Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nn0rppwr Structured version   Visualization version   GIF version

Theorem nn0rppwr 39189
Description: If 𝐴 and 𝐵 are relatively prime, then so are 𝐴𝑁 and 𝐵𝑁. rppwr 15910 extended to nonnegative integers. (Contributed by Steven Nguyen, 4-Apr-2023.)
Assertion
Ref Expression
nn0rppwr ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1))

Proof of Theorem nn0rppwr
StepHypRef Expression
1 elnn0 11902 . 2 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 elnn0 11902 . . . . 5 (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0))
3 elnn0 11902 . . . . 5 (𝐵 ∈ ℕ0 ↔ (𝐵 ∈ ℕ ∨ 𝐵 = 0))
4 rppwr 15910 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1))
543expia 1117 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝑁 ∈ ℕ → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1)))
6 simp1l 1193 . . . . . . . . . . 11 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → 𝐴 = 0)
76oveq1d 7173 . . . . . . . . . 10 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐴𝑁) = (0↑𝑁))
8 0exp 13467 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (0↑𝑁) = 0)
983ad2ant2 1130 . . . . . . . . . 10 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (0↑𝑁) = 0)
107, 9eqtrd 2858 . . . . . . . . 9 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐴𝑁) = 0)
116oveq1d 7173 . . . . . . . . . . . 12 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐴 gcd 𝐵) = (0 gcd 𝐵))
12 simp3 1134 . . . . . . . . . . . 12 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐴 gcd 𝐵) = 1)
13 simp1r 1194 . . . . . . . . . . . . 13 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → 𝐵 ∈ ℕ)
14 nnz 12007 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
15 gcd0id 15869 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℤ → (0 gcd 𝐵) = (abs‘𝐵))
1614, 15syl 17 . . . . . . . . . . . . . 14 (𝐵 ∈ ℕ → (0 gcd 𝐵) = (abs‘𝐵))
17 nnre 11647 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
18 0red 10646 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℕ → 0 ∈ ℝ)
19 nngt0 11671 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℕ → 0 < 𝐵)
2018, 17, 19ltled 10790 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℕ → 0 ≤ 𝐵)
2117, 20absidd 14784 . . . . . . . . . . . . . 14 (𝐵 ∈ ℕ → (abs‘𝐵) = 𝐵)
2216, 21eqtrd 2858 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ → (0 gcd 𝐵) = 𝐵)
2313, 22syl 17 . . . . . . . . . . . 12 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (0 gcd 𝐵) = 𝐵)
2411, 12, 233eqtr3rd 2867 . . . . . . . . . . 11 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → 𝐵 = 1)
2524oveq1d 7173 . . . . . . . . . 10 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐵𝑁) = (1↑𝑁))
26 nnz 12007 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
27263ad2ant2 1130 . . . . . . . . . . 11 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → 𝑁 ∈ ℤ)
28 1exp 13461 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (1↑𝑁) = 1)
2927, 28syl 17 . . . . . . . . . 10 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (1↑𝑁) = 1)
3025, 29eqtrd 2858 . . . . . . . . 9 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐵𝑁) = 1)
3110, 30oveq12d 7176 . . . . . . . 8 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴𝑁) gcd (𝐵𝑁)) = (0 gcd 1))
32 1z 12015 . . . . . . . . . 10 1 ∈ ℤ
33 gcd0id 15869 . . . . . . . . . 10 (1 ∈ ℤ → (0 gcd 1) = (abs‘1))
3432, 33ax-mp 5 . . . . . . . . 9 (0 gcd 1) = (abs‘1)
35 abs1 14659 . . . . . . . . 9 (abs‘1) = 1
3634, 35eqtri 2846 . . . . . . . 8 (0 gcd 1) = 1
3731, 36syl6eq 2874 . . . . . . 7 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴𝑁) gcd (𝐵𝑁)) = 1)
38373exp 1115 . . . . . 6 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (𝑁 ∈ ℕ → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1)))
39 simp1r 1194 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → 𝐵 = 0)
4039oveq2d 7174 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐴 gcd 𝐵) = (𝐴 gcd 0))
41 simp3 1134 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐴 gcd 𝐵) = 1)
42 simp1l 1193 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → 𝐴 ∈ ℕ)
4342nnnn0d 11958 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → 𝐴 ∈ ℕ0)
44 nn0gcdid0 15871 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0 → (𝐴 gcd 0) = 𝐴)
4543, 44syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐴 gcd 0) = 𝐴)
4640, 41, 453eqtr3rd 2867 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → 𝐴 = 1)
4746oveq1d 7173 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐴𝑁) = (1↑𝑁))
48263ad2ant2 1130 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → 𝑁 ∈ ℤ)
4948, 28syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (1↑𝑁) = 1)
5047, 49eqtrd 2858 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐴𝑁) = 1)
5139oveq1d 7173 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐵𝑁) = (0↑𝑁))
5283ad2ant2 1130 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (0↑𝑁) = 0)
5351, 52eqtrd 2858 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐵𝑁) = 0)
5450, 53oveq12d 7176 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴𝑁) gcd (𝐵𝑁)) = (1 gcd 0))
55 1nn0 11916 . . . . . . . . 9 1 ∈ ℕ0
56 nn0gcdid0 15871 . . . . . . . . 9 (1 ∈ ℕ0 → (1 gcd 0) = 1)
5755, 56mp1i 13 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (1 gcd 0) = 1)
5854, 57eqtrd 2858 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴𝑁) gcd (𝐵𝑁)) = 1)
59583exp 1115 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 = 0) → (𝑁 ∈ ℕ → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1)))
60 oveq12 7167 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐴 gcd 𝐵) = (0 gcd 0))
61 gcd0val 15848 . . . . . . . . . . . 12 (0 gcd 0) = 0
62 0ne1 11711 . . . . . . . . . . . 12 0 ≠ 1
6361, 62eqnetri 3088 . . . . . . . . . . 11 (0 gcd 0) ≠ 1
6463a1i 11 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 = 0) → (0 gcd 0) ≠ 1)
6560, 64eqnetrd 3085 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐴 gcd 𝐵) ≠ 1)
6665neneqd 3023 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 = 0) → ¬ (𝐴 gcd 𝐵) = 1)
6766pm2.21d 121 . . . . . . 7 ((𝐴 = 0 ∧ 𝐵 = 0) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1))
6867a1d 25 . . . . . 6 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝑁 ∈ ℕ → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1)))
695, 38, 59, 68ccase 1032 . . . . 5 (((𝐴 ∈ ℕ ∨ 𝐴 = 0) ∧ (𝐵 ∈ ℕ ∨ 𝐵 = 0)) → (𝑁 ∈ ℕ → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1)))
702, 3, 69syl2anb 599 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝑁 ∈ ℕ → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1)))
71 oveq2 7166 . . . . . . . . . 10 (𝑁 = 0 → (𝐴𝑁) = (𝐴↑0))
72713ad2ant3 1131 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 = 0) → (𝐴𝑁) = (𝐴↑0))
73 nn0cn 11910 . . . . . . . . . . 11 (𝐴 ∈ ℕ0𝐴 ∈ ℂ)
74733ad2ant1 1129 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 = 0) → 𝐴 ∈ ℂ)
7574exp0d 13507 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 = 0) → (𝐴↑0) = 1)
7672, 75eqtrd 2858 . . . . . . . 8 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 = 0) → (𝐴𝑁) = 1)
77 oveq2 7166 . . . . . . . . . 10 (𝑁 = 0 → (𝐵𝑁) = (𝐵↑0))
78773ad2ant3 1131 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 = 0) → (𝐵𝑁) = (𝐵↑0))
79 nn0cn 11910 . . . . . . . . . . 11 (𝐵 ∈ ℕ0𝐵 ∈ ℂ)
80793ad2ant2 1130 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 = 0) → 𝐵 ∈ ℂ)
8180exp0d 13507 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 = 0) → (𝐵↑0) = 1)
8278, 81eqtrd 2858 . . . . . . . 8 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 = 0) → (𝐵𝑁) = 1)
8376, 82oveq12d 7176 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 = 0) → ((𝐴𝑁) gcd (𝐵𝑁)) = (1 gcd 1))
84 1gcd 15883 . . . . . . . 8 (1 ∈ ℤ → (1 gcd 1) = 1)
8532, 84mp1i 13 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 = 0) → (1 gcd 1) = 1)
8683, 85eqtrd 2858 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 = 0) → ((𝐴𝑁) gcd (𝐵𝑁)) = 1)
87863expia 1117 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝑁 = 0 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1))
8887a1dd 50 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝑁 = 0 → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1)))
8970, 88jaod 855 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1)))
90893impia 1113 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1))
911, 90syl3an3b 1401 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  wne 3018  cfv 6357  (class class class)co 7158  cc 10537  0cc0 10539  1c1 10540  cn 11640  0cn0 11900  cz 11984  cexp 13432  abscabs 14595   gcd cgcd 15845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-dvds 15610  df-gcd 15846
This theorem is referenced by:  expgcd  39190
  Copyright terms: Public domain W3C validator