| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnmsgnsubg | Structured version Visualization version GIF version | ||
| Description: The signs form a multiplicative subgroup of the complex numbers. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnmsgnsubg.m | ⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) |
| Ref | Expression |
|---|---|
| cnmsgnsubg | ⊢ {1, -1} ∈ (SubGrp‘𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmsgnsubg.m | . 2 ⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) | |
| 2 | elpri 4630 | . . 3 ⊢ (𝑥 ∈ {1, -1} → (𝑥 = 1 ∨ 𝑥 = -1)) | |
| 3 | id 22 | . . . . 5 ⊢ (𝑥 = 1 → 𝑥 = 1) | |
| 4 | ax-1cn 11192 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 5 | 3, 4 | eqeltrdi 2843 | . . . 4 ⊢ (𝑥 = 1 → 𝑥 ∈ ℂ) |
| 6 | id 22 | . . . . 5 ⊢ (𝑥 = -1 → 𝑥 = -1) | |
| 7 | neg1cn 12359 | . . . . 5 ⊢ -1 ∈ ℂ | |
| 8 | 6, 7 | eqeltrdi 2843 | . . . 4 ⊢ (𝑥 = -1 → 𝑥 ∈ ℂ) |
| 9 | 5, 8 | jaoi 857 | . . 3 ⊢ ((𝑥 = 1 ∨ 𝑥 = -1) → 𝑥 ∈ ℂ) |
| 10 | 2, 9 | syl 17 | . 2 ⊢ (𝑥 ∈ {1, -1} → 𝑥 ∈ ℂ) |
| 11 | ax-1ne0 11203 | . . . . . 6 ⊢ 1 ≠ 0 | |
| 12 | 11 | a1i 11 | . . . . 5 ⊢ (𝑥 = 1 → 1 ≠ 0) |
| 13 | 3, 12 | eqnetrd 3000 | . . . 4 ⊢ (𝑥 = 1 → 𝑥 ≠ 0) |
| 14 | neg1ne0 12361 | . . . . . 6 ⊢ -1 ≠ 0 | |
| 15 | 14 | a1i 11 | . . . . 5 ⊢ (𝑥 = -1 → -1 ≠ 0) |
| 16 | 6, 15 | eqnetrd 3000 | . . . 4 ⊢ (𝑥 = -1 → 𝑥 ≠ 0) |
| 17 | 13, 16 | jaoi 857 | . . 3 ⊢ ((𝑥 = 1 ∨ 𝑥 = -1) → 𝑥 ≠ 0) |
| 18 | 2, 17 | syl 17 | . 2 ⊢ (𝑥 ∈ {1, -1} → 𝑥 ≠ 0) |
| 19 | elpri 4630 | . . 3 ⊢ (𝑦 ∈ {1, -1} → (𝑦 = 1 ∨ 𝑦 = -1)) | |
| 20 | oveq12 7419 | . . . . 5 ⊢ ((𝑥 = 1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) = (1 · 1)) | |
| 21 | 4 | mulridi 11244 | . . . . . 6 ⊢ (1 · 1) = 1 |
| 22 | 1ex 11236 | . . . . . . 7 ⊢ 1 ∈ V | |
| 23 | 22 | prid1 4743 | . . . . . 6 ⊢ 1 ∈ {1, -1} |
| 24 | 21, 23 | eqeltri 2831 | . . . . 5 ⊢ (1 · 1) ∈ {1, -1} |
| 25 | 20, 24 | eqeltrdi 2843 | . . . 4 ⊢ ((𝑥 = 1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) ∈ {1, -1}) |
| 26 | oveq12 7419 | . . . . 5 ⊢ ((𝑥 = -1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) = (-1 · 1)) | |
| 27 | 7 | mulridi 11244 | . . . . . 6 ⊢ (-1 · 1) = -1 |
| 28 | negex 11485 | . . . . . . 7 ⊢ -1 ∈ V | |
| 29 | 28 | prid2 4744 | . . . . . 6 ⊢ -1 ∈ {1, -1} |
| 30 | 27, 29 | eqeltri 2831 | . . . . 5 ⊢ (-1 · 1) ∈ {1, -1} |
| 31 | 26, 30 | eqeltrdi 2843 | . . . 4 ⊢ ((𝑥 = -1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) ∈ {1, -1}) |
| 32 | oveq12 7419 | . . . . 5 ⊢ ((𝑥 = 1 ∧ 𝑦 = -1) → (𝑥 · 𝑦) = (1 · -1)) | |
| 33 | 7 | mullidi 11245 | . . . . . 6 ⊢ (1 · -1) = -1 |
| 34 | 33, 29 | eqeltri 2831 | . . . . 5 ⊢ (1 · -1) ∈ {1, -1} |
| 35 | 32, 34 | eqeltrdi 2843 | . . . 4 ⊢ ((𝑥 = 1 ∧ 𝑦 = -1) → (𝑥 · 𝑦) ∈ {1, -1}) |
| 36 | oveq12 7419 | . . . . 5 ⊢ ((𝑥 = -1 ∧ 𝑦 = -1) → (𝑥 · 𝑦) = (-1 · -1)) | |
| 37 | neg1mulneg1e1 12458 | . . . . . 6 ⊢ (-1 · -1) = 1 | |
| 38 | 37, 23 | eqeltri 2831 | . . . . 5 ⊢ (-1 · -1) ∈ {1, -1} |
| 39 | 36, 38 | eqeltrdi 2843 | . . . 4 ⊢ ((𝑥 = -1 ∧ 𝑦 = -1) → (𝑥 · 𝑦) ∈ {1, -1}) |
| 40 | 25, 31, 35, 39 | ccase 1037 | . . 3 ⊢ (((𝑥 = 1 ∨ 𝑥 = -1) ∧ (𝑦 = 1 ∨ 𝑦 = -1)) → (𝑥 · 𝑦) ∈ {1, -1}) |
| 41 | 2, 19, 40 | syl2an 596 | . 2 ⊢ ((𝑥 ∈ {1, -1} ∧ 𝑦 ∈ {1, -1}) → (𝑥 · 𝑦) ∈ {1, -1}) |
| 42 | oveq2 7418 | . . . . 5 ⊢ (𝑥 = 1 → (1 / 𝑥) = (1 / 1)) | |
| 43 | 1div1e1 11937 | . . . . . 6 ⊢ (1 / 1) = 1 | |
| 44 | 43, 23 | eqeltri 2831 | . . . . 5 ⊢ (1 / 1) ∈ {1, -1} |
| 45 | 42, 44 | eqeltrdi 2843 | . . . 4 ⊢ (𝑥 = 1 → (1 / 𝑥) ∈ {1, -1}) |
| 46 | oveq2 7418 | . . . . 5 ⊢ (𝑥 = -1 → (1 / 𝑥) = (1 / -1)) | |
| 47 | divneg2 11970 | . . . . . . . 8 ⊢ ((1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0) → -(1 / 1) = (1 / -1)) | |
| 48 | 4, 4, 11, 47 | mp3an 1463 | . . . . . . 7 ⊢ -(1 / 1) = (1 / -1) |
| 49 | 43 | negeqi 11480 | . . . . . . 7 ⊢ -(1 / 1) = -1 |
| 50 | 48, 49 | eqtr3i 2761 | . . . . . 6 ⊢ (1 / -1) = -1 |
| 51 | 50, 29 | eqeltri 2831 | . . . . 5 ⊢ (1 / -1) ∈ {1, -1} |
| 52 | 46, 51 | eqeltrdi 2843 | . . . 4 ⊢ (𝑥 = -1 → (1 / 𝑥) ∈ {1, -1}) |
| 53 | 45, 52 | jaoi 857 | . . 3 ⊢ ((𝑥 = 1 ∨ 𝑥 = -1) → (1 / 𝑥) ∈ {1, -1}) |
| 54 | 2, 53 | syl 17 | . 2 ⊢ (𝑥 ∈ {1, -1} → (1 / 𝑥) ∈ {1, -1}) |
| 55 | 1, 10, 18, 41, 23, 54 | cnmsubglem 21403 | 1 ⊢ {1, -1} ∈ (SubGrp‘𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∖ cdif 3928 {csn 4606 {cpr 4608 ‘cfv 6536 (class class class)co 7410 ℂcc 11132 0cc0 11134 1c1 11135 · cmul 11139 -cneg 11472 / cdiv 11899 ↾s cress 17256 SubGrpcsubg 19108 mulGrpcmgp 20105 ℂfldccnfld 21320 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-addf 11213 ax-mulf 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-tpos 8230 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-fz 13530 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-starv 17291 df-tset 17295 df-ple 17296 df-ds 17298 df-unif 17299 df-0g 17460 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-grp 18924 df-minusg 18925 df-subg 19111 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-cring 20201 df-oppr 20302 df-dvdsr 20322 df-unit 20323 df-invr 20353 df-dvr 20366 df-drng 20696 df-cnfld 21321 |
| This theorem is referenced by: cnmsgngrp 21544 psgninv 21547 zrhpsgnmhm 21549 |
| Copyright terms: Public domain | W3C validator |