Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zaddcom Structured version   Visualization version   GIF version

Theorem zaddcom 42437
Description: Addition is commutative for integers. Proven without ax-mulcom 11073. (Contributed by SN, 25-Jan-2025.)
Assertion
Ref Expression
zaddcom ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))

Proof of Theorem zaddcom
StepHypRef Expression
1 reelznn0nn 42434 . 2 (𝐴 ∈ ℤ ↔ (𝐴 ∈ ℕ0 ∨ (𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ)))
2 reelznn0nn 42434 . 2 (𝐵 ∈ ℤ ↔ (𝐵 ∈ ℕ0 ∨ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)))
3 nn0addcom 42435 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
4 zaddcomlem 42436 . . 3 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
5 zaddcomlem 42436 . . . . 5 (((𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ) ∧ 𝐴 ∈ ℕ0) → (𝐵 + 𝐴) = (𝐴 + 𝐵))
65eqcomd 2735 . . . 4 (((𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ) ∧ 𝐴 ∈ ℕ0) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
76ancoms 458 . . 3 ((𝐴 ∈ ℕ0 ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
8 renegid2 42387 . . . . . . . 8 (𝐵 ∈ ℝ → ((0 − 𝐵) + 𝐵) = 0)
98ad2antrl 728 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → ((0 − 𝐵) + 𝐵) = 0)
10 renegid2 42387 . . . . . . . . . . 11 (𝐴 ∈ ℝ → ((0 − 𝐴) + 𝐴) = 0)
1110ad2antrr 726 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → ((0 − 𝐴) + 𝐴) = 0)
1211oveq1d 7364 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (((0 − 𝐴) + 𝐴) + 𝐵) = (0 + 𝐵))
13 simplr 768 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (0 − 𝐴) ∈ ℕ)
1413nncnd 12144 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (0 − 𝐴) ∈ ℂ)
15 simpll 766 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → 𝐴 ∈ ℝ)
1615recnd 11143 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → 𝐴 ∈ ℂ)
17 simprl 770 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → 𝐵 ∈ ℝ)
1817recnd 11143 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → 𝐵 ∈ ℂ)
1914, 16, 18addassd 11137 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (((0 − 𝐴) + 𝐴) + 𝐵) = ((0 − 𝐴) + (𝐴 + 𝐵)))
20 readdlid 42376 . . . . . . . . . 10 (𝐵 ∈ ℝ → (0 + 𝐵) = 𝐵)
2120ad2antrl 728 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (0 + 𝐵) = 𝐵)
2212, 19, 213eqtr3d 2772 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → ((0 − 𝐴) + (𝐴 + 𝐵)) = 𝐵)
2322oveq2d 7365 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → ((0 − 𝐵) + ((0 − 𝐴) + (𝐴 + 𝐵))) = ((0 − 𝐵) + 𝐵))
249, 23, 113eqtr4d 2774 . . . . . 6 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → ((0 − 𝐵) + ((0 − 𝐴) + (𝐴 + 𝐵))) = ((0 − 𝐴) + 𝐴))
25 simprr 772 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (0 − 𝐵) ∈ ℕ)
2625nncnd 12144 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (0 − 𝐵) ∈ ℂ)
2716, 18addcld 11134 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (𝐴 + 𝐵) ∈ ℂ)
2826, 14, 27addassd 11137 . . . . . 6 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (((0 − 𝐵) + (0 − 𝐴)) + (𝐴 + 𝐵)) = ((0 − 𝐵) + ((0 − 𝐴) + (𝐴 + 𝐵))))
299oveq1d 7364 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (((0 − 𝐵) + 𝐵) + 𝐴) = (0 + 𝐴))
3026, 18, 16addassd 11137 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (((0 − 𝐵) + 𝐵) + 𝐴) = ((0 − 𝐵) + (𝐵 + 𝐴)))
31 readdlid 42376 . . . . . . . . 9 (𝐴 ∈ ℝ → (0 + 𝐴) = 𝐴)
3231ad2antrr 726 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (0 + 𝐴) = 𝐴)
3329, 30, 323eqtr3d 2772 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → ((0 − 𝐵) + (𝐵 + 𝐴)) = 𝐴)
3433oveq2d 7365 . . . . . 6 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → ((0 − 𝐴) + ((0 − 𝐵) + (𝐵 + 𝐴))) = ((0 − 𝐴) + 𝐴))
3524, 28, 343eqtr4d 2774 . . . . 5 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (((0 − 𝐵) + (0 − 𝐴)) + (𝐴 + 𝐵)) = ((0 − 𝐴) + ((0 − 𝐵) + (𝐵 + 𝐴))))
36 nnaddcom 42241 . . . . . . 7 (((0 − 𝐴) ∈ ℕ ∧ (0 − 𝐵) ∈ ℕ) → ((0 − 𝐴) + (0 − 𝐵)) = ((0 − 𝐵) + (0 − 𝐴)))
3736ad2ant2l 746 . . . . . 6 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → ((0 − 𝐴) + (0 − 𝐵)) = ((0 − 𝐵) + (0 − 𝐴)))
3837oveq1d 7364 . . . . 5 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (((0 − 𝐴) + (0 − 𝐵)) + (𝐴 + 𝐵)) = (((0 − 𝐵) + (0 − 𝐴)) + (𝐴 + 𝐵)))
3918, 16addcld 11134 . . . . . 6 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (𝐵 + 𝐴) ∈ ℂ)
4014, 26, 39addassd 11137 . . . . 5 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (((0 − 𝐴) + (0 − 𝐵)) + (𝐵 + 𝐴)) = ((0 − 𝐴) + ((0 − 𝐵) + (𝐵 + 𝐴))))
4135, 38, 403eqtr4d 2774 . . . 4 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (((0 − 𝐴) + (0 − 𝐵)) + (𝐴 + 𝐵)) = (((0 − 𝐴) + (0 − 𝐵)) + (𝐵 + 𝐴)))
4213, 25nnaddcld 12180 . . . . . 6 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → ((0 − 𝐴) + (0 − 𝐵)) ∈ ℕ)
4342nncnd 12144 . . . . 5 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → ((0 − 𝐴) + (0 − 𝐵)) ∈ ℂ)
4443, 27, 39sn-addcand 42393 . . . 4 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → ((((0 − 𝐴) + (0 − 𝐵)) + (𝐴 + 𝐵)) = (((0 − 𝐴) + (0 − 𝐵)) + (𝐵 + 𝐴)) ↔ (𝐴 + 𝐵) = (𝐵 + 𝐴)))
4541, 44mpbid 232 . . 3 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
463, 4, 7, 45ccase 1037 . 2 (((𝐴 ∈ ℕ0 ∨ (𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ)) ∧ (𝐵 ∈ ℕ0 ∨ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ))) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
471, 2, 46syl2anb 598 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  (class class class)co 7349  cr 11008  0cc0 11009   + caddc 11012  cn 12128  0cn0 12384  cz 12471   cresub 42338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-ltxr 11154  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-resub 42339
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator