Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnmsgnsubg | Structured version Visualization version GIF version |
Description: The signs form a multiplicative subgroup of the complex numbers. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
Ref | Expression |
---|---|
cnmsgnsubg.m | ⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) |
Ref | Expression |
---|---|
cnmsgnsubg | ⊢ {1, -1} ∈ (SubGrp‘𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmsgnsubg.m | . 2 ⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) | |
2 | elpri 4585 | . . 3 ⊢ (𝑥 ∈ {1, -1} → (𝑥 = 1 ∨ 𝑥 = -1)) | |
3 | id 22 | . . . . 5 ⊢ (𝑥 = 1 → 𝑥 = 1) | |
4 | ax-1cn 10927 | . . . . 5 ⊢ 1 ∈ ℂ | |
5 | 3, 4 | eqeltrdi 2847 | . . . 4 ⊢ (𝑥 = 1 → 𝑥 ∈ ℂ) |
6 | id 22 | . . . . 5 ⊢ (𝑥 = -1 → 𝑥 = -1) | |
7 | neg1cn 12085 | . . . . 5 ⊢ -1 ∈ ℂ | |
8 | 6, 7 | eqeltrdi 2847 | . . . 4 ⊢ (𝑥 = -1 → 𝑥 ∈ ℂ) |
9 | 5, 8 | jaoi 854 | . . 3 ⊢ ((𝑥 = 1 ∨ 𝑥 = -1) → 𝑥 ∈ ℂ) |
10 | 2, 9 | syl 17 | . 2 ⊢ (𝑥 ∈ {1, -1} → 𝑥 ∈ ℂ) |
11 | ax-1ne0 10938 | . . . . . 6 ⊢ 1 ≠ 0 | |
12 | 11 | a1i 11 | . . . . 5 ⊢ (𝑥 = 1 → 1 ≠ 0) |
13 | 3, 12 | eqnetrd 3011 | . . . 4 ⊢ (𝑥 = 1 → 𝑥 ≠ 0) |
14 | neg1ne0 12087 | . . . . . 6 ⊢ -1 ≠ 0 | |
15 | 14 | a1i 11 | . . . . 5 ⊢ (𝑥 = -1 → -1 ≠ 0) |
16 | 6, 15 | eqnetrd 3011 | . . . 4 ⊢ (𝑥 = -1 → 𝑥 ≠ 0) |
17 | 13, 16 | jaoi 854 | . . 3 ⊢ ((𝑥 = 1 ∨ 𝑥 = -1) → 𝑥 ≠ 0) |
18 | 2, 17 | syl 17 | . 2 ⊢ (𝑥 ∈ {1, -1} → 𝑥 ≠ 0) |
19 | elpri 4585 | . . 3 ⊢ (𝑦 ∈ {1, -1} → (𝑦 = 1 ∨ 𝑦 = -1)) | |
20 | oveq12 7286 | . . . . 5 ⊢ ((𝑥 = 1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) = (1 · 1)) | |
21 | 4 | mulid1i 10977 | . . . . . 6 ⊢ (1 · 1) = 1 |
22 | 1ex 10969 | . . . . . . 7 ⊢ 1 ∈ V | |
23 | 22 | prid1 4700 | . . . . . 6 ⊢ 1 ∈ {1, -1} |
24 | 21, 23 | eqeltri 2835 | . . . . 5 ⊢ (1 · 1) ∈ {1, -1} |
25 | 20, 24 | eqeltrdi 2847 | . . . 4 ⊢ ((𝑥 = 1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) ∈ {1, -1}) |
26 | oveq12 7286 | . . . . 5 ⊢ ((𝑥 = -1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) = (-1 · 1)) | |
27 | 7 | mulid1i 10977 | . . . . . 6 ⊢ (-1 · 1) = -1 |
28 | negex 11217 | . . . . . . 7 ⊢ -1 ∈ V | |
29 | 28 | prid2 4701 | . . . . . 6 ⊢ -1 ∈ {1, -1} |
30 | 27, 29 | eqeltri 2835 | . . . . 5 ⊢ (-1 · 1) ∈ {1, -1} |
31 | 26, 30 | eqeltrdi 2847 | . . . 4 ⊢ ((𝑥 = -1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) ∈ {1, -1}) |
32 | oveq12 7286 | . . . . 5 ⊢ ((𝑥 = 1 ∧ 𝑦 = -1) → (𝑥 · 𝑦) = (1 · -1)) | |
33 | 7 | mulid2i 10978 | . . . . . 6 ⊢ (1 · -1) = -1 |
34 | 33, 29 | eqeltri 2835 | . . . . 5 ⊢ (1 · -1) ∈ {1, -1} |
35 | 32, 34 | eqeltrdi 2847 | . . . 4 ⊢ ((𝑥 = 1 ∧ 𝑦 = -1) → (𝑥 · 𝑦) ∈ {1, -1}) |
36 | oveq12 7286 | . . . . 5 ⊢ ((𝑥 = -1 ∧ 𝑦 = -1) → (𝑥 · 𝑦) = (-1 · -1)) | |
37 | neg1mulneg1e1 12184 | . . . . . 6 ⊢ (-1 · -1) = 1 | |
38 | 37, 23 | eqeltri 2835 | . . . . 5 ⊢ (-1 · -1) ∈ {1, -1} |
39 | 36, 38 | eqeltrdi 2847 | . . . 4 ⊢ ((𝑥 = -1 ∧ 𝑦 = -1) → (𝑥 · 𝑦) ∈ {1, -1}) |
40 | 25, 31, 35, 39 | ccase 1035 | . . 3 ⊢ (((𝑥 = 1 ∨ 𝑥 = -1) ∧ (𝑦 = 1 ∨ 𝑦 = -1)) → (𝑥 · 𝑦) ∈ {1, -1}) |
41 | 2, 19, 40 | syl2an 596 | . 2 ⊢ ((𝑥 ∈ {1, -1} ∧ 𝑦 ∈ {1, -1}) → (𝑥 · 𝑦) ∈ {1, -1}) |
42 | oveq2 7285 | . . . . 5 ⊢ (𝑥 = 1 → (1 / 𝑥) = (1 / 1)) | |
43 | 1div1e1 11663 | . . . . . 6 ⊢ (1 / 1) = 1 | |
44 | 43, 23 | eqeltri 2835 | . . . . 5 ⊢ (1 / 1) ∈ {1, -1} |
45 | 42, 44 | eqeltrdi 2847 | . . . 4 ⊢ (𝑥 = 1 → (1 / 𝑥) ∈ {1, -1}) |
46 | oveq2 7285 | . . . . 5 ⊢ (𝑥 = -1 → (1 / 𝑥) = (1 / -1)) | |
47 | divneg2 11697 | . . . . . . . 8 ⊢ ((1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0) → -(1 / 1) = (1 / -1)) | |
48 | 4, 4, 11, 47 | mp3an 1460 | . . . . . . 7 ⊢ -(1 / 1) = (1 / -1) |
49 | 43 | negeqi 11212 | . . . . . . 7 ⊢ -(1 / 1) = -1 |
50 | 48, 49 | eqtr3i 2768 | . . . . . 6 ⊢ (1 / -1) = -1 |
51 | 50, 29 | eqeltri 2835 | . . . . 5 ⊢ (1 / -1) ∈ {1, -1} |
52 | 46, 51 | eqeltrdi 2847 | . . . 4 ⊢ (𝑥 = -1 → (1 / 𝑥) ∈ {1, -1}) |
53 | 45, 52 | jaoi 854 | . . 3 ⊢ ((𝑥 = 1 ∨ 𝑥 = -1) → (1 / 𝑥) ∈ {1, -1}) |
54 | 2, 53 | syl 17 | . 2 ⊢ (𝑥 ∈ {1, -1} → (1 / 𝑥) ∈ {1, -1}) |
55 | 1, 10, 18, 41, 23, 54 | cnmsubglem 20659 | 1 ⊢ {1, -1} ∈ (SubGrp‘𝑀) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∨ wo 844 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∖ cdif 3885 {csn 4563 {cpr 4565 ‘cfv 6435 (class class class)co 7277 ℂcc 10867 0cc0 10869 1c1 10870 · cmul 10874 -cneg 11204 / cdiv 11630 ↾s cress 16939 SubGrpcsubg 18747 mulGrpcmgp 19718 ℂfldccnfld 20595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5211 ax-sep 5225 ax-nul 5232 ax-pow 5290 ax-pr 5354 ax-un 7588 ax-cnex 10925 ax-resscn 10926 ax-1cn 10927 ax-icn 10928 ax-addcl 10929 ax-addrcl 10930 ax-mulcl 10931 ax-mulrcl 10932 ax-mulcom 10933 ax-addass 10934 ax-mulass 10935 ax-distr 10936 ax-i2m1 10937 ax-1ne0 10938 ax-1rid 10939 ax-rnegex 10940 ax-rrecex 10941 ax-cnre 10942 ax-pre-lttri 10943 ax-pre-lttrn 10944 ax-pre-ltadd 10945 ax-pre-mulgt0 10946 ax-addf 10948 ax-mulf 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3433 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-tp 4568 df-op 4570 df-uni 4842 df-iun 4928 df-br 5077 df-opab 5139 df-mpt 5160 df-tr 5194 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6204 df-ord 6271 df-on 6272 df-lim 6273 df-suc 6274 df-iota 6393 df-fun 6437 df-fn 6438 df-f 6439 df-f1 6440 df-fo 6441 df-f1o 6442 df-fv 6443 df-riota 7234 df-ov 7280 df-oprab 7281 df-mpo 7282 df-om 7713 df-1st 7831 df-2nd 7832 df-tpos 8040 df-frecs 8095 df-wrecs 8126 df-recs 8200 df-rdg 8239 df-1o 8295 df-er 8496 df-en 8732 df-dom 8733 df-sdom 8734 df-fin 8735 df-pnf 11009 df-mnf 11010 df-xr 11011 df-ltxr 11012 df-le 11013 df-sub 11205 df-neg 11206 df-div 11631 df-nn 11972 df-2 12034 df-3 12035 df-4 12036 df-5 12037 df-6 12038 df-7 12039 df-8 12040 df-9 12041 df-n0 12232 df-z 12318 df-dec 12436 df-uz 12581 df-fz 13238 df-struct 16846 df-sets 16863 df-slot 16881 df-ndx 16893 df-base 16911 df-ress 16940 df-plusg 16973 df-mulr 16974 df-starv 16975 df-tset 16979 df-ple 16980 df-ds 16982 df-unif 16983 df-0g 17150 df-mgm 18324 df-sgrp 18373 df-mnd 18384 df-grp 18578 df-minusg 18579 df-subg 18750 df-cmn 19386 df-abl 19387 df-mgp 19719 df-ur 19736 df-ring 19783 df-cring 19784 df-oppr 19860 df-dvdsr 19881 df-unit 19882 df-invr 19912 df-dvr 19923 df-drng 19991 df-cnfld 20596 |
This theorem is referenced by: cnmsgngrp 20782 psgninv 20785 zrhpsgnmhm 20787 |
Copyright terms: Public domain | W3C validator |