| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnmsgnsubg | Structured version Visualization version GIF version | ||
| Description: The signs form a multiplicative subgroup of the complex numbers. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnmsgnsubg.m | ⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) |
| Ref | Expression |
|---|---|
| cnmsgnsubg | ⊢ {1, -1} ∈ (SubGrp‘𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmsgnsubg.m | . 2 ⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) | |
| 2 | elpri 4601 | . . 3 ⊢ (𝑥 ∈ {1, -1} → (𝑥 = 1 ∨ 𝑥 = -1)) | |
| 3 | id 22 | . . . . 5 ⊢ (𝑥 = 1 → 𝑥 = 1) | |
| 4 | ax-1cn 11067 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 5 | 3, 4 | eqeltrdi 2836 | . . . 4 ⊢ (𝑥 = 1 → 𝑥 ∈ ℂ) |
| 6 | id 22 | . . . . 5 ⊢ (𝑥 = -1 → 𝑥 = -1) | |
| 7 | neg1cn 12113 | . . . . 5 ⊢ -1 ∈ ℂ | |
| 8 | 6, 7 | eqeltrdi 2836 | . . . 4 ⊢ (𝑥 = -1 → 𝑥 ∈ ℂ) |
| 9 | 5, 8 | jaoi 857 | . . 3 ⊢ ((𝑥 = 1 ∨ 𝑥 = -1) → 𝑥 ∈ ℂ) |
| 10 | 2, 9 | syl 17 | . 2 ⊢ (𝑥 ∈ {1, -1} → 𝑥 ∈ ℂ) |
| 11 | ax-1ne0 11078 | . . . . . 6 ⊢ 1 ≠ 0 | |
| 12 | 11 | a1i 11 | . . . . 5 ⊢ (𝑥 = 1 → 1 ≠ 0) |
| 13 | 3, 12 | eqnetrd 2992 | . . . 4 ⊢ (𝑥 = 1 → 𝑥 ≠ 0) |
| 14 | neg1ne0 12115 | . . . . . 6 ⊢ -1 ≠ 0 | |
| 15 | 14 | a1i 11 | . . . . 5 ⊢ (𝑥 = -1 → -1 ≠ 0) |
| 16 | 6, 15 | eqnetrd 2992 | . . . 4 ⊢ (𝑥 = -1 → 𝑥 ≠ 0) |
| 17 | 13, 16 | jaoi 857 | . . 3 ⊢ ((𝑥 = 1 ∨ 𝑥 = -1) → 𝑥 ≠ 0) |
| 18 | 2, 17 | syl 17 | . 2 ⊢ (𝑥 ∈ {1, -1} → 𝑥 ≠ 0) |
| 19 | elpri 4601 | . . 3 ⊢ (𝑦 ∈ {1, -1} → (𝑦 = 1 ∨ 𝑦 = -1)) | |
| 20 | oveq12 7358 | . . . . 5 ⊢ ((𝑥 = 1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) = (1 · 1)) | |
| 21 | 4 | mulridi 11119 | . . . . . 6 ⊢ (1 · 1) = 1 |
| 22 | 1ex 11111 | . . . . . . 7 ⊢ 1 ∈ V | |
| 23 | 22 | prid1 4714 | . . . . . 6 ⊢ 1 ∈ {1, -1} |
| 24 | 21, 23 | eqeltri 2824 | . . . . 5 ⊢ (1 · 1) ∈ {1, -1} |
| 25 | 20, 24 | eqeltrdi 2836 | . . . 4 ⊢ ((𝑥 = 1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) ∈ {1, -1}) |
| 26 | oveq12 7358 | . . . . 5 ⊢ ((𝑥 = -1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) = (-1 · 1)) | |
| 27 | 7 | mulridi 11119 | . . . . . 6 ⊢ (-1 · 1) = -1 |
| 28 | negex 11361 | . . . . . . 7 ⊢ -1 ∈ V | |
| 29 | 28 | prid2 4715 | . . . . . 6 ⊢ -1 ∈ {1, -1} |
| 30 | 27, 29 | eqeltri 2824 | . . . . 5 ⊢ (-1 · 1) ∈ {1, -1} |
| 31 | 26, 30 | eqeltrdi 2836 | . . . 4 ⊢ ((𝑥 = -1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) ∈ {1, -1}) |
| 32 | oveq12 7358 | . . . . 5 ⊢ ((𝑥 = 1 ∧ 𝑦 = -1) → (𝑥 · 𝑦) = (1 · -1)) | |
| 33 | 7 | mullidi 11120 | . . . . . 6 ⊢ (1 · -1) = -1 |
| 34 | 33, 29 | eqeltri 2824 | . . . . 5 ⊢ (1 · -1) ∈ {1, -1} |
| 35 | 32, 34 | eqeltrdi 2836 | . . . 4 ⊢ ((𝑥 = 1 ∧ 𝑦 = -1) → (𝑥 · 𝑦) ∈ {1, -1}) |
| 36 | oveq12 7358 | . . . . 5 ⊢ ((𝑥 = -1 ∧ 𝑦 = -1) → (𝑥 · 𝑦) = (-1 · -1)) | |
| 37 | neg1mulneg1e1 12336 | . . . . . 6 ⊢ (-1 · -1) = 1 | |
| 38 | 37, 23 | eqeltri 2824 | . . . . 5 ⊢ (-1 · -1) ∈ {1, -1} |
| 39 | 36, 38 | eqeltrdi 2836 | . . . 4 ⊢ ((𝑥 = -1 ∧ 𝑦 = -1) → (𝑥 · 𝑦) ∈ {1, -1}) |
| 40 | 25, 31, 35, 39 | ccase 1037 | . . 3 ⊢ (((𝑥 = 1 ∨ 𝑥 = -1) ∧ (𝑦 = 1 ∨ 𝑦 = -1)) → (𝑥 · 𝑦) ∈ {1, -1}) |
| 41 | 2, 19, 40 | syl2an 596 | . 2 ⊢ ((𝑥 ∈ {1, -1} ∧ 𝑦 ∈ {1, -1}) → (𝑥 · 𝑦) ∈ {1, -1}) |
| 42 | oveq2 7357 | . . . . 5 ⊢ (𝑥 = 1 → (1 / 𝑥) = (1 / 1)) | |
| 43 | 1div1e1 11815 | . . . . . 6 ⊢ (1 / 1) = 1 | |
| 44 | 43, 23 | eqeltri 2824 | . . . . 5 ⊢ (1 / 1) ∈ {1, -1} |
| 45 | 42, 44 | eqeltrdi 2836 | . . . 4 ⊢ (𝑥 = 1 → (1 / 𝑥) ∈ {1, -1}) |
| 46 | oveq2 7357 | . . . . 5 ⊢ (𝑥 = -1 → (1 / 𝑥) = (1 / -1)) | |
| 47 | divneg2 11848 | . . . . . . . 8 ⊢ ((1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0) → -(1 / 1) = (1 / -1)) | |
| 48 | 4, 4, 11, 47 | mp3an 1463 | . . . . . . 7 ⊢ -(1 / 1) = (1 / -1) |
| 49 | 43 | negeqi 11356 | . . . . . . 7 ⊢ -(1 / 1) = -1 |
| 50 | 48, 49 | eqtr3i 2754 | . . . . . 6 ⊢ (1 / -1) = -1 |
| 51 | 50, 29 | eqeltri 2824 | . . . . 5 ⊢ (1 / -1) ∈ {1, -1} |
| 52 | 46, 51 | eqeltrdi 2836 | . . . 4 ⊢ (𝑥 = -1 → (1 / 𝑥) ∈ {1, -1}) |
| 53 | 45, 52 | jaoi 857 | . . 3 ⊢ ((𝑥 = 1 ∨ 𝑥 = -1) → (1 / 𝑥) ∈ {1, -1}) |
| 54 | 2, 53 | syl 17 | . 2 ⊢ (𝑥 ∈ {1, -1} → (1 / 𝑥) ∈ {1, -1}) |
| 55 | 1, 10, 18, 41, 23, 54 | cnmsubglem 21337 | 1 ⊢ {1, -1} ∈ (SubGrp‘𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3900 {csn 4577 {cpr 4579 ‘cfv 6482 (class class class)co 7349 ℂcc 11007 0cc0 11009 1c1 11010 · cmul 11014 -cneg 11348 / cdiv 11777 ↾s cress 17141 SubGrpcsubg 18999 mulGrpcmgp 20025 ℂfldccnfld 21261 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-addf 11088 ax-mulf 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-tpos 8159 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-0g 17345 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-grp 18815 df-minusg 18816 df-subg 19002 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-cring 20121 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-dvr 20286 df-drng 20616 df-cnfld 21262 |
| This theorem is referenced by: cnmsgngrp 21486 psgninv 21489 zrhpsgnmhm 21491 |
| Copyright terms: Public domain | W3C validator |