Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nn0expgcd Structured version   Visualization version   GIF version

Theorem nn0expgcd 39204
Description: Exponentiation distributes over GCD. nn0gcdsq 16092 extended to nonnegative exponents. expgcd 39203 extended to nonnegative bases. (Contributed by Steven Nguyen, 5-Apr-2023.)
Assertion
Ref Expression
nn0expgcd ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁)))

Proof of Theorem nn0expgcd
StepHypRef Expression
1 elnn0 11900 . . 3 (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0))
2 elnn0 11900 . . 3 (𝐵 ∈ ℕ0 ↔ (𝐵 ∈ ℕ ∨ 𝐵 = 0))
3 expgcd 39203 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁)))
433expia 1117 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝑁 ∈ ℕ0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
5 elnn0 11900 . . . . 5 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
6 0exp 13465 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (0↑𝑁) = 0)
763ad2ant3 1131 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (0↑𝑁) = 0)
87oveq1d 7171 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((0↑𝑁) gcd (𝐵𝑁)) = (0 gcd (𝐵𝑁)))
9 simp2 1133 . . . . . . . . . . . 12 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝐵 ∈ ℕ)
10 nnnn0 11905 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
11103ad2ant3 1131 . . . . . . . . . . . 12 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0)
129, 11nnexpcld 13607 . . . . . . . . . . 11 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐵𝑁) ∈ ℕ)
1312nnzd 12087 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐵𝑁) ∈ ℤ)
14 gcd0id 15867 . . . . . . . . . 10 ((𝐵𝑁) ∈ ℤ → (0 gcd (𝐵𝑁)) = (abs‘(𝐵𝑁)))
1513, 14syl 17 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (0 gcd (𝐵𝑁)) = (abs‘(𝐵𝑁)))
1612nnred 11653 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐵𝑁) ∈ ℝ)
17 0red 10644 . . . . . . . . . . 11 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 ∈ ℝ)
1812nngt0d 11687 . . . . . . . . . . 11 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 < (𝐵𝑁))
1917, 16, 18ltled 10788 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 ≤ (𝐵𝑁))
2016, 19absidd 14782 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (abs‘(𝐵𝑁)) = (𝐵𝑁))
218, 15, 203eqtrrd 2861 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐵𝑁) = ((0↑𝑁) gcd (𝐵𝑁)))
22 oveq1 7163 . . . . . . . . . . 11 (𝐴 = 0 → (𝐴 gcd 𝐵) = (0 gcd 𝐵))
23223ad2ant1 1129 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 gcd 𝐵) = (0 gcd 𝐵))
24 nnz 12005 . . . . . . . . . . . 12 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
25243ad2ant2 1130 . . . . . . . . . . 11 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝐵 ∈ ℤ)
26 gcd0id 15867 . . . . . . . . . . 11 (𝐵 ∈ ℤ → (0 gcd 𝐵) = (abs‘𝐵))
2725, 26syl 17 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (0 gcd 𝐵) = (abs‘𝐵))
28 nnre 11645 . . . . . . . . . . . 12 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
29 0red 10644 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ → 0 ∈ ℝ)
30 nngt0 11669 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ → 0 < 𝐵)
3129, 28, 30ltled 10788 . . . . . . . . . . . 12 (𝐵 ∈ ℕ → 0 ≤ 𝐵)
3228, 31absidd 14782 . . . . . . . . . . 11 (𝐵 ∈ ℕ → (abs‘𝐵) = 𝐵)
33323ad2ant2 1130 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (abs‘𝐵) = 𝐵)
3423, 27, 333eqtrd 2860 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 gcd 𝐵) = 𝐵)
3534oveq1d 7171 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵)↑𝑁) = (𝐵𝑁))
36 oveq1 7163 . . . . . . . . . 10 (𝐴 = 0 → (𝐴𝑁) = (0↑𝑁))
37363ad2ant1 1129 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) = (0↑𝑁))
3837oveq1d 7171 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) gcd (𝐵𝑁)) = ((0↑𝑁) gcd (𝐵𝑁)))
3921, 35, 383eqtr4d 2866 . . . . . . 7 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁)))
40393expia 1117 . . . . . 6 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (𝑁 ∈ ℕ → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
41 1z 12013 . . . . . . . . . 10 1 ∈ ℤ
42 gcd1 15876 . . . . . . . . . 10 (1 ∈ ℤ → (1 gcd 1) = 1)
4341, 42ax-mp 5 . . . . . . . . 9 (1 gcd 1) = 1
4443eqcomi 2830 . . . . . . . 8 1 = (1 gcd 1)
45 simp1 1132 . . . . . . . . . . . 12 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → 𝐴 = 0)
4645oveq1d 7171 . . . . . . . . . . 11 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (𝐴 gcd 𝐵) = (0 gcd 𝐵))
47 simp2 1133 . . . . . . . . . . . . 13 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → 𝐵 ∈ ℕ)
4847nnzd 12087 . . . . . . . . . . . 12 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → 𝐵 ∈ ℤ)
4948, 26syl 17 . . . . . . . . . . 11 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (0 gcd 𝐵) = (abs‘𝐵))
50323ad2ant2 1130 . . . . . . . . . . 11 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (abs‘𝐵) = 𝐵)
5146, 49, 503eqtrd 2860 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (𝐴 gcd 𝐵) = 𝐵)
52 simp3 1134 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → 𝑁 = 0)
5351, 52oveq12d 7174 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = (𝐵↑0))
5447nncnd 11654 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → 𝐵 ∈ ℂ)
5554exp0d 13505 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (𝐵↑0) = 1)
5653, 55eqtrd 2856 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = 1)
5745, 52oveq12d 7174 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (𝐴𝑁) = (0↑0))
58 0exp0e1 13435 . . . . . . . . . . 11 (0↑0) = 1
5958a1i 11 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (0↑0) = 1)
6057, 59eqtrd 2856 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (𝐴𝑁) = 1)
6152oveq2d 7172 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (𝐵𝑁) = (𝐵↑0))
6261, 55eqtrd 2856 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (𝐵𝑁) = 1)
6360, 62oveq12d 7174 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → ((𝐴𝑁) gcd (𝐵𝑁)) = (1 gcd 1))
6444, 56, 633eqtr4a 2882 . . . . . . 7 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁)))
65643expia 1117 . . . . . 6 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (𝑁 = 0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
6640, 65jaod 855 . . . . 5 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
675, 66syl5bi 244 . . . 4 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (𝑁 ∈ ℕ0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
68 nnnn0 11905 . . . . . . . . . . 11 (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0)
69683ad2ant1 1129 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℕ0)
70103ad2ant3 1131 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0)
7169, 70nn0expcld 13608 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) ∈ ℕ0)
72 nn0gcdid0 15869 . . . . . . . . 9 ((𝐴𝑁) ∈ ℕ0 → ((𝐴𝑁) gcd 0) = (𝐴𝑁))
7371, 72syl 17 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) gcd 0) = (𝐴𝑁))
74 simp2 1133 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → 𝐵 = 0)
7574oveq1d 7171 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐵𝑁) = (0↑𝑁))
7663ad2ant3 1131 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (0↑𝑁) = 0)
7775, 76eqtrd 2856 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐵𝑁) = 0)
7877oveq2d 7172 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) gcd (𝐵𝑁)) = ((𝐴𝑁) gcd 0))
7974oveq2d 7172 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐴 gcd 𝐵) = (𝐴 gcd 0))
80 nn0gcdid0 15869 . . . . . . . . . . . 12 (𝐴 ∈ ℕ0 → (𝐴 gcd 0) = 𝐴)
8168, 80syl 17 . . . . . . . . . . 11 (𝐴 ∈ ℕ → (𝐴 gcd 0) = 𝐴)
82813ad2ant1 1129 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐴 gcd 0) = 𝐴)
8379, 82eqtrd 2856 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐴 gcd 𝐵) = 𝐴)
8483oveq1d 7171 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵)↑𝑁) = (𝐴𝑁))
8573, 78, 843eqtr4rd 2867 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁)))
86853expia 1117 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 = 0) → (𝑁 ∈ ℕ → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
87 nncn 11646 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
8887exp0d 13505 . . . . . . . . . . 11 (𝐴 ∈ ℕ → (𝐴↑0) = 1)
8988, 43syl6eqr 2874 . . . . . . . . . 10 (𝐴 ∈ ℕ → (𝐴↑0) = (1 gcd 1))
9081oveq1d 7171 . . . . . . . . . 10 (𝐴 ∈ ℕ → ((𝐴 gcd 0)↑0) = (𝐴↑0))
9158a1i 11 . . . . . . . . . . 11 (𝐴 ∈ ℕ → (0↑0) = 1)
9288, 91oveq12d 7174 . . . . . . . . . 10 (𝐴 ∈ ℕ → ((𝐴↑0) gcd (0↑0)) = (1 gcd 1))
9389, 90, 923eqtr4d 2866 . . . . . . . . 9 (𝐴 ∈ ℕ → ((𝐴 gcd 0)↑0) = ((𝐴↑0) gcd (0↑0)))
94933ad2ant1 1129 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → ((𝐴 gcd 0)↑0) = ((𝐴↑0) gcd (0↑0)))
95 simp2 1133 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → 𝐵 = 0)
9695oveq2d 7172 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → (𝐴 gcd 𝐵) = (𝐴 gcd 0))
97 simp3 1134 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → 𝑁 = 0)
9896, 97oveq12d 7174 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴 gcd 0)↑0))
9997oveq2d 7172 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → (𝐴𝑁) = (𝐴↑0))
10095, 97oveq12d 7174 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → (𝐵𝑁) = (0↑0))
10199, 100oveq12d 7174 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → ((𝐴𝑁) gcd (𝐵𝑁)) = ((𝐴↑0) gcd (0↑0)))
10294, 98, 1013eqtr4d 2866 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁)))
1031023expia 1117 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 = 0) → (𝑁 = 0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
10486, 103jaod 855 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 = 0) → ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
1055, 104syl5bi 244 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 = 0) → (𝑁 ∈ ℕ0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
106 gcd0val 15846 . . . . . . . . . . 11 (0 gcd 0) = 0
1076, 106syl6eqr 2874 . . . . . . . . . 10 (𝑁 ∈ ℕ → (0↑𝑁) = (0 gcd 0))
108106a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (0 gcd 0) = 0)
109108oveq1d 7171 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((0 gcd 0)↑𝑁) = (0↑𝑁))
1106, 6oveq12d 7174 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((0↑𝑁) gcd (0↑𝑁)) = (0 gcd 0))
111107, 109, 1103eqtr4d 2866 . . . . . . . . 9 (𝑁 ∈ ℕ → ((0 gcd 0)↑𝑁) = ((0↑𝑁) gcd (0↑𝑁)))
1121113ad2ant3 1131 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → ((0 gcd 0)↑𝑁) = ((0↑𝑁) gcd (0↑𝑁)))
113 simp1 1132 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → 𝐴 = 0)
114 simp2 1133 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → 𝐵 = 0)
115113, 114oveq12d 7174 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐴 gcd 𝐵) = (0 gcd 0))
116115oveq1d 7171 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵)↑𝑁) = ((0 gcd 0)↑𝑁))
117113oveq1d 7171 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) = (0↑𝑁))
118114oveq1d 7171 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐵𝑁) = (0↑𝑁))
119117, 118oveq12d 7174 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) gcd (𝐵𝑁)) = ((0↑𝑁) gcd (0↑𝑁)))
120112, 116, 1193eqtr4d 2866 . . . . . . 7 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁)))
1211203expia 1117 . . . . . 6 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝑁 ∈ ℕ → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
12258, 43eqtr4i 2847 . . . . . . . . 9 (0↑0) = (1 gcd 1)
123106oveq1i 7166 . . . . . . . . 9 ((0 gcd 0)↑0) = (0↑0)
12458, 58oveq12i 7168 . . . . . . . . 9 ((0↑0) gcd (0↑0)) = (1 gcd 1)
125122, 123, 1243eqtr4i 2854 . . . . . . . 8 ((0 gcd 0)↑0) = ((0↑0) gcd (0↑0))
126 simp1 1132 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → 𝐴 = 0)
127 simp2 1133 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → 𝐵 = 0)
128126, 127oveq12d 7174 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → (𝐴 gcd 𝐵) = (0 gcd 0))
129 simp3 1134 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → 𝑁 = 0)
130128, 129oveq12d 7174 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = ((0 gcd 0)↑0))
131126, 129oveq12d 7174 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → (𝐴𝑁) = (0↑0))
132127, 129oveq12d 7174 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → (𝐵𝑁) = (0↑0))
133131, 132oveq12d 7174 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → ((𝐴𝑁) gcd (𝐵𝑁)) = ((0↑0) gcd (0↑0)))
134125, 130, 1333eqtr4a 2882 . . . . . . 7 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁)))
1351343expia 1117 . . . . . 6 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝑁 = 0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
136121, 135jaod 855 . . . . 5 ((𝐴 = 0 ∧ 𝐵 = 0) → ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
1375, 136syl5bi 244 . . . 4 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝑁 ∈ ℕ0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
1384, 67, 105, 137ccase 1032 . . 3 (((𝐴 ∈ ℕ ∨ 𝐴 = 0) ∧ (𝐵 ∈ ℕ ∨ 𝐵 = 0)) → (𝑁 ∈ ℕ0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
1391, 2, 138syl2anb 599 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝑁 ∈ ℕ0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
1401393impia 1113 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  cfv 6355  (class class class)co 7156  0cc0 10537  1c1 10538  cn 11638  0cn0 11898  cz 11982  cexp 13430  abscabs 14593   gcd cgcd 15843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-dvds 15608  df-gcd 15844
This theorem is referenced by:  zexpgcd  39205
  Copyright terms: Public domain W3C validator