a1d 25 . . . . . 6 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝑁 ∈ ℕ → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1)))
695, 38, 59, 68ccase 1035 . . . . 5 (((𝐴 ∈ ℕ ∨ 𝐴 = 0) ∧ (𝐵 ∈ ℕ ∨ 𝐵 = 0)) → (𝑁 ∈ ℕ → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1)))
702, 3, 69syl2anb 598 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝑁 ∈ ℕ → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1)))
71 oveq2 7283 . . . . . . . . . 10 (𝑁 = 0 → (𝐴𝑁) = (𝐴↑0))
72713ad2ant3 1134 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 = 0) → (𝐴𝑁) = (𝐴↑0))
73 nn0cn 12243 . . . . . . . . . . 11 (𝐴 ∈ ℕ0𝐴 ∈ ℂ)
74733ad2ant1 1132 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 = 0) → 𝐴 ∈ ℂ)
7574exp0d 13858 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 = 0) → (𝐴↑0) = 1)
7672, 75eqtrd 2778 . . . . . . . 8 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 = 0) → (𝐴𝑁) = 1)
77 oveq2 7283 . . . . . . . . . 10 (𝑁 = 0 → (𝐵𝑁) = (𝐵↑0))
78773ad2ant3 1134 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 = 0) → (𝐵𝑁) = (𝐵↑0))
79 nn0cn 12243 . . . . . . . . . . 11 (𝐵 ∈ ℕ0𝐵 ∈ ℂ)
80793ad2ant2 1133 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 = 0) → 𝐵 ∈ ℂ)
8180exp0d 13858 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 = 0) → (𝐵↑0) = 1)
8278, 81eqtrd 2778 . . . . . . . 8 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 = 0) → (𝐵𝑁) = 1)
8376, 82oveq12d 7293 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 = 0) → ((𝐴𝑁) gcd (𝐵𝑁)) = (1 gcd 1))
84 1gcd 16241 . . . . . . . 8 (1 ∈ ℤ → (1 gcd 1) = 1)
8532, 84mp1i 13 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 = 0) → (1 gcd 1) = 1)
8683, 85eqtrd 2778 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 = 0) → ((𝐴𝑁) gcd (𝐵𝑁)) = 1)
87863expia 1120 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝑁 = 0 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1))
8887a1dd 50 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝑁 = 0 → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1)))
8970, 88jaod 856 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1)))
90893impia 1116 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1))
911, 90syl3an3b 1404 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943  cfv 6433  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872  cn 11973  0cn0 12233  cz 12319  cexp 13782  abscabs 14945   gcd cgcd 16201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-dvds 15964  df-gcd 16202
This theorem is referenced by:  expgcd  40334
  Copyright terms: Public domain W3C validator