| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnmsgnsubg | Structured version Visualization version GIF version | ||
| Description: The signs form a multiplicative subgroup of the complex numbers. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnmsgnsubg.m | ⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) |
| Ref | Expression |
|---|---|
| cnmsgnsubg | ⊢ {1, -1} ∈ (SubGrp‘𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmsgnsubg.m | . 2 ⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) | |
| 2 | elpri 4613 | . . 3 ⊢ (𝑥 ∈ {1, -1} → (𝑥 = 1 ∨ 𝑥 = -1)) | |
| 3 | id 22 | . . . . 5 ⊢ (𝑥 = 1 → 𝑥 = 1) | |
| 4 | ax-1cn 11126 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 5 | 3, 4 | eqeltrdi 2836 | . . . 4 ⊢ (𝑥 = 1 → 𝑥 ∈ ℂ) |
| 6 | id 22 | . . . . 5 ⊢ (𝑥 = -1 → 𝑥 = -1) | |
| 7 | neg1cn 12171 | . . . . 5 ⊢ -1 ∈ ℂ | |
| 8 | 6, 7 | eqeltrdi 2836 | . . . 4 ⊢ (𝑥 = -1 → 𝑥 ∈ ℂ) |
| 9 | 5, 8 | jaoi 857 | . . 3 ⊢ ((𝑥 = 1 ∨ 𝑥 = -1) → 𝑥 ∈ ℂ) |
| 10 | 2, 9 | syl 17 | . 2 ⊢ (𝑥 ∈ {1, -1} → 𝑥 ∈ ℂ) |
| 11 | ax-1ne0 11137 | . . . . . 6 ⊢ 1 ≠ 0 | |
| 12 | 11 | a1i 11 | . . . . 5 ⊢ (𝑥 = 1 → 1 ≠ 0) |
| 13 | 3, 12 | eqnetrd 2992 | . . . 4 ⊢ (𝑥 = 1 → 𝑥 ≠ 0) |
| 14 | neg1ne0 12173 | . . . . . 6 ⊢ -1 ≠ 0 | |
| 15 | 14 | a1i 11 | . . . . 5 ⊢ (𝑥 = -1 → -1 ≠ 0) |
| 16 | 6, 15 | eqnetrd 2992 | . . . 4 ⊢ (𝑥 = -1 → 𝑥 ≠ 0) |
| 17 | 13, 16 | jaoi 857 | . . 3 ⊢ ((𝑥 = 1 ∨ 𝑥 = -1) → 𝑥 ≠ 0) |
| 18 | 2, 17 | syl 17 | . 2 ⊢ (𝑥 ∈ {1, -1} → 𝑥 ≠ 0) |
| 19 | elpri 4613 | . . 3 ⊢ (𝑦 ∈ {1, -1} → (𝑦 = 1 ∨ 𝑦 = -1)) | |
| 20 | oveq12 7396 | . . . . 5 ⊢ ((𝑥 = 1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) = (1 · 1)) | |
| 21 | 4 | mulridi 11178 | . . . . . 6 ⊢ (1 · 1) = 1 |
| 22 | 1ex 11170 | . . . . . . 7 ⊢ 1 ∈ V | |
| 23 | 22 | prid1 4726 | . . . . . 6 ⊢ 1 ∈ {1, -1} |
| 24 | 21, 23 | eqeltri 2824 | . . . . 5 ⊢ (1 · 1) ∈ {1, -1} |
| 25 | 20, 24 | eqeltrdi 2836 | . . . 4 ⊢ ((𝑥 = 1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) ∈ {1, -1}) |
| 26 | oveq12 7396 | . . . . 5 ⊢ ((𝑥 = -1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) = (-1 · 1)) | |
| 27 | 7 | mulridi 11178 | . . . . . 6 ⊢ (-1 · 1) = -1 |
| 28 | negex 11419 | . . . . . . 7 ⊢ -1 ∈ V | |
| 29 | 28 | prid2 4727 | . . . . . 6 ⊢ -1 ∈ {1, -1} |
| 30 | 27, 29 | eqeltri 2824 | . . . . 5 ⊢ (-1 · 1) ∈ {1, -1} |
| 31 | 26, 30 | eqeltrdi 2836 | . . . 4 ⊢ ((𝑥 = -1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) ∈ {1, -1}) |
| 32 | oveq12 7396 | . . . . 5 ⊢ ((𝑥 = 1 ∧ 𝑦 = -1) → (𝑥 · 𝑦) = (1 · -1)) | |
| 33 | 7 | mullidi 11179 | . . . . . 6 ⊢ (1 · -1) = -1 |
| 34 | 33, 29 | eqeltri 2824 | . . . . 5 ⊢ (1 · -1) ∈ {1, -1} |
| 35 | 32, 34 | eqeltrdi 2836 | . . . 4 ⊢ ((𝑥 = 1 ∧ 𝑦 = -1) → (𝑥 · 𝑦) ∈ {1, -1}) |
| 36 | oveq12 7396 | . . . . 5 ⊢ ((𝑥 = -1 ∧ 𝑦 = -1) → (𝑥 · 𝑦) = (-1 · -1)) | |
| 37 | neg1mulneg1e1 12394 | . . . . . 6 ⊢ (-1 · -1) = 1 | |
| 38 | 37, 23 | eqeltri 2824 | . . . . 5 ⊢ (-1 · -1) ∈ {1, -1} |
| 39 | 36, 38 | eqeltrdi 2836 | . . . 4 ⊢ ((𝑥 = -1 ∧ 𝑦 = -1) → (𝑥 · 𝑦) ∈ {1, -1}) |
| 40 | 25, 31, 35, 39 | ccase 1037 | . . 3 ⊢ (((𝑥 = 1 ∨ 𝑥 = -1) ∧ (𝑦 = 1 ∨ 𝑦 = -1)) → (𝑥 · 𝑦) ∈ {1, -1}) |
| 41 | 2, 19, 40 | syl2an 596 | . 2 ⊢ ((𝑥 ∈ {1, -1} ∧ 𝑦 ∈ {1, -1}) → (𝑥 · 𝑦) ∈ {1, -1}) |
| 42 | oveq2 7395 | . . . . 5 ⊢ (𝑥 = 1 → (1 / 𝑥) = (1 / 1)) | |
| 43 | 1div1e1 11873 | . . . . . 6 ⊢ (1 / 1) = 1 | |
| 44 | 43, 23 | eqeltri 2824 | . . . . 5 ⊢ (1 / 1) ∈ {1, -1} |
| 45 | 42, 44 | eqeltrdi 2836 | . . . 4 ⊢ (𝑥 = 1 → (1 / 𝑥) ∈ {1, -1}) |
| 46 | oveq2 7395 | . . . . 5 ⊢ (𝑥 = -1 → (1 / 𝑥) = (1 / -1)) | |
| 47 | divneg2 11906 | . . . . . . . 8 ⊢ ((1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0) → -(1 / 1) = (1 / -1)) | |
| 48 | 4, 4, 11, 47 | mp3an 1463 | . . . . . . 7 ⊢ -(1 / 1) = (1 / -1) |
| 49 | 43 | negeqi 11414 | . . . . . . 7 ⊢ -(1 / 1) = -1 |
| 50 | 48, 49 | eqtr3i 2754 | . . . . . 6 ⊢ (1 / -1) = -1 |
| 51 | 50, 29 | eqeltri 2824 | . . . . 5 ⊢ (1 / -1) ∈ {1, -1} |
| 52 | 46, 51 | eqeltrdi 2836 | . . . 4 ⊢ (𝑥 = -1 → (1 / 𝑥) ∈ {1, -1}) |
| 53 | 45, 52 | jaoi 857 | . . 3 ⊢ ((𝑥 = 1 ∨ 𝑥 = -1) → (1 / 𝑥) ∈ {1, -1}) |
| 54 | 2, 53 | syl 17 | . 2 ⊢ (𝑥 ∈ {1, -1} → (1 / 𝑥) ∈ {1, -1}) |
| 55 | 1, 10, 18, 41, 23, 54 | cnmsubglem 21347 | 1 ⊢ {1, -1} ∈ (SubGrp‘𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3911 {csn 4589 {cpr 4591 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 0cc0 11068 1c1 11069 · cmul 11073 -cneg 11406 / cdiv 11835 ↾s cress 17200 SubGrpcsubg 19052 mulGrpcmgp 20049 ℂfldccnfld 21264 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-addf 11147 ax-mulf 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-subg 19055 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-cring 20145 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-invr 20297 df-dvr 20310 df-drng 20640 df-cnfld 21265 |
| This theorem is referenced by: cnmsgngrp 21488 psgninv 21491 zrhpsgnmhm 21493 |
| Copyright terms: Public domain | W3C validator |