MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmsgnsubg Structured version   Visualization version   GIF version

Theorem cnmsgnsubg 20649
Description: The signs form a multiplicative subgroup of the complex numbers. (Contributed by Stefan O'Rear, 28-Aug-2015.)
Hypothesis
Ref Expression
cnmsgnsubg.m 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
Assertion
Ref Expression
cnmsgnsubg {1, -1} ∈ (SubGrp‘𝑀)

Proof of Theorem cnmsgnsubg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnmsgnsubg.m . 2 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
2 elpri 4579 . . 3 (𝑥 ∈ {1, -1} → (𝑥 = 1 ∨ 𝑥 = -1))
3 id 22 . . . . 5 (𝑥 = 1 → 𝑥 = 1)
4 ax-1cn 10583 . . . . 5 1 ∈ ℂ
53, 4syl6eqel 2918 . . . 4 (𝑥 = 1 → 𝑥 ∈ ℂ)
6 id 22 . . . . 5 (𝑥 = -1 → 𝑥 = -1)
7 neg1cn 11739 . . . . 5 -1 ∈ ℂ
86, 7syl6eqel 2918 . . . 4 (𝑥 = -1 → 𝑥 ∈ ℂ)
95, 8jaoi 851 . . 3 ((𝑥 = 1 ∨ 𝑥 = -1) → 𝑥 ∈ ℂ)
102, 9syl 17 . 2 (𝑥 ∈ {1, -1} → 𝑥 ∈ ℂ)
11 ax-1ne0 10594 . . . . . 6 1 ≠ 0
1211a1i 11 . . . . 5 (𝑥 = 1 → 1 ≠ 0)
133, 12eqnetrd 3080 . . . 4 (𝑥 = 1 → 𝑥 ≠ 0)
14 neg1ne0 11741 . . . . . 6 -1 ≠ 0
1514a1i 11 . . . . 5 (𝑥 = -1 → -1 ≠ 0)
166, 15eqnetrd 3080 . . . 4 (𝑥 = -1 → 𝑥 ≠ 0)
1713, 16jaoi 851 . . 3 ((𝑥 = 1 ∨ 𝑥 = -1) → 𝑥 ≠ 0)
182, 17syl 17 . 2 (𝑥 ∈ {1, -1} → 𝑥 ≠ 0)
19 elpri 4579 . . 3 (𝑦 ∈ {1, -1} → (𝑦 = 1 ∨ 𝑦 = -1))
20 oveq12 7154 . . . . 5 ((𝑥 = 1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) = (1 · 1))
214mulid1i 10633 . . . . . 6 (1 · 1) = 1
22 1ex 10625 . . . . . . 7 1 ∈ V
2322prid1 4690 . . . . . 6 1 ∈ {1, -1}
2421, 23eqeltri 2906 . . . . 5 (1 · 1) ∈ {1, -1}
2520, 24syl6eqel 2918 . . . 4 ((𝑥 = 1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) ∈ {1, -1})
26 oveq12 7154 . . . . 5 ((𝑥 = -1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) = (-1 · 1))
277mulid1i 10633 . . . . . 6 (-1 · 1) = -1
28 negex 10872 . . . . . . 7 -1 ∈ V
2928prid2 4691 . . . . . 6 -1 ∈ {1, -1}
3027, 29eqeltri 2906 . . . . 5 (-1 · 1) ∈ {1, -1}
3126, 30syl6eqel 2918 . . . 4 ((𝑥 = -1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) ∈ {1, -1})
32 oveq12 7154 . . . . 5 ((𝑥 = 1 ∧ 𝑦 = -1) → (𝑥 · 𝑦) = (1 · -1))
337mulid2i 10634 . . . . . 6 (1 · -1) = -1
3433, 29eqeltri 2906 . . . . 5 (1 · -1) ∈ {1, -1}
3532, 34syl6eqel 2918 . . . 4 ((𝑥 = 1 ∧ 𝑦 = -1) → (𝑥 · 𝑦) ∈ {1, -1})
36 oveq12 7154 . . . . 5 ((𝑥 = -1 ∧ 𝑦 = -1) → (𝑥 · 𝑦) = (-1 · -1))
37 neg1mulneg1e1 11838 . . . . . 6 (-1 · -1) = 1
3837, 23eqeltri 2906 . . . . 5 (-1 · -1) ∈ {1, -1}
3936, 38syl6eqel 2918 . . . 4 ((𝑥 = -1 ∧ 𝑦 = -1) → (𝑥 · 𝑦) ∈ {1, -1})
4025, 31, 35, 39ccase 1029 . . 3 (((𝑥 = 1 ∨ 𝑥 = -1) ∧ (𝑦 = 1 ∨ 𝑦 = -1)) → (𝑥 · 𝑦) ∈ {1, -1})
412, 19, 40syl2an 595 . 2 ((𝑥 ∈ {1, -1} ∧ 𝑦 ∈ {1, -1}) → (𝑥 · 𝑦) ∈ {1, -1})
42 oveq2 7153 . . . . 5 (𝑥 = 1 → (1 / 𝑥) = (1 / 1))
43 1div1e1 11318 . . . . . 6 (1 / 1) = 1
4443, 23eqeltri 2906 . . . . 5 (1 / 1) ∈ {1, -1}
4542, 44syl6eqel 2918 . . . 4 (𝑥 = 1 → (1 / 𝑥) ∈ {1, -1})
46 oveq2 7153 . . . . 5 (𝑥 = -1 → (1 / 𝑥) = (1 / -1))
47 divneg2 11352 . . . . . . . 8 ((1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0) → -(1 / 1) = (1 / -1))
484, 4, 11, 47mp3an 1452 . . . . . . 7 -(1 / 1) = (1 / -1)
4943negeqi 10867 . . . . . . 7 -(1 / 1) = -1
5048, 49eqtr3i 2843 . . . . . 6 (1 / -1) = -1
5150, 29eqeltri 2906 . . . . 5 (1 / -1) ∈ {1, -1}
5246, 51syl6eqel 2918 . . . 4 (𝑥 = -1 → (1 / 𝑥) ∈ {1, -1})
5345, 52jaoi 851 . . 3 ((𝑥 = 1 ∨ 𝑥 = -1) → (1 / 𝑥) ∈ {1, -1})
542, 53syl 17 . 2 (𝑥 ∈ {1, -1} → (1 / 𝑥) ∈ {1, -1})
551, 10, 18, 41, 23, 54cnmsubglem 20536 1 {1, -1} ∈ (SubGrp‘𝑀)
Colors of variables: wff setvar class
Syntax hints:  wa 396  wo 841   = wceq 1528  wcel 2105  wne 3013  cdif 3930  {csn 4557  {cpr 4559  cfv 6348  (class class class)co 7145  cc 10523  0cc0 10525  1c1 10526   · cmul 10530  -cneg 10859   / cdiv 11285  s cress 16472  SubGrpcsubg 18211  mulGrpcmgp 19168  fldccnfld 20473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-addf 10604  ax-mulf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-tpos 7881  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12881  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-starv 16568  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-0g 16703  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-grp 18044  df-minusg 18045  df-subg 18214  df-cmn 18837  df-abl 18838  df-mgp 19169  df-ur 19181  df-ring 19228  df-cring 19229  df-oppr 19302  df-dvdsr 19320  df-unit 19321  df-invr 19351  df-dvr 19362  df-drng 19433  df-cnfld 20474
This theorem is referenced by:  cnmsgngrp  20651  psgninv  20654  zrhpsgnmhm  20656
  Copyright terms: Public domain W3C validator