Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zaddcom Structured version   Visualization version   GIF version

Theorem zaddcom 42505
Description: Addition is commutative for integers. Proven without ax-mulcom 11070. (Contributed by SN, 25-Jan-2025.)
Assertion
Ref Expression
zaddcom ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))

Proof of Theorem zaddcom
StepHypRef Expression
1 reelznn0nn 42502 . 2 (𝐴 ∈ ℤ ↔ (𝐴 ∈ ℕ0 ∨ (𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ)))
2 reelznn0nn 42502 . 2 (𝐵 ∈ ℤ ↔ (𝐵 ∈ ℕ0 ∨ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)))
3 nn0addcom 42503 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
4 zaddcomlem 42504 . . 3 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
5 zaddcomlem 42504 . . . . 5 (((𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ) ∧ 𝐴 ∈ ℕ0) → (𝐵 + 𝐴) = (𝐴 + 𝐵))
65eqcomd 2737 . . . 4 (((𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ) ∧ 𝐴 ∈ ℕ0) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
76ancoms 458 . . 3 ((𝐴 ∈ ℕ0 ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
8 renegid2 42455 . . . . . . . 8 (𝐵 ∈ ℝ → ((0 − 𝐵) + 𝐵) = 0)
98ad2antrl 728 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → ((0 − 𝐵) + 𝐵) = 0)
10 renegid2 42455 . . . . . . . . . . 11 (𝐴 ∈ ℝ → ((0 − 𝐴) + 𝐴) = 0)
1110ad2antrr 726 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → ((0 − 𝐴) + 𝐴) = 0)
1211oveq1d 7361 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (((0 − 𝐴) + 𝐴) + 𝐵) = (0 + 𝐵))
13 simplr 768 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (0 − 𝐴) ∈ ℕ)
1413nncnd 12141 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (0 − 𝐴) ∈ ℂ)
15 simpll 766 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → 𝐴 ∈ ℝ)
1615recnd 11140 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → 𝐴 ∈ ℂ)
17 simprl 770 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → 𝐵 ∈ ℝ)
1817recnd 11140 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → 𝐵 ∈ ℂ)
1914, 16, 18addassd 11134 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (((0 − 𝐴) + 𝐴) + 𝐵) = ((0 − 𝐴) + (𝐴 + 𝐵)))
20 readdlid 42444 . . . . . . . . . 10 (𝐵 ∈ ℝ → (0 + 𝐵) = 𝐵)
2120ad2antrl 728 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (0 + 𝐵) = 𝐵)
2212, 19, 213eqtr3d 2774 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → ((0 − 𝐴) + (𝐴 + 𝐵)) = 𝐵)
2322oveq2d 7362 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → ((0 − 𝐵) + ((0 − 𝐴) + (𝐴 + 𝐵))) = ((0 − 𝐵) + 𝐵))
249, 23, 113eqtr4d 2776 . . . . . 6 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → ((0 − 𝐵) + ((0 − 𝐴) + (𝐴 + 𝐵))) = ((0 − 𝐴) + 𝐴))
25 simprr 772 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (0 − 𝐵) ∈ ℕ)
2625nncnd 12141 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (0 − 𝐵) ∈ ℂ)
2716, 18addcld 11131 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (𝐴 + 𝐵) ∈ ℂ)
2826, 14, 27addassd 11134 . . . . . 6 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (((0 − 𝐵) + (0 − 𝐴)) + (𝐴 + 𝐵)) = ((0 − 𝐵) + ((0 − 𝐴) + (𝐴 + 𝐵))))
299oveq1d 7361 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (((0 − 𝐵) + 𝐵) + 𝐴) = (0 + 𝐴))
3026, 18, 16addassd 11134 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (((0 − 𝐵) + 𝐵) + 𝐴) = ((0 − 𝐵) + (𝐵 + 𝐴)))
31 readdlid 42444 . . . . . . . . 9 (𝐴 ∈ ℝ → (0 + 𝐴) = 𝐴)
3231ad2antrr 726 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (0 + 𝐴) = 𝐴)
3329, 30, 323eqtr3d 2774 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → ((0 − 𝐵) + (𝐵 + 𝐴)) = 𝐴)
3433oveq2d 7362 . . . . . 6 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → ((0 − 𝐴) + ((0 − 𝐵) + (𝐵 + 𝐴))) = ((0 − 𝐴) + 𝐴))
3524, 28, 343eqtr4d 2776 . . . . 5 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (((0 − 𝐵) + (0 − 𝐴)) + (𝐴 + 𝐵)) = ((0 − 𝐴) + ((0 − 𝐵) + (𝐵 + 𝐴))))
36 nnaddcom 42309 . . . . . . 7 (((0 − 𝐴) ∈ ℕ ∧ (0 − 𝐵) ∈ ℕ) → ((0 − 𝐴) + (0 − 𝐵)) = ((0 − 𝐵) + (0 − 𝐴)))
3736ad2ant2l 746 . . . . . 6 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → ((0 − 𝐴) + (0 − 𝐵)) = ((0 − 𝐵) + (0 − 𝐴)))
3837oveq1d 7361 . . . . 5 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (((0 − 𝐴) + (0 − 𝐵)) + (𝐴 + 𝐵)) = (((0 − 𝐵) + (0 − 𝐴)) + (𝐴 + 𝐵)))
3918, 16addcld 11131 . . . . . 6 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (𝐵 + 𝐴) ∈ ℂ)
4014, 26, 39addassd 11134 . . . . 5 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (((0 − 𝐴) + (0 − 𝐵)) + (𝐵 + 𝐴)) = ((0 − 𝐴) + ((0 − 𝐵) + (𝐵 + 𝐴))))
4135, 38, 403eqtr4d 2776 . . . 4 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (((0 − 𝐴) + (0 − 𝐵)) + (𝐴 + 𝐵)) = (((0 − 𝐴) + (0 − 𝐵)) + (𝐵 + 𝐴)))
4213, 25nnaddcld 12177 . . . . . 6 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → ((0 − 𝐴) + (0 − 𝐵)) ∈ ℕ)
4342nncnd 12141 . . . . 5 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → ((0 − 𝐴) + (0 − 𝐵)) ∈ ℂ)
4443, 27, 39sn-addcand 42461 . . . 4 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → ((((0 − 𝐴) + (0 − 𝐵)) + (𝐴 + 𝐵)) = (((0 − 𝐴) + (0 − 𝐵)) + (𝐵 + 𝐴)) ↔ (𝐴 + 𝐵) = (𝐵 + 𝐴)))
4541, 44mpbid 232 . . 3 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
463, 4, 7, 45ccase 1037 . 2 (((𝐴 ∈ ℕ0 ∨ (𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ)) ∧ (𝐵 ∈ ℕ0 ∨ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ))) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
471, 2, 46syl2anb 598 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1541  wcel 2111  (class class class)co 7346  cr 11005  0cc0 11006   + caddc 11009  cn 12125  0cn0 12381  cz 12468   cresub 42406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-ltxr 11151  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-resub 42407
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator