Proof of Theorem nn0expgcd
Step | Hyp | Ref
| Expression |
1 | | elnn0 12165 |
. . 3
⊢ (𝐴 ∈ ℕ0
↔ (𝐴 ∈ ℕ
∨ 𝐴 =
0)) |
2 | | elnn0 12165 |
. . 3
⊢ (𝐵 ∈ ℕ0
↔ (𝐵 ∈ ℕ
∨ 𝐵 =
0)) |
3 | | expgcd 40255 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0)
→ ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁))) |
4 | 3 | 3expia 1119 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝑁 ∈ ℕ0
→ ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁)))) |
5 | | elnn0 12165 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
↔ (𝑁 ∈ ℕ
∨ 𝑁 =
0)) |
6 | | 0exp 13746 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ →
(0↑𝑁) =
0) |
7 | 6 | 3ad2ant3 1133 |
. . . . . . . . . 10
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (0↑𝑁) = 0) |
8 | 7 | oveq1d 7270 |
. . . . . . . . 9
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((0↑𝑁) gcd (𝐵↑𝑁)) = (0 gcd (𝐵↑𝑁))) |
9 | | simp2 1135 |
. . . . . . . . . . . 12
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝐵 ∈ ℕ) |
10 | | nnnn0 12170 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ0) |
11 | 10 | 3ad2ant3 1133 |
. . . . . . . . . . . 12
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈
ℕ0) |
12 | 9, 11 | nnexpcld 13888 |
. . . . . . . . . . 11
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐵↑𝑁) ∈ ℕ) |
13 | 12 | nnzd 12354 |
. . . . . . . . . 10
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐵↑𝑁) ∈ ℤ) |
14 | | gcd0id 16154 |
. . . . . . . . . 10
⊢ ((𝐵↑𝑁) ∈ ℤ → (0 gcd (𝐵↑𝑁)) = (abs‘(𝐵↑𝑁))) |
15 | 13, 14 | syl 17 |
. . . . . . . . 9
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (0 gcd (𝐵↑𝑁)) = (abs‘(𝐵↑𝑁))) |
16 | 12 | nnred 11918 |
. . . . . . . . . 10
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐵↑𝑁) ∈ ℝ) |
17 | | 0red 10909 |
. . . . . . . . . . 11
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 ∈
ℝ) |
18 | 12 | nngt0d 11952 |
. . . . . . . . . . 11
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 < (𝐵↑𝑁)) |
19 | 17, 16, 18 | ltled 11053 |
. . . . . . . . . 10
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 ≤ (𝐵↑𝑁)) |
20 | 16, 19 | absidd 15062 |
. . . . . . . . 9
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (abs‘(𝐵↑𝑁)) = (𝐵↑𝑁)) |
21 | 8, 15, 20 | 3eqtrrd 2783 |
. . . . . . . 8
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐵↑𝑁) = ((0↑𝑁) gcd (𝐵↑𝑁))) |
22 | | oveq1 7262 |
. . . . . . . . . . 11
⊢ (𝐴 = 0 → (𝐴 gcd 𝐵) = (0 gcd 𝐵)) |
23 | 22 | 3ad2ant1 1131 |
. . . . . . . . . 10
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 gcd 𝐵) = (0 gcd 𝐵)) |
24 | | nnz 12272 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ ℕ → 𝐵 ∈
ℤ) |
25 | 24 | 3ad2ant2 1132 |
. . . . . . . . . . 11
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝐵 ∈ ℤ) |
26 | | gcd0id 16154 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ ℤ → (0 gcd
𝐵) = (abs‘𝐵)) |
27 | 25, 26 | syl 17 |
. . . . . . . . . 10
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (0 gcd 𝐵) = (abs‘𝐵)) |
28 | | nnre 11910 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ ℕ → 𝐵 ∈
ℝ) |
29 | | 0red 10909 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ ℕ → 0 ∈
ℝ) |
30 | | nngt0 11934 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ ℕ → 0 <
𝐵) |
31 | 29, 28, 30 | ltled 11053 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ ℕ → 0 ≤
𝐵) |
32 | 28, 31 | absidd 15062 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ ℕ →
(abs‘𝐵) = 𝐵) |
33 | 32 | 3ad2ant2 1132 |
. . . . . . . . . 10
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (abs‘𝐵) = 𝐵) |
34 | 23, 27, 33 | 3eqtrd 2782 |
. . . . . . . . 9
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 gcd 𝐵) = 𝐵) |
35 | 34 | oveq1d 7270 |
. . . . . . . 8
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵)↑𝑁) = (𝐵↑𝑁)) |
36 | | oveq1 7262 |
. . . . . . . . . 10
⊢ (𝐴 = 0 → (𝐴↑𝑁) = (0↑𝑁)) |
37 | 36 | 3ad2ant1 1131 |
. . . . . . . . 9
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴↑𝑁) = (0↑𝑁)) |
38 | 37 | oveq1d 7270 |
. . . . . . . 8
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴↑𝑁) gcd (𝐵↑𝑁)) = ((0↑𝑁) gcd (𝐵↑𝑁))) |
39 | 21, 35, 38 | 3eqtr4d 2788 |
. . . . . . 7
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁))) |
40 | 39 | 3expia 1119 |
. . . . . 6
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (𝑁 ∈ ℕ → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁)))) |
41 | | 1z 12280 |
. . . . . . . . . 10
⊢ 1 ∈
ℤ |
42 | | gcd1 16163 |
. . . . . . . . . 10
⊢ (1 ∈
ℤ → (1 gcd 1) = 1) |
43 | 41, 42 | ax-mp 5 |
. . . . . . . . 9
⊢ (1 gcd 1)
= 1 |
44 | 43 | eqcomi 2747 |
. . . . . . . 8
⊢ 1 = (1
gcd 1) |
45 | | simp1 1134 |
. . . . . . . . . . . 12
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → 𝐴 = 0) |
46 | 45 | oveq1d 7270 |
. . . . . . . . . . 11
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (𝐴 gcd 𝐵) = (0 gcd 𝐵)) |
47 | | simp2 1135 |
. . . . . . . . . . . . 13
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → 𝐵 ∈ ℕ) |
48 | 47 | nnzd 12354 |
. . . . . . . . . . . 12
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → 𝐵 ∈ ℤ) |
49 | 48, 26 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (0 gcd 𝐵) = (abs‘𝐵)) |
50 | 32 | 3ad2ant2 1132 |
. . . . . . . . . . 11
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (abs‘𝐵) = 𝐵) |
51 | 46, 49, 50 | 3eqtrd 2782 |
. . . . . . . . . 10
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (𝐴 gcd 𝐵) = 𝐵) |
52 | | simp3 1136 |
. . . . . . . . . 10
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → 𝑁 = 0) |
53 | 51, 52 | oveq12d 7273 |
. . . . . . . . 9
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = (𝐵↑0)) |
54 | 47 | nncnd 11919 |
. . . . . . . . . 10
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → 𝐵 ∈ ℂ) |
55 | 54 | exp0d 13786 |
. . . . . . . . 9
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (𝐵↑0) = 1) |
56 | 53, 55 | eqtrd 2778 |
. . . . . . . 8
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = 1) |
57 | 45, 52 | oveq12d 7273 |
. . . . . . . . . 10
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (𝐴↑𝑁) = (0↑0)) |
58 | | 0exp0e1 13715 |
. . . . . . . . . . 11
⊢
(0↑0) = 1 |
59 | 58 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (0↑0) =
1) |
60 | 57, 59 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (𝐴↑𝑁) = 1) |
61 | 52 | oveq2d 7271 |
. . . . . . . . . 10
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (𝐵↑𝑁) = (𝐵↑0)) |
62 | 61, 55 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (𝐵↑𝑁) = 1) |
63 | 60, 62 | oveq12d 7273 |
. . . . . . . 8
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → ((𝐴↑𝑁) gcd (𝐵↑𝑁)) = (1 gcd 1)) |
64 | 44, 56, 63 | 3eqtr4a 2805 |
. . . . . . 7
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁))) |
65 | 64 | 3expia 1119 |
. . . . . 6
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (𝑁 = 0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁)))) |
66 | 40, 65 | jaod 855 |
. . . . 5
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁)))) |
67 | 5, 66 | syl5bi 241 |
. . . 4
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (𝑁 ∈ ℕ0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁)))) |
68 | | nnnn0 12170 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℕ0) |
69 | 68 | 3ad2ant1 1131 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → 𝐴 ∈
ℕ0) |
70 | 10 | 3ad2ant3 1133 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → 𝑁 ∈
ℕ0) |
71 | 69, 70 | nn0expcld 13889 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐴↑𝑁) ∈
ℕ0) |
72 | | nn0gcdid0 16156 |
. . . . . . . . 9
⊢ ((𝐴↑𝑁) ∈ ℕ0 → ((𝐴↑𝑁) gcd 0) = (𝐴↑𝑁)) |
73 | 71, 72 | syl 17 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → ((𝐴↑𝑁) gcd 0) = (𝐴↑𝑁)) |
74 | | simp2 1135 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → 𝐵 = 0) |
75 | 74 | oveq1d 7270 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐵↑𝑁) = (0↑𝑁)) |
76 | 6 | 3ad2ant3 1133 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (0↑𝑁) = 0) |
77 | 75, 76 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐵↑𝑁) = 0) |
78 | 77 | oveq2d 7271 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → ((𝐴↑𝑁) gcd (𝐵↑𝑁)) = ((𝐴↑𝑁) gcd 0)) |
79 | 74 | oveq2d 7271 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐴 gcd 𝐵) = (𝐴 gcd 0)) |
80 | | nn0gcdid0 16156 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℕ0
→ (𝐴 gcd 0) = 𝐴) |
81 | 68, 80 | syl 17 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℕ → (𝐴 gcd 0) = 𝐴) |
82 | 81 | 3ad2ant1 1131 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐴 gcd 0) = 𝐴) |
83 | 79, 82 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐴 gcd 𝐵) = 𝐴) |
84 | 83 | oveq1d 7270 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵)↑𝑁) = (𝐴↑𝑁)) |
85 | 73, 78, 84 | 3eqtr4rd 2789 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁))) |
86 | 85 | 3expia 1119 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 = 0) → (𝑁 ∈ ℕ → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁)))) |
87 | | nncn 11911 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℂ) |
88 | 87 | exp0d 13786 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℕ → (𝐴↑0) = 1) |
89 | 88, 43 | eqtr4di 2797 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℕ → (𝐴↑0) = (1 gcd
1)) |
90 | 81 | oveq1d 7270 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℕ → ((𝐴 gcd 0)↑0) = (𝐴↑0)) |
91 | 58 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℕ →
(0↑0) = 1) |
92 | 88, 91 | oveq12d 7273 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℕ → ((𝐴↑0) gcd (0↑0)) = (1
gcd 1)) |
93 | 89, 90, 92 | 3eqtr4d 2788 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℕ → ((𝐴 gcd 0)↑0) = ((𝐴↑0) gcd
(0↑0))) |
94 | 93 | 3ad2ant1 1131 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → ((𝐴 gcd 0)↑0) = ((𝐴↑0) gcd (0↑0))) |
95 | | simp2 1135 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → 𝐵 = 0) |
96 | 95 | oveq2d 7271 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → (𝐴 gcd 𝐵) = (𝐴 gcd 0)) |
97 | | simp3 1136 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → 𝑁 = 0) |
98 | 96, 97 | oveq12d 7273 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴 gcd 0)↑0)) |
99 | 97 | oveq2d 7271 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → (𝐴↑𝑁) = (𝐴↑0)) |
100 | 95, 97 | oveq12d 7273 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → (𝐵↑𝑁) = (0↑0)) |
101 | 99, 100 | oveq12d 7273 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → ((𝐴↑𝑁) gcd (𝐵↑𝑁)) = ((𝐴↑0) gcd (0↑0))) |
102 | 94, 98, 101 | 3eqtr4d 2788 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁))) |
103 | 102 | 3expia 1119 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 = 0) → (𝑁 = 0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁)))) |
104 | 86, 103 | jaod 855 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 = 0) → ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁)))) |
105 | 5, 104 | syl5bi 241 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 = 0) → (𝑁 ∈ ℕ0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁)))) |
106 | | gcd0val 16132 |
. . . . . . . . . . 11
⊢ (0 gcd 0)
= 0 |
107 | 6, 106 | eqtr4di 2797 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ →
(0↑𝑁) = (0 gcd
0)) |
108 | 106 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → (0 gcd 0)
= 0) |
109 | 108 | oveq1d 7270 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → ((0 gcd
0)↑𝑁) = (0↑𝑁)) |
110 | 6, 6 | oveq12d 7273 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ →
((0↑𝑁) gcd
(0↑𝑁)) = (0 gcd
0)) |
111 | 107, 109,
110 | 3eqtr4d 2788 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → ((0 gcd
0)↑𝑁) = ((0↑𝑁) gcd (0↑𝑁))) |
112 | 111 | 3ad2ant3 1133 |
. . . . . . . 8
⊢ ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → ((0 gcd
0)↑𝑁) = ((0↑𝑁) gcd (0↑𝑁))) |
113 | | simp1 1134 |
. . . . . . . . . 10
⊢ ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → 𝐴 = 0) |
114 | | simp2 1135 |
. . . . . . . . . 10
⊢ ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → 𝐵 = 0) |
115 | 113, 114 | oveq12d 7273 |
. . . . . . . . 9
⊢ ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐴 gcd 𝐵) = (0 gcd 0)) |
116 | 115 | oveq1d 7270 |
. . . . . . . 8
⊢ ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵)↑𝑁) = ((0 gcd 0)↑𝑁)) |
117 | 113 | oveq1d 7270 |
. . . . . . . . 9
⊢ ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐴↑𝑁) = (0↑𝑁)) |
118 | 114 | oveq1d 7270 |
. . . . . . . . 9
⊢ ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐵↑𝑁) = (0↑𝑁)) |
119 | 117, 118 | oveq12d 7273 |
. . . . . . . 8
⊢ ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → ((𝐴↑𝑁) gcd (𝐵↑𝑁)) = ((0↑𝑁) gcd (0↑𝑁))) |
120 | 112, 116,
119 | 3eqtr4d 2788 |
. . . . . . 7
⊢ ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁))) |
121 | 120 | 3expia 1119 |
. . . . . 6
⊢ ((𝐴 = 0 ∧ 𝐵 = 0) → (𝑁 ∈ ℕ → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁)))) |
122 | 58, 43 | eqtr4i 2769 |
. . . . . . . . 9
⊢
(0↑0) = (1 gcd 1) |
123 | 106 | oveq1i 7265 |
. . . . . . . . 9
⊢ ((0 gcd
0)↑0) = (0↑0) |
124 | 58, 58 | oveq12i 7267 |
. . . . . . . . 9
⊢
((0↑0) gcd (0↑0)) = (1 gcd 1) |
125 | 122, 123,
124 | 3eqtr4i 2776 |
. . . . . . . 8
⊢ ((0 gcd
0)↑0) = ((0↑0) gcd (0↑0)) |
126 | | simp1 1134 |
. . . . . . . . . 10
⊢ ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → 𝐴 = 0) |
127 | | simp2 1135 |
. . . . . . . . . 10
⊢ ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → 𝐵 = 0) |
128 | 126, 127 | oveq12d 7273 |
. . . . . . . . 9
⊢ ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → (𝐴 gcd 𝐵) = (0 gcd 0)) |
129 | | simp3 1136 |
. . . . . . . . 9
⊢ ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → 𝑁 = 0) |
130 | 128, 129 | oveq12d 7273 |
. . . . . . . 8
⊢ ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = ((0 gcd 0)↑0)) |
131 | 126, 129 | oveq12d 7273 |
. . . . . . . . 9
⊢ ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → (𝐴↑𝑁) = (0↑0)) |
132 | 127, 129 | oveq12d 7273 |
. . . . . . . . 9
⊢ ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → (𝐵↑𝑁) = (0↑0)) |
133 | 131, 132 | oveq12d 7273 |
. . . . . . . 8
⊢ ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → ((𝐴↑𝑁) gcd (𝐵↑𝑁)) = ((0↑0) gcd
(0↑0))) |
134 | 125, 130,
133 | 3eqtr4a 2805 |
. . . . . . 7
⊢ ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁))) |
135 | 134 | 3expia 1119 |
. . . . . 6
⊢ ((𝐴 = 0 ∧ 𝐵 = 0) → (𝑁 = 0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁)))) |
136 | 121, 135 | jaod 855 |
. . . . 5
⊢ ((𝐴 = 0 ∧ 𝐵 = 0) → ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁)))) |
137 | 5, 136 | syl5bi 241 |
. . . 4
⊢ ((𝐴 = 0 ∧ 𝐵 = 0) → (𝑁 ∈ ℕ0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁)))) |
138 | 4, 67, 105, 137 | ccase 1034 |
. . 3
⊢ (((𝐴 ∈ ℕ ∨ 𝐴 = 0) ∧ (𝐵 ∈ ℕ ∨ 𝐵 = 0)) → (𝑁 ∈ ℕ0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁)))) |
139 | 1, 2, 138 | syl2anb 597 |
. 2
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → (𝑁 ∈ ℕ0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁)))) |
140 | 139 | 3impia 1115 |
1
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0 ∧ 𝑁
∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁))) |