| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnmsgnsubg | Structured version Visualization version GIF version | ||
| Description: The signs form a multiplicative subgroup of the complex numbers. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnmsgnsubg.m | ⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) |
| Ref | Expression |
|---|---|
| cnmsgnsubg | ⊢ {1, -1} ∈ (SubGrp‘𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmsgnsubg.m | . 2 ⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) | |
| 2 | elpri 4609 | . . 3 ⊢ (𝑥 ∈ {1, -1} → (𝑥 = 1 ∨ 𝑥 = -1)) | |
| 3 | id 22 | . . . . 5 ⊢ (𝑥 = 1 → 𝑥 = 1) | |
| 4 | ax-1cn 11102 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 5 | 3, 4 | eqeltrdi 2836 | . . . 4 ⊢ (𝑥 = 1 → 𝑥 ∈ ℂ) |
| 6 | id 22 | . . . . 5 ⊢ (𝑥 = -1 → 𝑥 = -1) | |
| 7 | neg1cn 12147 | . . . . 5 ⊢ -1 ∈ ℂ | |
| 8 | 6, 7 | eqeltrdi 2836 | . . . 4 ⊢ (𝑥 = -1 → 𝑥 ∈ ℂ) |
| 9 | 5, 8 | jaoi 857 | . . 3 ⊢ ((𝑥 = 1 ∨ 𝑥 = -1) → 𝑥 ∈ ℂ) |
| 10 | 2, 9 | syl 17 | . 2 ⊢ (𝑥 ∈ {1, -1} → 𝑥 ∈ ℂ) |
| 11 | ax-1ne0 11113 | . . . . . 6 ⊢ 1 ≠ 0 | |
| 12 | 11 | a1i 11 | . . . . 5 ⊢ (𝑥 = 1 → 1 ≠ 0) |
| 13 | 3, 12 | eqnetrd 2992 | . . . 4 ⊢ (𝑥 = 1 → 𝑥 ≠ 0) |
| 14 | neg1ne0 12149 | . . . . . 6 ⊢ -1 ≠ 0 | |
| 15 | 14 | a1i 11 | . . . . 5 ⊢ (𝑥 = -1 → -1 ≠ 0) |
| 16 | 6, 15 | eqnetrd 2992 | . . . 4 ⊢ (𝑥 = -1 → 𝑥 ≠ 0) |
| 17 | 13, 16 | jaoi 857 | . . 3 ⊢ ((𝑥 = 1 ∨ 𝑥 = -1) → 𝑥 ≠ 0) |
| 18 | 2, 17 | syl 17 | . 2 ⊢ (𝑥 ∈ {1, -1} → 𝑥 ≠ 0) |
| 19 | elpri 4609 | . . 3 ⊢ (𝑦 ∈ {1, -1} → (𝑦 = 1 ∨ 𝑦 = -1)) | |
| 20 | oveq12 7378 | . . . . 5 ⊢ ((𝑥 = 1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) = (1 · 1)) | |
| 21 | 4 | mulridi 11154 | . . . . . 6 ⊢ (1 · 1) = 1 |
| 22 | 1ex 11146 | . . . . . . 7 ⊢ 1 ∈ V | |
| 23 | 22 | prid1 4722 | . . . . . 6 ⊢ 1 ∈ {1, -1} |
| 24 | 21, 23 | eqeltri 2824 | . . . . 5 ⊢ (1 · 1) ∈ {1, -1} |
| 25 | 20, 24 | eqeltrdi 2836 | . . . 4 ⊢ ((𝑥 = 1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) ∈ {1, -1}) |
| 26 | oveq12 7378 | . . . . 5 ⊢ ((𝑥 = -1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) = (-1 · 1)) | |
| 27 | 7 | mulridi 11154 | . . . . . 6 ⊢ (-1 · 1) = -1 |
| 28 | negex 11395 | . . . . . . 7 ⊢ -1 ∈ V | |
| 29 | 28 | prid2 4723 | . . . . . 6 ⊢ -1 ∈ {1, -1} |
| 30 | 27, 29 | eqeltri 2824 | . . . . 5 ⊢ (-1 · 1) ∈ {1, -1} |
| 31 | 26, 30 | eqeltrdi 2836 | . . . 4 ⊢ ((𝑥 = -1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) ∈ {1, -1}) |
| 32 | oveq12 7378 | . . . . 5 ⊢ ((𝑥 = 1 ∧ 𝑦 = -1) → (𝑥 · 𝑦) = (1 · -1)) | |
| 33 | 7 | mullidi 11155 | . . . . . 6 ⊢ (1 · -1) = -1 |
| 34 | 33, 29 | eqeltri 2824 | . . . . 5 ⊢ (1 · -1) ∈ {1, -1} |
| 35 | 32, 34 | eqeltrdi 2836 | . . . 4 ⊢ ((𝑥 = 1 ∧ 𝑦 = -1) → (𝑥 · 𝑦) ∈ {1, -1}) |
| 36 | oveq12 7378 | . . . . 5 ⊢ ((𝑥 = -1 ∧ 𝑦 = -1) → (𝑥 · 𝑦) = (-1 · -1)) | |
| 37 | neg1mulneg1e1 12370 | . . . . . 6 ⊢ (-1 · -1) = 1 | |
| 38 | 37, 23 | eqeltri 2824 | . . . . 5 ⊢ (-1 · -1) ∈ {1, -1} |
| 39 | 36, 38 | eqeltrdi 2836 | . . . 4 ⊢ ((𝑥 = -1 ∧ 𝑦 = -1) → (𝑥 · 𝑦) ∈ {1, -1}) |
| 40 | 25, 31, 35, 39 | ccase 1037 | . . 3 ⊢ (((𝑥 = 1 ∨ 𝑥 = -1) ∧ (𝑦 = 1 ∨ 𝑦 = -1)) → (𝑥 · 𝑦) ∈ {1, -1}) |
| 41 | 2, 19, 40 | syl2an 596 | . 2 ⊢ ((𝑥 ∈ {1, -1} ∧ 𝑦 ∈ {1, -1}) → (𝑥 · 𝑦) ∈ {1, -1}) |
| 42 | oveq2 7377 | . . . . 5 ⊢ (𝑥 = 1 → (1 / 𝑥) = (1 / 1)) | |
| 43 | 1div1e1 11849 | . . . . . 6 ⊢ (1 / 1) = 1 | |
| 44 | 43, 23 | eqeltri 2824 | . . . . 5 ⊢ (1 / 1) ∈ {1, -1} |
| 45 | 42, 44 | eqeltrdi 2836 | . . . 4 ⊢ (𝑥 = 1 → (1 / 𝑥) ∈ {1, -1}) |
| 46 | oveq2 7377 | . . . . 5 ⊢ (𝑥 = -1 → (1 / 𝑥) = (1 / -1)) | |
| 47 | divneg2 11882 | . . . . . . . 8 ⊢ ((1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0) → -(1 / 1) = (1 / -1)) | |
| 48 | 4, 4, 11, 47 | mp3an 1463 | . . . . . . 7 ⊢ -(1 / 1) = (1 / -1) |
| 49 | 43 | negeqi 11390 | . . . . . . 7 ⊢ -(1 / 1) = -1 |
| 50 | 48, 49 | eqtr3i 2754 | . . . . . 6 ⊢ (1 / -1) = -1 |
| 51 | 50, 29 | eqeltri 2824 | . . . . 5 ⊢ (1 / -1) ∈ {1, -1} |
| 52 | 46, 51 | eqeltrdi 2836 | . . . 4 ⊢ (𝑥 = -1 → (1 / 𝑥) ∈ {1, -1}) |
| 53 | 45, 52 | jaoi 857 | . . 3 ⊢ ((𝑥 = 1 ∨ 𝑥 = -1) → (1 / 𝑥) ∈ {1, -1}) |
| 54 | 2, 53 | syl 17 | . 2 ⊢ (𝑥 ∈ {1, -1} → (1 / 𝑥) ∈ {1, -1}) |
| 55 | 1, 10, 18, 41, 23, 54 | cnmsubglem 21372 | 1 ⊢ {1, -1} ∈ (SubGrp‘𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3908 {csn 4585 {cpr 4587 ‘cfv 6499 (class class class)co 7369 ℂcc 11042 0cc0 11044 1c1 11045 · cmul 11049 -cneg 11382 / cdiv 11811 ↾s cress 17176 SubGrpcsubg 19034 mulGrpcmgp 20060 ℂfldccnfld 21296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-addf 11123 ax-mulf 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-0g 17380 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-grp 18850 df-minusg 18851 df-subg 19037 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-cring 20156 df-oppr 20257 df-dvdsr 20277 df-unit 20278 df-invr 20308 df-dvr 20321 df-drng 20651 df-cnfld 21297 |
| This theorem is referenced by: cnmsgngrp 21521 psgninv 21524 zrhpsgnmhm 21526 |
| Copyright terms: Public domain | W3C validator |