| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnmsgnsubg | Structured version Visualization version GIF version | ||
| Description: The signs form a multiplicative subgroup of the complex numbers. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnmsgnsubg.m | ⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) |
| Ref | Expression |
|---|---|
| cnmsgnsubg | ⊢ {1, -1} ∈ (SubGrp‘𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmsgnsubg.m | . 2 ⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) | |
| 2 | elpri 4597 | . . 3 ⊢ (𝑥 ∈ {1, -1} → (𝑥 = 1 ∨ 𝑥 = -1)) | |
| 3 | id 22 | . . . . 5 ⊢ (𝑥 = 1 → 𝑥 = 1) | |
| 4 | ax-1cn 11064 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 5 | 3, 4 | eqeltrdi 2839 | . . . 4 ⊢ (𝑥 = 1 → 𝑥 ∈ ℂ) |
| 6 | id 22 | . . . . 5 ⊢ (𝑥 = -1 → 𝑥 = -1) | |
| 7 | neg1cn 12110 | . . . . 5 ⊢ -1 ∈ ℂ | |
| 8 | 6, 7 | eqeltrdi 2839 | . . . 4 ⊢ (𝑥 = -1 → 𝑥 ∈ ℂ) |
| 9 | 5, 8 | jaoi 857 | . . 3 ⊢ ((𝑥 = 1 ∨ 𝑥 = -1) → 𝑥 ∈ ℂ) |
| 10 | 2, 9 | syl 17 | . 2 ⊢ (𝑥 ∈ {1, -1} → 𝑥 ∈ ℂ) |
| 11 | ax-1ne0 11075 | . . . . . 6 ⊢ 1 ≠ 0 | |
| 12 | 11 | a1i 11 | . . . . 5 ⊢ (𝑥 = 1 → 1 ≠ 0) |
| 13 | 3, 12 | eqnetrd 2995 | . . . 4 ⊢ (𝑥 = 1 → 𝑥 ≠ 0) |
| 14 | neg1ne0 12112 | . . . . . 6 ⊢ -1 ≠ 0 | |
| 15 | 14 | a1i 11 | . . . . 5 ⊢ (𝑥 = -1 → -1 ≠ 0) |
| 16 | 6, 15 | eqnetrd 2995 | . . . 4 ⊢ (𝑥 = -1 → 𝑥 ≠ 0) |
| 17 | 13, 16 | jaoi 857 | . . 3 ⊢ ((𝑥 = 1 ∨ 𝑥 = -1) → 𝑥 ≠ 0) |
| 18 | 2, 17 | syl 17 | . 2 ⊢ (𝑥 ∈ {1, -1} → 𝑥 ≠ 0) |
| 19 | elpri 4597 | . . 3 ⊢ (𝑦 ∈ {1, -1} → (𝑦 = 1 ∨ 𝑦 = -1)) | |
| 20 | oveq12 7355 | . . . . 5 ⊢ ((𝑥 = 1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) = (1 · 1)) | |
| 21 | 4 | mulridi 11116 | . . . . . 6 ⊢ (1 · 1) = 1 |
| 22 | 1ex 11108 | . . . . . . 7 ⊢ 1 ∈ V | |
| 23 | 22 | prid1 4712 | . . . . . 6 ⊢ 1 ∈ {1, -1} |
| 24 | 21, 23 | eqeltri 2827 | . . . . 5 ⊢ (1 · 1) ∈ {1, -1} |
| 25 | 20, 24 | eqeltrdi 2839 | . . . 4 ⊢ ((𝑥 = 1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) ∈ {1, -1}) |
| 26 | oveq12 7355 | . . . . 5 ⊢ ((𝑥 = -1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) = (-1 · 1)) | |
| 27 | 7 | mulridi 11116 | . . . . . 6 ⊢ (-1 · 1) = -1 |
| 28 | negex 11358 | . . . . . . 7 ⊢ -1 ∈ V | |
| 29 | 28 | prid2 4713 | . . . . . 6 ⊢ -1 ∈ {1, -1} |
| 30 | 27, 29 | eqeltri 2827 | . . . . 5 ⊢ (-1 · 1) ∈ {1, -1} |
| 31 | 26, 30 | eqeltrdi 2839 | . . . 4 ⊢ ((𝑥 = -1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) ∈ {1, -1}) |
| 32 | oveq12 7355 | . . . . 5 ⊢ ((𝑥 = 1 ∧ 𝑦 = -1) → (𝑥 · 𝑦) = (1 · -1)) | |
| 33 | 7 | mullidi 11117 | . . . . . 6 ⊢ (1 · -1) = -1 |
| 34 | 33, 29 | eqeltri 2827 | . . . . 5 ⊢ (1 · -1) ∈ {1, -1} |
| 35 | 32, 34 | eqeltrdi 2839 | . . . 4 ⊢ ((𝑥 = 1 ∧ 𝑦 = -1) → (𝑥 · 𝑦) ∈ {1, -1}) |
| 36 | oveq12 7355 | . . . . 5 ⊢ ((𝑥 = -1 ∧ 𝑦 = -1) → (𝑥 · 𝑦) = (-1 · -1)) | |
| 37 | neg1mulneg1e1 12333 | . . . . . 6 ⊢ (-1 · -1) = 1 | |
| 38 | 37, 23 | eqeltri 2827 | . . . . 5 ⊢ (-1 · -1) ∈ {1, -1} |
| 39 | 36, 38 | eqeltrdi 2839 | . . . 4 ⊢ ((𝑥 = -1 ∧ 𝑦 = -1) → (𝑥 · 𝑦) ∈ {1, -1}) |
| 40 | 25, 31, 35, 39 | ccase 1037 | . . 3 ⊢ (((𝑥 = 1 ∨ 𝑥 = -1) ∧ (𝑦 = 1 ∨ 𝑦 = -1)) → (𝑥 · 𝑦) ∈ {1, -1}) |
| 41 | 2, 19, 40 | syl2an 596 | . 2 ⊢ ((𝑥 ∈ {1, -1} ∧ 𝑦 ∈ {1, -1}) → (𝑥 · 𝑦) ∈ {1, -1}) |
| 42 | oveq2 7354 | . . . . 5 ⊢ (𝑥 = 1 → (1 / 𝑥) = (1 / 1)) | |
| 43 | 1div1e1 11812 | . . . . . 6 ⊢ (1 / 1) = 1 | |
| 44 | 43, 23 | eqeltri 2827 | . . . . 5 ⊢ (1 / 1) ∈ {1, -1} |
| 45 | 42, 44 | eqeltrdi 2839 | . . . 4 ⊢ (𝑥 = 1 → (1 / 𝑥) ∈ {1, -1}) |
| 46 | oveq2 7354 | . . . . 5 ⊢ (𝑥 = -1 → (1 / 𝑥) = (1 / -1)) | |
| 47 | divneg2 11845 | . . . . . . . 8 ⊢ ((1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0) → -(1 / 1) = (1 / -1)) | |
| 48 | 4, 4, 11, 47 | mp3an 1463 | . . . . . . 7 ⊢ -(1 / 1) = (1 / -1) |
| 49 | 43 | negeqi 11353 | . . . . . . 7 ⊢ -(1 / 1) = -1 |
| 50 | 48, 49 | eqtr3i 2756 | . . . . . 6 ⊢ (1 / -1) = -1 |
| 51 | 50, 29 | eqeltri 2827 | . . . . 5 ⊢ (1 / -1) ∈ {1, -1} |
| 52 | 46, 51 | eqeltrdi 2839 | . . . 4 ⊢ (𝑥 = -1 → (1 / 𝑥) ∈ {1, -1}) |
| 53 | 45, 52 | jaoi 857 | . . 3 ⊢ ((𝑥 = 1 ∨ 𝑥 = -1) → (1 / 𝑥) ∈ {1, -1}) |
| 54 | 2, 53 | syl 17 | . 2 ⊢ (𝑥 ∈ {1, -1} → (1 / 𝑥) ∈ {1, -1}) |
| 55 | 1, 10, 18, 41, 23, 54 | cnmsubglem 21367 | 1 ⊢ {1, -1} ∈ (SubGrp‘𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∖ cdif 3894 {csn 4573 {cpr 4575 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 0cc0 11006 1c1 11007 · cmul 11011 -cneg 11345 / cdiv 11774 ↾s cress 17141 SubGrpcsubg 19033 mulGrpcmgp 20058 ℂfldccnfld 21291 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-addf 11085 ax-mulf 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-subg 19036 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-cring 20154 df-oppr 20255 df-dvdsr 20275 df-unit 20276 df-invr 20306 df-dvr 20319 df-drng 20646 df-cnfld 21292 |
| This theorem is referenced by: cnmsgngrp 21516 psgninv 21519 zrhpsgnmhm 21521 |
| Copyright terms: Public domain | W3C validator |