MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmsgnsubg Structured version   Visualization version   GIF version

Theorem cnmsgnsubg 20780
Description: The signs form a multiplicative subgroup of the complex numbers. (Contributed by Stefan O'Rear, 28-Aug-2015.)
Hypothesis
Ref Expression
cnmsgnsubg.m 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
Assertion
Ref Expression
cnmsgnsubg {1, -1} ∈ (SubGrp‘𝑀)

Proof of Theorem cnmsgnsubg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnmsgnsubg.m . 2 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
2 elpri 4585 . . 3 (𝑥 ∈ {1, -1} → (𝑥 = 1 ∨ 𝑥 = -1))
3 id 22 . . . . 5 (𝑥 = 1 → 𝑥 = 1)
4 ax-1cn 10927 . . . . 5 1 ∈ ℂ
53, 4eqeltrdi 2847 . . . 4 (𝑥 = 1 → 𝑥 ∈ ℂ)
6 id 22 . . . . 5 (𝑥 = -1 → 𝑥 = -1)
7 neg1cn 12085 . . . . 5 -1 ∈ ℂ
86, 7eqeltrdi 2847 . . . 4 (𝑥 = -1 → 𝑥 ∈ ℂ)
95, 8jaoi 854 . . 3 ((𝑥 = 1 ∨ 𝑥 = -1) → 𝑥 ∈ ℂ)
102, 9syl 17 . 2 (𝑥 ∈ {1, -1} → 𝑥 ∈ ℂ)
11 ax-1ne0 10938 . . . . . 6 1 ≠ 0
1211a1i 11 . . . . 5 (𝑥 = 1 → 1 ≠ 0)
133, 12eqnetrd 3011 . . . 4 (𝑥 = 1 → 𝑥 ≠ 0)
14 neg1ne0 12087 . . . . . 6 -1 ≠ 0
1514a1i 11 . . . . 5 (𝑥 = -1 → -1 ≠ 0)
166, 15eqnetrd 3011 . . . 4 (𝑥 = -1 → 𝑥 ≠ 0)
1713, 16jaoi 854 . . 3 ((𝑥 = 1 ∨ 𝑥 = -1) → 𝑥 ≠ 0)
182, 17syl 17 . 2 (𝑥 ∈ {1, -1} → 𝑥 ≠ 0)
19 elpri 4585 . . 3 (𝑦 ∈ {1, -1} → (𝑦 = 1 ∨ 𝑦 = -1))
20 oveq12 7286 . . . . 5 ((𝑥 = 1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) = (1 · 1))
214mulid1i 10977 . . . . . 6 (1 · 1) = 1
22 1ex 10969 . . . . . . 7 1 ∈ V
2322prid1 4700 . . . . . 6 1 ∈ {1, -1}
2421, 23eqeltri 2835 . . . . 5 (1 · 1) ∈ {1, -1}
2520, 24eqeltrdi 2847 . . . 4 ((𝑥 = 1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) ∈ {1, -1})
26 oveq12 7286 . . . . 5 ((𝑥 = -1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) = (-1 · 1))
277mulid1i 10977 . . . . . 6 (-1 · 1) = -1
28 negex 11217 . . . . . . 7 -1 ∈ V
2928prid2 4701 . . . . . 6 -1 ∈ {1, -1}
3027, 29eqeltri 2835 . . . . 5 (-1 · 1) ∈ {1, -1}
3126, 30eqeltrdi 2847 . . . 4 ((𝑥 = -1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) ∈ {1, -1})
32 oveq12 7286 . . . . 5 ((𝑥 = 1 ∧ 𝑦 = -1) → (𝑥 · 𝑦) = (1 · -1))
337mulid2i 10978 . . . . . 6 (1 · -1) = -1
3433, 29eqeltri 2835 . . . . 5 (1 · -1) ∈ {1, -1}
3532, 34eqeltrdi 2847 . . . 4 ((𝑥 = 1 ∧ 𝑦 = -1) → (𝑥 · 𝑦) ∈ {1, -1})
36 oveq12 7286 . . . . 5 ((𝑥 = -1 ∧ 𝑦 = -1) → (𝑥 · 𝑦) = (-1 · -1))
37 neg1mulneg1e1 12184 . . . . . 6 (-1 · -1) = 1
3837, 23eqeltri 2835 . . . . 5 (-1 · -1) ∈ {1, -1}
3936, 38eqeltrdi 2847 . . . 4 ((𝑥 = -1 ∧ 𝑦 = -1) → (𝑥 · 𝑦) ∈ {1, -1})
4025, 31, 35, 39ccase 1035 . . 3 (((𝑥 = 1 ∨ 𝑥 = -1) ∧ (𝑦 = 1 ∨ 𝑦 = -1)) → (𝑥 · 𝑦) ∈ {1, -1})
412, 19, 40syl2an 596 . 2 ((𝑥 ∈ {1, -1} ∧ 𝑦 ∈ {1, -1}) → (𝑥 · 𝑦) ∈ {1, -1})
42 oveq2 7285 . . . . 5 (𝑥 = 1 → (1 / 𝑥) = (1 / 1))
43 1div1e1 11663 . . . . . 6 (1 / 1) = 1
4443, 23eqeltri 2835 . . . . 5 (1 / 1) ∈ {1, -1}
4542, 44eqeltrdi 2847 . . . 4 (𝑥 = 1 → (1 / 𝑥) ∈ {1, -1})
46 oveq2 7285 . . . . 5 (𝑥 = -1 → (1 / 𝑥) = (1 / -1))
47 divneg2 11697 . . . . . . . 8 ((1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0) → -(1 / 1) = (1 / -1))
484, 4, 11, 47mp3an 1460 . . . . . . 7 -(1 / 1) = (1 / -1)
4943negeqi 11212 . . . . . . 7 -(1 / 1) = -1
5048, 49eqtr3i 2768 . . . . . 6 (1 / -1) = -1
5150, 29eqeltri 2835 . . . . 5 (1 / -1) ∈ {1, -1}
5246, 51eqeltrdi 2847 . . . 4 (𝑥 = -1 → (1 / 𝑥) ∈ {1, -1})
5345, 52jaoi 854 . . 3 ((𝑥 = 1 ∨ 𝑥 = -1) → (1 / 𝑥) ∈ {1, -1})
542, 53syl 17 . 2 (𝑥 ∈ {1, -1} → (1 / 𝑥) ∈ {1, -1})
551, 10, 18, 41, 23, 54cnmsubglem 20659 1 {1, -1} ∈ (SubGrp‘𝑀)
Colors of variables: wff setvar class
Syntax hints:  wa 396  wo 844   = wceq 1539  wcel 2106  wne 2943  cdif 3885  {csn 4563  {cpr 4565  cfv 6435  (class class class)co 7277  cc 10867  0cc0 10869  1c1 10870   · cmul 10874  -cneg 11204   / cdiv 11630  s cress 16939  SubGrpcsubg 18747  mulGrpcmgp 19718  fldccnfld 20595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5211  ax-sep 5225  ax-nul 5232  ax-pow 5290  ax-pr 5354  ax-un 7588  ax-cnex 10925  ax-resscn 10926  ax-1cn 10927  ax-icn 10928  ax-addcl 10929  ax-addrcl 10930  ax-mulcl 10931  ax-mulrcl 10932  ax-mulcom 10933  ax-addass 10934  ax-mulass 10935  ax-distr 10936  ax-i2m1 10937  ax-1ne0 10938  ax-1rid 10939  ax-rnegex 10940  ax-rrecex 10941  ax-cnre 10942  ax-pre-lttri 10943  ax-pre-lttrn 10944  ax-pre-ltadd 10945  ax-pre-mulgt0 10946  ax-addf 10948  ax-mulf 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4842  df-iun 4928  df-br 5077  df-opab 5139  df-mpt 5160  df-tr 5194  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6204  df-ord 6271  df-on 6272  df-lim 6273  df-suc 6274  df-iota 6393  df-fun 6437  df-fn 6438  df-f 6439  df-f1 6440  df-fo 6441  df-f1o 6442  df-fv 6443  df-riota 7234  df-ov 7280  df-oprab 7281  df-mpo 7282  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8040  df-frecs 8095  df-wrecs 8126  df-recs 8200  df-rdg 8239  df-1o 8295  df-er 8496  df-en 8732  df-dom 8733  df-sdom 8734  df-fin 8735  df-pnf 11009  df-mnf 11010  df-xr 11011  df-ltxr 11012  df-le 11013  df-sub 11205  df-neg 11206  df-div 11631  df-nn 11972  df-2 12034  df-3 12035  df-4 12036  df-5 12037  df-6 12038  df-7 12039  df-8 12040  df-9 12041  df-n0 12232  df-z 12318  df-dec 12436  df-uz 12581  df-fz 13238  df-struct 16846  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-ress 16940  df-plusg 16973  df-mulr 16974  df-starv 16975  df-tset 16979  df-ple 16980  df-ds 16982  df-unif 16983  df-0g 17150  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-grp 18578  df-minusg 18579  df-subg 18750  df-cmn 19386  df-abl 19387  df-mgp 19719  df-ur 19736  df-ring 19783  df-cring 19784  df-oppr 19860  df-dvdsr 19881  df-unit 19882  df-invr 19912  df-dvr 19923  df-drng 19991  df-cnfld 20596
This theorem is referenced by:  cnmsgngrp  20782  psgninv  20785  zrhpsgnmhm  20787
  Copyright terms: Public domain W3C validator