Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nn0expgcd Structured version   Visualization version   GIF version

Theorem nn0expgcd 39492
Description: Exponentiation distributes over GCD. nn0gcdsq 16082 extended to nonnegative exponents. expgcd 39491 extended to nonnegative bases. (Contributed by Steven Nguyen, 5-Apr-2023.)
Assertion
Ref Expression
nn0expgcd ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁)))

Proof of Theorem nn0expgcd
StepHypRef Expression
1 elnn0 11887 . . 3 (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0))
2 elnn0 11887 . . 3 (𝐵 ∈ ℕ0 ↔ (𝐵 ∈ ℕ ∨ 𝐵 = 0))
3 expgcd 39491 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁)))
433expia 1118 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝑁 ∈ ℕ0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
5 elnn0 11887 . . . . 5 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
6 0exp 13460 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (0↑𝑁) = 0)
763ad2ant3 1132 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (0↑𝑁) = 0)
87oveq1d 7150 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((0↑𝑁) gcd (𝐵𝑁)) = (0 gcd (𝐵𝑁)))
9 simp2 1134 . . . . . . . . . . . 12 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝐵 ∈ ℕ)
10 nnnn0 11892 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
11103ad2ant3 1132 . . . . . . . . . . . 12 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0)
129, 11nnexpcld 13602 . . . . . . . . . . 11 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐵𝑁) ∈ ℕ)
1312nnzd 12074 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐵𝑁) ∈ ℤ)
14 gcd0id 15857 . . . . . . . . . 10 ((𝐵𝑁) ∈ ℤ → (0 gcd (𝐵𝑁)) = (abs‘(𝐵𝑁)))
1513, 14syl 17 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (0 gcd (𝐵𝑁)) = (abs‘(𝐵𝑁)))
1612nnred 11640 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐵𝑁) ∈ ℝ)
17 0red 10633 . . . . . . . . . . 11 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 ∈ ℝ)
1812nngt0d 11674 . . . . . . . . . . 11 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 < (𝐵𝑁))
1917, 16, 18ltled 10777 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 ≤ (𝐵𝑁))
2016, 19absidd 14774 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (abs‘(𝐵𝑁)) = (𝐵𝑁))
218, 15, 203eqtrrd 2838 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐵𝑁) = ((0↑𝑁) gcd (𝐵𝑁)))
22 oveq1 7142 . . . . . . . . . . 11 (𝐴 = 0 → (𝐴 gcd 𝐵) = (0 gcd 𝐵))
23223ad2ant1 1130 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 gcd 𝐵) = (0 gcd 𝐵))
24 nnz 11992 . . . . . . . . . . . 12 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
25243ad2ant2 1131 . . . . . . . . . . 11 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝐵 ∈ ℤ)
26 gcd0id 15857 . . . . . . . . . . 11 (𝐵 ∈ ℤ → (0 gcd 𝐵) = (abs‘𝐵))
2725, 26syl 17 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (0 gcd 𝐵) = (abs‘𝐵))
28 nnre 11632 . . . . . . . . . . . 12 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
29 0red 10633 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ → 0 ∈ ℝ)
30 nngt0 11656 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ → 0 < 𝐵)
3129, 28, 30ltled 10777 . . . . . . . . . . . 12 (𝐵 ∈ ℕ → 0 ≤ 𝐵)
3228, 31absidd 14774 . . . . . . . . . . 11 (𝐵 ∈ ℕ → (abs‘𝐵) = 𝐵)
33323ad2ant2 1131 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (abs‘𝐵) = 𝐵)
3423, 27, 333eqtrd 2837 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 gcd 𝐵) = 𝐵)
3534oveq1d 7150 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵)↑𝑁) = (𝐵𝑁))
36 oveq1 7142 . . . . . . . . . 10 (𝐴 = 0 → (𝐴𝑁) = (0↑𝑁))
37363ad2ant1 1130 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) = (0↑𝑁))
3837oveq1d 7150 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) gcd (𝐵𝑁)) = ((0↑𝑁) gcd (𝐵𝑁)))
3921, 35, 383eqtr4d 2843 . . . . . . 7 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁)))
40393expia 1118 . . . . . 6 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (𝑁 ∈ ℕ → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
41 1z 12000 . . . . . . . . . 10 1 ∈ ℤ
42 gcd1 15866 . . . . . . . . . 10 (1 ∈ ℤ → (1 gcd 1) = 1)
4341, 42ax-mp 5 . . . . . . . . 9 (1 gcd 1) = 1
4443eqcomi 2807 . . . . . . . 8 1 = (1 gcd 1)
45 simp1 1133 . . . . . . . . . . . 12 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → 𝐴 = 0)
4645oveq1d 7150 . . . . . . . . . . 11 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (𝐴 gcd 𝐵) = (0 gcd 𝐵))
47 simp2 1134 . . . . . . . . . . . . 13 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → 𝐵 ∈ ℕ)
4847nnzd 12074 . . . . . . . . . . . 12 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → 𝐵 ∈ ℤ)
4948, 26syl 17 . . . . . . . . . . 11 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (0 gcd 𝐵) = (abs‘𝐵))
50323ad2ant2 1131 . . . . . . . . . . 11 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (abs‘𝐵) = 𝐵)
5146, 49, 503eqtrd 2837 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (𝐴 gcd 𝐵) = 𝐵)
52 simp3 1135 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → 𝑁 = 0)
5351, 52oveq12d 7153 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = (𝐵↑0))
5447nncnd 11641 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → 𝐵 ∈ ℂ)
5554exp0d 13500 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (𝐵↑0) = 1)
5653, 55eqtrd 2833 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = 1)
5745, 52oveq12d 7153 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (𝐴𝑁) = (0↑0))
58 0exp0e1 13430 . . . . . . . . . . 11 (0↑0) = 1
5958a1i 11 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (0↑0) = 1)
6057, 59eqtrd 2833 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (𝐴𝑁) = 1)
6152oveq2d 7151 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (𝐵𝑁) = (𝐵↑0))
6261, 55eqtrd 2833 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (𝐵𝑁) = 1)
6360, 62oveq12d 7153 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → ((𝐴𝑁) gcd (𝐵𝑁)) = (1 gcd 1))
6444, 56, 633eqtr4a 2859 . . . . . . 7 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁)))
65643expia 1118 . . . . . 6 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (𝑁 = 0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
6640, 65jaod 856 . . . . 5 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
675, 66syl5bi 245 . . . 4 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (𝑁 ∈ ℕ0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
68 nnnn0 11892 . . . . . . . . . . 11 (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0)
69683ad2ant1 1130 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℕ0)
70103ad2ant3 1132 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0)
7169, 70nn0expcld 13603 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) ∈ ℕ0)
72 nn0gcdid0 15859 . . . . . . . . 9 ((𝐴𝑁) ∈ ℕ0 → ((𝐴𝑁) gcd 0) = (𝐴𝑁))
7371, 72syl 17 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) gcd 0) = (𝐴𝑁))
74 simp2 1134 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → 𝐵 = 0)
7574oveq1d 7150 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐵𝑁) = (0↑𝑁))
7663ad2ant3 1132 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (0↑𝑁) = 0)
7775, 76eqtrd 2833 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐵𝑁) = 0)
7877oveq2d 7151 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) gcd (𝐵𝑁)) = ((𝐴𝑁) gcd 0))
7974oveq2d 7151 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐴 gcd 𝐵) = (𝐴 gcd 0))
80 nn0gcdid0 15859 . . . . . . . . . . . 12 (𝐴 ∈ ℕ0 → (𝐴 gcd 0) = 𝐴)
8168, 80syl 17 . . . . . . . . . . 11 (𝐴 ∈ ℕ → (𝐴 gcd 0) = 𝐴)
82813ad2ant1 1130 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐴 gcd 0) = 𝐴)
8379, 82eqtrd 2833 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐴 gcd 𝐵) = 𝐴)
8483oveq1d 7150 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵)↑𝑁) = (𝐴𝑁))
8573, 78, 843eqtr4rd 2844 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁)))
86853expia 1118 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 = 0) → (𝑁 ∈ ℕ → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
87 nncn 11633 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
8887exp0d 13500 . . . . . . . . . . 11 (𝐴 ∈ ℕ → (𝐴↑0) = 1)
8988, 43eqtr4di 2851 . . . . . . . . . 10 (𝐴 ∈ ℕ → (𝐴↑0) = (1 gcd 1))
9081oveq1d 7150 . . . . . . . . . 10 (𝐴 ∈ ℕ → ((𝐴 gcd 0)↑0) = (𝐴↑0))
9158a1i 11 . . . . . . . . . . 11 (𝐴 ∈ ℕ → (0↑0) = 1)
9288, 91oveq12d 7153 . . . . . . . . . 10 (𝐴 ∈ ℕ → ((𝐴↑0) gcd (0↑0)) = (1 gcd 1))
9389, 90, 923eqtr4d 2843 . . . . . . . . 9 (𝐴 ∈ ℕ → ((𝐴 gcd 0)↑0) = ((𝐴↑0) gcd (0↑0)))
94933ad2ant1 1130 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → ((𝐴 gcd 0)↑0) = ((𝐴↑0) gcd (0↑0)))
95 simp2 1134 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → 𝐵 = 0)
9695oveq2d 7151 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → (𝐴 gcd 𝐵) = (𝐴 gcd 0))
97 simp3 1135 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → 𝑁 = 0)
9896, 97oveq12d 7153 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴 gcd 0)↑0))
9997oveq2d 7151 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → (𝐴𝑁) = (𝐴↑0))
10095, 97oveq12d 7153 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → (𝐵𝑁) = (0↑0))
10199, 100oveq12d 7153 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → ((𝐴𝑁) gcd (𝐵𝑁)) = ((𝐴↑0) gcd (0↑0)))
10294, 98, 1013eqtr4d 2843 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁)))
1031023expia 1118 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 = 0) → (𝑁 = 0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
10486, 103jaod 856 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 = 0) → ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
1055, 104syl5bi 245 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 = 0) → (𝑁 ∈ ℕ0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
106 gcd0val 15836 . . . . . . . . . . 11 (0 gcd 0) = 0
1076, 106eqtr4di 2851 . . . . . . . . . 10 (𝑁 ∈ ℕ → (0↑𝑁) = (0 gcd 0))
108106a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (0 gcd 0) = 0)
109108oveq1d 7150 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((0 gcd 0)↑𝑁) = (0↑𝑁))
1106, 6oveq12d 7153 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((0↑𝑁) gcd (0↑𝑁)) = (0 gcd 0))
111107, 109, 1103eqtr4d 2843 . . . . . . . . 9 (𝑁 ∈ ℕ → ((0 gcd 0)↑𝑁) = ((0↑𝑁) gcd (0↑𝑁)))
1121113ad2ant3 1132 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → ((0 gcd 0)↑𝑁) = ((0↑𝑁) gcd (0↑𝑁)))
113 simp1 1133 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → 𝐴 = 0)
114 simp2 1134 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → 𝐵 = 0)
115113, 114oveq12d 7153 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐴 gcd 𝐵) = (0 gcd 0))
116115oveq1d 7150 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵)↑𝑁) = ((0 gcd 0)↑𝑁))
117113oveq1d 7150 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) = (0↑𝑁))
118114oveq1d 7150 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐵𝑁) = (0↑𝑁))
119117, 118oveq12d 7153 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) gcd (𝐵𝑁)) = ((0↑𝑁) gcd (0↑𝑁)))
120112, 116, 1193eqtr4d 2843 . . . . . . 7 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁)))
1211203expia 1118 . . . . . 6 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝑁 ∈ ℕ → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
12258, 43eqtr4i 2824 . . . . . . . . 9 (0↑0) = (1 gcd 1)
123106oveq1i 7145 . . . . . . . . 9 ((0 gcd 0)↑0) = (0↑0)
12458, 58oveq12i 7147 . . . . . . . . 9 ((0↑0) gcd (0↑0)) = (1 gcd 1)
125122, 123, 1243eqtr4i 2831 . . . . . . . 8 ((0 gcd 0)↑0) = ((0↑0) gcd (0↑0))
126 simp1 1133 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → 𝐴 = 0)
127 simp2 1134 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → 𝐵 = 0)
128126, 127oveq12d 7153 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → (𝐴 gcd 𝐵) = (0 gcd 0))
129 simp3 1135 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → 𝑁 = 0)
130128, 129oveq12d 7153 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = ((0 gcd 0)↑0))
131126, 129oveq12d 7153 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → (𝐴𝑁) = (0↑0))
132127, 129oveq12d 7153 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → (𝐵𝑁) = (0↑0))
133131, 132oveq12d 7153 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → ((𝐴𝑁) gcd (𝐵𝑁)) = ((0↑0) gcd (0↑0)))
134125, 130, 1333eqtr4a 2859 . . . . . . 7 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁)))
1351343expia 1118 . . . . . 6 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝑁 = 0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
136121, 135jaod 856 . . . . 5 ((𝐴 = 0 ∧ 𝐵 = 0) → ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
1375, 136syl5bi 245 . . . 4 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝑁 ∈ ℕ0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
1384, 67, 105, 137ccase 1033 . . 3 (((𝐴 ∈ ℕ ∨ 𝐴 = 0) ∧ (𝐵 ∈ ℕ ∨ 𝐵 = 0)) → (𝑁 ∈ ℕ0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
1391, 2, 138syl2anb 600 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝑁 ∈ ℕ0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
1401393impia 1114 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111  cfv 6324  (class class class)co 7135  0cc0 10526  1c1 10527  cn 11625  0cn0 11885  cz 11969  cexp 13425  abscabs 14585   gcd cgcd 15833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-gcd 15834
This theorem is referenced by:  zexpgcd  39493
  Copyright terms: Public domain W3C validator