![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnmsgnsubg | Structured version Visualization version GIF version |
Description: The signs form a multiplicative subgroup of the complex numbers. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
Ref | Expression |
---|---|
cnmsgnsubg.m | ⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) |
Ref | Expression |
---|---|
cnmsgnsubg | ⊢ {1, -1} ∈ (SubGrp‘𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmsgnsubg.m | . 2 ⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) | |
2 | elpri 4671 | . . 3 ⊢ (𝑥 ∈ {1, -1} → (𝑥 = 1 ∨ 𝑥 = -1)) | |
3 | id 22 | . . . . 5 ⊢ (𝑥 = 1 → 𝑥 = 1) | |
4 | ax-1cn 11242 | . . . . 5 ⊢ 1 ∈ ℂ | |
5 | 3, 4 | eqeltrdi 2852 | . . . 4 ⊢ (𝑥 = 1 → 𝑥 ∈ ℂ) |
6 | id 22 | . . . . 5 ⊢ (𝑥 = -1 → 𝑥 = -1) | |
7 | neg1cn 12407 | . . . . 5 ⊢ -1 ∈ ℂ | |
8 | 6, 7 | eqeltrdi 2852 | . . . 4 ⊢ (𝑥 = -1 → 𝑥 ∈ ℂ) |
9 | 5, 8 | jaoi 856 | . . 3 ⊢ ((𝑥 = 1 ∨ 𝑥 = -1) → 𝑥 ∈ ℂ) |
10 | 2, 9 | syl 17 | . 2 ⊢ (𝑥 ∈ {1, -1} → 𝑥 ∈ ℂ) |
11 | ax-1ne0 11253 | . . . . . 6 ⊢ 1 ≠ 0 | |
12 | 11 | a1i 11 | . . . . 5 ⊢ (𝑥 = 1 → 1 ≠ 0) |
13 | 3, 12 | eqnetrd 3014 | . . . 4 ⊢ (𝑥 = 1 → 𝑥 ≠ 0) |
14 | neg1ne0 12409 | . . . . . 6 ⊢ -1 ≠ 0 | |
15 | 14 | a1i 11 | . . . . 5 ⊢ (𝑥 = -1 → -1 ≠ 0) |
16 | 6, 15 | eqnetrd 3014 | . . . 4 ⊢ (𝑥 = -1 → 𝑥 ≠ 0) |
17 | 13, 16 | jaoi 856 | . . 3 ⊢ ((𝑥 = 1 ∨ 𝑥 = -1) → 𝑥 ≠ 0) |
18 | 2, 17 | syl 17 | . 2 ⊢ (𝑥 ∈ {1, -1} → 𝑥 ≠ 0) |
19 | elpri 4671 | . . 3 ⊢ (𝑦 ∈ {1, -1} → (𝑦 = 1 ∨ 𝑦 = -1)) | |
20 | oveq12 7457 | . . . . 5 ⊢ ((𝑥 = 1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) = (1 · 1)) | |
21 | 4 | mulridi 11294 | . . . . . 6 ⊢ (1 · 1) = 1 |
22 | 1ex 11286 | . . . . . . 7 ⊢ 1 ∈ V | |
23 | 22 | prid1 4787 | . . . . . 6 ⊢ 1 ∈ {1, -1} |
24 | 21, 23 | eqeltri 2840 | . . . . 5 ⊢ (1 · 1) ∈ {1, -1} |
25 | 20, 24 | eqeltrdi 2852 | . . . 4 ⊢ ((𝑥 = 1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) ∈ {1, -1}) |
26 | oveq12 7457 | . . . . 5 ⊢ ((𝑥 = -1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) = (-1 · 1)) | |
27 | 7 | mulridi 11294 | . . . . . 6 ⊢ (-1 · 1) = -1 |
28 | negex 11534 | . . . . . . 7 ⊢ -1 ∈ V | |
29 | 28 | prid2 4788 | . . . . . 6 ⊢ -1 ∈ {1, -1} |
30 | 27, 29 | eqeltri 2840 | . . . . 5 ⊢ (-1 · 1) ∈ {1, -1} |
31 | 26, 30 | eqeltrdi 2852 | . . . 4 ⊢ ((𝑥 = -1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) ∈ {1, -1}) |
32 | oveq12 7457 | . . . . 5 ⊢ ((𝑥 = 1 ∧ 𝑦 = -1) → (𝑥 · 𝑦) = (1 · -1)) | |
33 | 7 | mullidi 11295 | . . . . . 6 ⊢ (1 · -1) = -1 |
34 | 33, 29 | eqeltri 2840 | . . . . 5 ⊢ (1 · -1) ∈ {1, -1} |
35 | 32, 34 | eqeltrdi 2852 | . . . 4 ⊢ ((𝑥 = 1 ∧ 𝑦 = -1) → (𝑥 · 𝑦) ∈ {1, -1}) |
36 | oveq12 7457 | . . . . 5 ⊢ ((𝑥 = -1 ∧ 𝑦 = -1) → (𝑥 · 𝑦) = (-1 · -1)) | |
37 | neg1mulneg1e1 12506 | . . . . . 6 ⊢ (-1 · -1) = 1 | |
38 | 37, 23 | eqeltri 2840 | . . . . 5 ⊢ (-1 · -1) ∈ {1, -1} |
39 | 36, 38 | eqeltrdi 2852 | . . . 4 ⊢ ((𝑥 = -1 ∧ 𝑦 = -1) → (𝑥 · 𝑦) ∈ {1, -1}) |
40 | 25, 31, 35, 39 | ccase 1038 | . . 3 ⊢ (((𝑥 = 1 ∨ 𝑥 = -1) ∧ (𝑦 = 1 ∨ 𝑦 = -1)) → (𝑥 · 𝑦) ∈ {1, -1}) |
41 | 2, 19, 40 | syl2an 595 | . 2 ⊢ ((𝑥 ∈ {1, -1} ∧ 𝑦 ∈ {1, -1}) → (𝑥 · 𝑦) ∈ {1, -1}) |
42 | oveq2 7456 | . . . . 5 ⊢ (𝑥 = 1 → (1 / 𝑥) = (1 / 1)) | |
43 | 1div1e1 11985 | . . . . . 6 ⊢ (1 / 1) = 1 | |
44 | 43, 23 | eqeltri 2840 | . . . . 5 ⊢ (1 / 1) ∈ {1, -1} |
45 | 42, 44 | eqeltrdi 2852 | . . . 4 ⊢ (𝑥 = 1 → (1 / 𝑥) ∈ {1, -1}) |
46 | oveq2 7456 | . . . . 5 ⊢ (𝑥 = -1 → (1 / 𝑥) = (1 / -1)) | |
47 | divneg2 12018 | . . . . . . . 8 ⊢ ((1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0) → -(1 / 1) = (1 / -1)) | |
48 | 4, 4, 11, 47 | mp3an 1461 | . . . . . . 7 ⊢ -(1 / 1) = (1 / -1) |
49 | 43 | negeqi 11529 | . . . . . . 7 ⊢ -(1 / 1) = -1 |
50 | 48, 49 | eqtr3i 2770 | . . . . . 6 ⊢ (1 / -1) = -1 |
51 | 50, 29 | eqeltri 2840 | . . . . 5 ⊢ (1 / -1) ∈ {1, -1} |
52 | 46, 51 | eqeltrdi 2852 | . . . 4 ⊢ (𝑥 = -1 → (1 / 𝑥) ∈ {1, -1}) |
53 | 45, 52 | jaoi 856 | . . 3 ⊢ ((𝑥 = 1 ∨ 𝑥 = -1) → (1 / 𝑥) ∈ {1, -1}) |
54 | 2, 53 | syl 17 | . 2 ⊢ (𝑥 ∈ {1, -1} → (1 / 𝑥) ∈ {1, -1}) |
55 | 1, 10, 18, 41, 23, 54 | cnmsubglem 21471 | 1 ⊢ {1, -1} ∈ (SubGrp‘𝑀) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∖ cdif 3973 {csn 4648 {cpr 4650 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 0cc0 11184 1c1 11185 · cmul 11189 -cneg 11521 / cdiv 11947 ↾s cress 17287 SubGrpcsubg 19160 mulGrpcmgp 20161 ℂfldccnfld 21387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-addf 11263 ax-mulf 11264 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-subg 19163 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-cring 20263 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-dvr 20427 df-drng 20753 df-cnfld 21388 |
This theorem is referenced by: cnmsgngrp 21620 psgninv 21623 zrhpsgnmhm 21625 |
Copyright terms: Public domain | W3C validator |