MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0rppwr Structured version   Visualization version   GIF version

Theorem nn0rppwr 16608
Description: If 𝐴 and 𝐵 are relatively prime, then so are 𝐴𝑁 and 𝐵𝑁. rppwr 16607 extended to nonnegative integers. Less general than rpexp12i 16771. (Contributed by Steven Nguyen, 4-Apr-2023.)
Assertion
Ref Expression
nn0rppwr ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1))

Proof of Theorem nn0rppwr
StepHypRef Expression
1 elnn0 12555 . 2 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 elnn0 12555 . . . . 5 (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0))
3 elnn0 12555 . . . . 5 (𝐵 ∈ ℕ0 ↔ (𝐵 ∈ ℕ ∨ 𝐵 = 0))
4 rppwr 16607 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1))
543expia 1121 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝑁 ∈ ℕ → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1)))
6 simp1l 1197 . . . . . . . . . . 11 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → 𝐴 = 0)
76oveq1d 7463 . . . . . . . . . 10 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐴𝑁) = (0↑𝑁))
8 0exp 14148 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (0↑𝑁) = 0)
983ad2ant2 1134 . . . . . . . . . 10 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (0↑𝑁) = 0)
107, 9eqtrd 2780 . . . . . . . . 9 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐴𝑁) = 0)
116oveq1d 7463 . . . . . . . . . . . 12 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐴 gcd 𝐵) = (0 gcd 𝐵))
12 simp3 1138 . . . . . . . . . . . 12 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐴 gcd 𝐵) = 1)
13 simp1r 1198 . . . . . . . . . . . . 13 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → 𝐵 ∈ ℕ)
14 nnz 12660 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
15 gcd0id 16565 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℤ → (0 gcd 𝐵) = (abs‘𝐵))
1614, 15syl 17 . . . . . . . . . . . . . 14 (𝐵 ∈ ℕ → (0 gcd 𝐵) = (abs‘𝐵))
17 nnre 12300 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
18 0red 11293 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℕ → 0 ∈ ℝ)
19 nngt0 12324 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℕ → 0 < 𝐵)
2018, 17, 19ltled 11438 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℕ → 0 ≤ 𝐵)
2117, 20absidd 15471 . . . . . . . . . . . . . 14 (𝐵 ∈ ℕ → (abs‘𝐵) = 𝐵)
2216, 21eqtrd 2780 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ → (0 gcd 𝐵) = 𝐵)
2313, 22syl 17 . . . . . . . . . . . 12 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (0 gcd 𝐵) = 𝐵)
2411, 12, 233eqtr3rd 2789 . . . . . . . . . . 11 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → 𝐵 = 1)
2524oveq1d 7463 . . . . . . . . . 10 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐵𝑁) = (1↑𝑁))
26 nnz 12660 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
27263ad2ant2 1134 . . . . . . . . . . 11 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → 𝑁 ∈ ℤ)
28 1exp 14142 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (1↑𝑁) = 1)
2927, 28syl 17 . . . . . . . . . 10 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (1↑𝑁) = 1)
3025, 29eqtrd 2780 . . . . . . . . 9 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐵𝑁) = 1)
3110, 30oveq12d 7466 . . . . . . . 8 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴𝑁) gcd (𝐵𝑁)) = (0 gcd 1))
32 1z 12673 . . . . . . . . . 10 1 ∈ ℤ
33 gcd0id 16565 . . . . . . . . . 10 (1 ∈ ℤ → (0 gcd 1) = (abs‘1))
3432, 33ax-mp 5 . . . . . . . . 9 (0 gcd 1) = (abs‘1)
35 abs1 15346 . . . . . . . . 9 (abs‘1) = 1
3634, 35eqtri 2768 . . . . . . . 8 (0 gcd 1) = 1
3731, 36eqtrdi 2796 . . . . . . 7 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴𝑁) gcd (𝐵𝑁)) = 1)
38373exp 1119 . . . . . 6 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (𝑁 ∈ ℕ → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1)))
39 simp1r 1198 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → 𝐵 = 0)
4039oveq2d 7464 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐴 gcd 𝐵) = (𝐴 gcd 0))
41 simp3 1138 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐴 gcd 𝐵) = 1)
42 simp1l 1197 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → 𝐴 ∈ ℕ)
4342nnnn0d 12613 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → 𝐴 ∈ ℕ0)
44 nn0gcdid0 16567 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0 → (𝐴 gcd 0) = 𝐴)
4543, 44syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐴 gcd 0) = 𝐴)
4640, 41, 453eqtr3rd 2789 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → 𝐴 = 1)
4746oveq1d 7463 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐴𝑁) = (1↑𝑁))
48263ad2ant2 1134 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → 𝑁 ∈ ℤ)
4948, 28syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (1↑𝑁) = 1)
5047, 49eqtrd 2780 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐴𝑁) = 1)
5139oveq1d 7463 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐵𝑁) = (0↑𝑁))
5283ad2ant2 1134 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (0↑𝑁) = 0)
5351, 52eqtrd 2780 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐵𝑁) = 0)
5450, 53oveq12d 7466 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴𝑁) gcd (𝐵𝑁)) = (1 gcd 0))
55 1nn0 12569 . . . . . . . . 9 1 ∈ ℕ0
56 nn0gcdid0 16567 . . . . . . . . 9 (1 ∈ ℕ0 → (1 gcd 0) = 1)
5755, 56mp1i 13 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (1 gcd 0) = 1)
5854, 57eqtrd 2780 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴𝑁) gcd (𝐵𝑁)) = 1)
59583exp 1119 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 = 0) → (𝑁 ∈ ℕ → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1)))
60 oveq12 7457 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐴 gcd 𝐵) = (0 gcd 0))
61 gcd0val 16543 . . . . . . . . . . . 12 (0 gcd 0) = 0
62 0ne1 12364 . . . . . . . . . . . 12 0 ≠ 1
6361, 62eqnetri 3017 . . . . . . . . . . 11 (0 gcd 0) ≠ 1
6463a1i 11 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 = 0) → (0 gcd 0) ≠ 1)
6560, 64eqnetrd 3014 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐴 gcd 𝐵) ≠ 1)
6665neneqd 2951 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 = 0) → ¬ (𝐴 gcd 𝐵) = 1)
6766pm2.21d 121 . . . . . . 7 ((𝐴 = 0 ∧ 𝐵 = 0) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1))
6867a1d 25 . . . . . 6 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝑁 ∈ ℕ → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1)))
695, 38, 59, 68ccase 1038 . . . . 5 (((𝐴 ∈ ℕ ∨ 𝐴 = 0) ∧ (𝐵 ∈ ℕ ∨ 𝐵 = 0)) → (𝑁 ∈ ℕ → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1)))
702, 3, 69syl2anb 597 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝑁 ∈ ℕ → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1)))
71 oveq2 7456 . . . . . . . . . 10 (𝑁 = 0 → (𝐴𝑁) = (𝐴↑0))
72713ad2ant3 1135 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 = 0) → (𝐴𝑁) = (𝐴↑0))
73 nn0cn 12563 . . . . . . . . . . 11 (𝐴 ∈ ℕ0𝐴 ∈ ℂ)
74733ad2ant1 1133 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 = 0) → 𝐴 ∈ ℂ)
7574exp0d 14190 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 = 0) → (𝐴↑0) = 1)
7672, 75eqtrd 2780 . . . . . . . 8 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 = 0) → (𝐴𝑁) = 1)
77 oveq2 7456 . . . . . . . . . 10 (𝑁 = 0 → (𝐵𝑁) = (𝐵↑0))
78773ad2ant3 1135 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 = 0) → (𝐵𝑁) = (𝐵↑0))
79 nn0cn 12563 . . . . . . . . . . 11 (𝐵 ∈ ℕ0𝐵 ∈ ℂ)
80793ad2ant2 1134 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 = 0) → 𝐵 ∈ ℂ)
8180exp0d 14190 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 = 0) → (𝐵↑0) = 1)
8278, 81eqtrd 2780 . . . . . . . 8 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 = 0) → (𝐵𝑁) = 1)
8376, 82oveq12d 7466 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 = 0) → ((𝐴𝑁) gcd (𝐵𝑁)) = (1 gcd 1))
84 1gcd 16580 . . . . . . . 8 (1 ∈ ℤ → (1 gcd 1) = 1)
8532, 84mp1i 13 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 = 0) → (1 gcd 1) = 1)
8683, 85eqtrd 2780 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 = 0) → ((𝐴𝑁) gcd (𝐵𝑁)) = 1)
87863expia 1121 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝑁 = 0 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1))
8887a1dd 50 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝑁 = 0 → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1)))
8970, 88jaod 858 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1)))
90893impia 1117 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1))
911, 90syl3an3b 1405 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wne 2946  cfv 6573  (class class class)co 7448  cc 11182  0cc0 11184  1c1 11185  cn 12293  0cn0 12553  cz 12639  cexp 14112  abscabs 15283   gcd cgcd 16540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-gcd 16541
This theorem is referenced by:  expgcd  16610
  Copyright terms: Public domain W3C validator