Proof of Theorem nn0expgcd
| Step | Hyp | Ref
| Expression |
| 1 | | elnn0 12530 |
. . 3
⊢ (𝐴 ∈ ℕ0
↔ (𝐴 ∈ ℕ
∨ 𝐴 =
0)) |
| 2 | | elnn0 12530 |
. . 3
⊢ (𝐵 ∈ ℕ0
↔ (𝐵 ∈ ℕ
∨ 𝐵 =
0)) |
| 3 | | expgcd 16601 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0)
→ ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁))) |
| 4 | 3 | 3expia 1121 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝑁 ∈ ℕ0
→ ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁)))) |
| 5 | | elnn0 12530 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
↔ (𝑁 ∈ ℕ
∨ 𝑁 =
0)) |
| 6 | | 0exp 14139 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ →
(0↑𝑁) =
0) |
| 7 | 6 | 3ad2ant3 1135 |
. . . . . . . . . 10
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (0↑𝑁) = 0) |
| 8 | 7 | oveq1d 7447 |
. . . . . . . . 9
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((0↑𝑁) gcd (𝐵↑𝑁)) = (0 gcd (𝐵↑𝑁))) |
| 9 | | simp2 1137 |
. . . . . . . . . . . 12
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝐵 ∈ ℕ) |
| 10 | | nnnn0 12535 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ0) |
| 11 | 10 | 3ad2ant3 1135 |
. . . . . . . . . . . 12
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈
ℕ0) |
| 12 | 9, 11 | nnexpcld 14285 |
. . . . . . . . . . 11
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐵↑𝑁) ∈ ℕ) |
| 13 | 12 | nnzd 12642 |
. . . . . . . . . 10
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐵↑𝑁) ∈ ℤ) |
| 14 | | gcd0id 16557 |
. . . . . . . . . 10
⊢ ((𝐵↑𝑁) ∈ ℤ → (0 gcd (𝐵↑𝑁)) = (abs‘(𝐵↑𝑁))) |
| 15 | 13, 14 | syl 17 |
. . . . . . . . 9
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (0 gcd (𝐵↑𝑁)) = (abs‘(𝐵↑𝑁))) |
| 16 | 12 | nnred 12282 |
. . . . . . . . . 10
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐵↑𝑁) ∈ ℝ) |
| 17 | | 0red 11265 |
. . . . . . . . . . 11
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 ∈
ℝ) |
| 18 | 12 | nngt0d 12316 |
. . . . . . . . . . 11
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 < (𝐵↑𝑁)) |
| 19 | 17, 16, 18 | ltled 11410 |
. . . . . . . . . 10
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 ≤ (𝐵↑𝑁)) |
| 20 | 16, 19 | absidd 15462 |
. . . . . . . . 9
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (abs‘(𝐵↑𝑁)) = (𝐵↑𝑁)) |
| 21 | 8, 15, 20 | 3eqtrrd 2781 |
. . . . . . . 8
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐵↑𝑁) = ((0↑𝑁) gcd (𝐵↑𝑁))) |
| 22 | | oveq1 7439 |
. . . . . . . . . . 11
⊢ (𝐴 = 0 → (𝐴 gcd 𝐵) = (0 gcd 𝐵)) |
| 23 | 22 | 3ad2ant1 1133 |
. . . . . . . . . 10
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 gcd 𝐵) = (0 gcd 𝐵)) |
| 24 | | nnz 12636 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ ℕ → 𝐵 ∈
ℤ) |
| 25 | 24 | 3ad2ant2 1134 |
. . . . . . . . . . 11
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝐵 ∈ ℤ) |
| 26 | | gcd0id 16557 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ ℤ → (0 gcd
𝐵) = (abs‘𝐵)) |
| 27 | 25, 26 | syl 17 |
. . . . . . . . . 10
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (0 gcd 𝐵) = (abs‘𝐵)) |
| 28 | | nnre 12274 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ ℕ → 𝐵 ∈
ℝ) |
| 29 | | 0red 11265 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ ℕ → 0 ∈
ℝ) |
| 30 | | nngt0 12298 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ ℕ → 0 <
𝐵) |
| 31 | 29, 28, 30 | ltled 11410 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ ℕ → 0 ≤
𝐵) |
| 32 | 28, 31 | absidd 15462 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ ℕ →
(abs‘𝐵) = 𝐵) |
| 33 | 32 | 3ad2ant2 1134 |
. . . . . . . . . 10
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (abs‘𝐵) = 𝐵) |
| 34 | 23, 27, 33 | 3eqtrd 2780 |
. . . . . . . . 9
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 gcd 𝐵) = 𝐵) |
| 35 | 34 | oveq1d 7447 |
. . . . . . . 8
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵)↑𝑁) = (𝐵↑𝑁)) |
| 36 | | oveq1 7439 |
. . . . . . . . . 10
⊢ (𝐴 = 0 → (𝐴↑𝑁) = (0↑𝑁)) |
| 37 | 36 | 3ad2ant1 1133 |
. . . . . . . . 9
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴↑𝑁) = (0↑𝑁)) |
| 38 | 37 | oveq1d 7447 |
. . . . . . . 8
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴↑𝑁) gcd (𝐵↑𝑁)) = ((0↑𝑁) gcd (𝐵↑𝑁))) |
| 39 | 21, 35, 38 | 3eqtr4d 2786 |
. . . . . . 7
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁))) |
| 40 | 39 | 3expia 1121 |
. . . . . 6
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (𝑁 ∈ ℕ → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁)))) |
| 41 | | 1z 12649 |
. . . . . . . . . 10
⊢ 1 ∈
ℤ |
| 42 | | gcd1 16566 |
. . . . . . . . . 10
⊢ (1 ∈
ℤ → (1 gcd 1) = 1) |
| 43 | 41, 42 | ax-mp 5 |
. . . . . . . . 9
⊢ (1 gcd 1)
= 1 |
| 44 | 43 | eqcomi 2745 |
. . . . . . . 8
⊢ 1 = (1
gcd 1) |
| 45 | | simp1 1136 |
. . . . . . . . . . . 12
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → 𝐴 = 0) |
| 46 | 45 | oveq1d 7447 |
. . . . . . . . . . 11
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (𝐴 gcd 𝐵) = (0 gcd 𝐵)) |
| 47 | | simp2 1137 |
. . . . . . . . . . . . 13
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → 𝐵 ∈ ℕ) |
| 48 | 47 | nnzd 12642 |
. . . . . . . . . . . 12
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → 𝐵 ∈ ℤ) |
| 49 | 48, 26 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (0 gcd 𝐵) = (abs‘𝐵)) |
| 50 | 32 | 3ad2ant2 1134 |
. . . . . . . . . . 11
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (abs‘𝐵) = 𝐵) |
| 51 | 46, 49, 50 | 3eqtrd 2780 |
. . . . . . . . . 10
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (𝐴 gcd 𝐵) = 𝐵) |
| 52 | | simp3 1138 |
. . . . . . . . . 10
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → 𝑁 = 0) |
| 53 | 51, 52 | oveq12d 7450 |
. . . . . . . . 9
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = (𝐵↑0)) |
| 54 | 47 | nncnd 12283 |
. . . . . . . . . 10
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → 𝐵 ∈ ℂ) |
| 55 | 54 | exp0d 14181 |
. . . . . . . . 9
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (𝐵↑0) = 1) |
| 56 | 53, 55 | eqtrd 2776 |
. . . . . . . 8
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = 1) |
| 57 | 45, 52 | oveq12d 7450 |
. . . . . . . . . 10
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (𝐴↑𝑁) = (0↑0)) |
| 58 | | 0exp0e1 14108 |
. . . . . . . . . . 11
⊢
(0↑0) = 1 |
| 59 | 58 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (0↑0) =
1) |
| 60 | 57, 59 | eqtrd 2776 |
. . . . . . . . 9
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (𝐴↑𝑁) = 1) |
| 61 | 52 | oveq2d 7448 |
. . . . . . . . . 10
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (𝐵↑𝑁) = (𝐵↑0)) |
| 62 | 61, 55 | eqtrd 2776 |
. . . . . . . . 9
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (𝐵↑𝑁) = 1) |
| 63 | 60, 62 | oveq12d 7450 |
. . . . . . . 8
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → ((𝐴↑𝑁) gcd (𝐵↑𝑁)) = (1 gcd 1)) |
| 64 | 44, 56, 63 | 3eqtr4a 2802 |
. . . . . . 7
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁))) |
| 65 | 64 | 3expia 1121 |
. . . . . 6
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (𝑁 = 0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁)))) |
| 66 | 40, 65 | jaod 859 |
. . . . 5
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁)))) |
| 67 | 5, 66 | biimtrid 242 |
. . . 4
⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (𝑁 ∈ ℕ0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁)))) |
| 68 | | nnnn0 12535 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℕ0) |
| 69 | 68 | 3ad2ant1 1133 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → 𝐴 ∈
ℕ0) |
| 70 | 10 | 3ad2ant3 1135 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → 𝑁 ∈
ℕ0) |
| 71 | 69, 70 | nn0expcld 14286 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐴↑𝑁) ∈
ℕ0) |
| 72 | | nn0gcdid0 16559 |
. . . . . . . . 9
⊢ ((𝐴↑𝑁) ∈ ℕ0 → ((𝐴↑𝑁) gcd 0) = (𝐴↑𝑁)) |
| 73 | 71, 72 | syl 17 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → ((𝐴↑𝑁) gcd 0) = (𝐴↑𝑁)) |
| 74 | | simp2 1137 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → 𝐵 = 0) |
| 75 | 74 | oveq1d 7447 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐵↑𝑁) = (0↑𝑁)) |
| 76 | 6 | 3ad2ant3 1135 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (0↑𝑁) = 0) |
| 77 | 75, 76 | eqtrd 2776 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐵↑𝑁) = 0) |
| 78 | 77 | oveq2d 7448 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → ((𝐴↑𝑁) gcd (𝐵↑𝑁)) = ((𝐴↑𝑁) gcd 0)) |
| 79 | 74 | oveq2d 7448 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐴 gcd 𝐵) = (𝐴 gcd 0)) |
| 80 | | nn0gcdid0 16559 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℕ0
→ (𝐴 gcd 0) = 𝐴) |
| 81 | 68, 80 | syl 17 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℕ → (𝐴 gcd 0) = 𝐴) |
| 82 | 81 | 3ad2ant1 1133 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐴 gcd 0) = 𝐴) |
| 83 | 79, 82 | eqtrd 2776 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐴 gcd 𝐵) = 𝐴) |
| 84 | 83 | oveq1d 7447 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵)↑𝑁) = (𝐴↑𝑁)) |
| 85 | 73, 78, 84 | 3eqtr4rd 2787 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁))) |
| 86 | 85 | 3expia 1121 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 = 0) → (𝑁 ∈ ℕ → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁)))) |
| 87 | | nncn 12275 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℂ) |
| 88 | 87 | exp0d 14181 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℕ → (𝐴↑0) = 1) |
| 89 | 88, 43 | eqtr4di 2794 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℕ → (𝐴↑0) = (1 gcd
1)) |
| 90 | 81 | oveq1d 7447 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℕ → ((𝐴 gcd 0)↑0) = (𝐴↑0)) |
| 91 | 58 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℕ →
(0↑0) = 1) |
| 92 | 88, 91 | oveq12d 7450 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℕ → ((𝐴↑0) gcd (0↑0)) = (1
gcd 1)) |
| 93 | 89, 90, 92 | 3eqtr4d 2786 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℕ → ((𝐴 gcd 0)↑0) = ((𝐴↑0) gcd
(0↑0))) |
| 94 | 93 | 3ad2ant1 1133 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → ((𝐴 gcd 0)↑0) = ((𝐴↑0) gcd (0↑0))) |
| 95 | | simp2 1137 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → 𝐵 = 0) |
| 96 | 95 | oveq2d 7448 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → (𝐴 gcd 𝐵) = (𝐴 gcd 0)) |
| 97 | | simp3 1138 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → 𝑁 = 0) |
| 98 | 96, 97 | oveq12d 7450 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴 gcd 0)↑0)) |
| 99 | 97 | oveq2d 7448 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → (𝐴↑𝑁) = (𝐴↑0)) |
| 100 | 95, 97 | oveq12d 7450 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → (𝐵↑𝑁) = (0↑0)) |
| 101 | 99, 100 | oveq12d 7450 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → ((𝐴↑𝑁) gcd (𝐵↑𝑁)) = ((𝐴↑0) gcd (0↑0))) |
| 102 | 94, 98, 101 | 3eqtr4d 2786 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁))) |
| 103 | 102 | 3expia 1121 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 = 0) → (𝑁 = 0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁)))) |
| 104 | 86, 103 | jaod 859 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 = 0) → ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁)))) |
| 105 | 5, 104 | biimtrid 242 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 = 0) → (𝑁 ∈ ℕ0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁)))) |
| 106 | | gcd0val 16535 |
. . . . . . . . . . 11
⊢ (0 gcd 0)
= 0 |
| 107 | 6, 106 | eqtr4di 2794 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ →
(0↑𝑁) = (0 gcd
0)) |
| 108 | 106 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → (0 gcd 0)
= 0) |
| 109 | 108 | oveq1d 7447 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → ((0 gcd
0)↑𝑁) = (0↑𝑁)) |
| 110 | 6, 6 | oveq12d 7450 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ →
((0↑𝑁) gcd
(0↑𝑁)) = (0 gcd
0)) |
| 111 | 107, 109,
110 | 3eqtr4d 2786 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → ((0 gcd
0)↑𝑁) = ((0↑𝑁) gcd (0↑𝑁))) |
| 112 | 111 | 3ad2ant3 1135 |
. . . . . . . 8
⊢ ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → ((0 gcd
0)↑𝑁) = ((0↑𝑁) gcd (0↑𝑁))) |
| 113 | | simp1 1136 |
. . . . . . . . . 10
⊢ ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → 𝐴 = 0) |
| 114 | | simp2 1137 |
. . . . . . . . . 10
⊢ ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → 𝐵 = 0) |
| 115 | 113, 114 | oveq12d 7450 |
. . . . . . . . 9
⊢ ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐴 gcd 𝐵) = (0 gcd 0)) |
| 116 | 115 | oveq1d 7447 |
. . . . . . . 8
⊢ ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵)↑𝑁) = ((0 gcd 0)↑𝑁)) |
| 117 | 113 | oveq1d 7447 |
. . . . . . . . 9
⊢ ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐴↑𝑁) = (0↑𝑁)) |
| 118 | 114 | oveq1d 7447 |
. . . . . . . . 9
⊢ ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐵↑𝑁) = (0↑𝑁)) |
| 119 | 117, 118 | oveq12d 7450 |
. . . . . . . 8
⊢ ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → ((𝐴↑𝑁) gcd (𝐵↑𝑁)) = ((0↑𝑁) gcd (0↑𝑁))) |
| 120 | 112, 116,
119 | 3eqtr4d 2786 |
. . . . . . 7
⊢ ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁))) |
| 121 | 120 | 3expia 1121 |
. . . . . 6
⊢ ((𝐴 = 0 ∧ 𝐵 = 0) → (𝑁 ∈ ℕ → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁)))) |
| 122 | 58, 43 | eqtr4i 2767 |
. . . . . . . . 9
⊢
(0↑0) = (1 gcd 1) |
| 123 | 106 | oveq1i 7442 |
. . . . . . . . 9
⊢ ((0 gcd
0)↑0) = (0↑0) |
| 124 | 58, 58 | oveq12i 7444 |
. . . . . . . . 9
⊢
((0↑0) gcd (0↑0)) = (1 gcd 1) |
| 125 | 122, 123,
124 | 3eqtr4i 2774 |
. . . . . . . 8
⊢ ((0 gcd
0)↑0) = ((0↑0) gcd (0↑0)) |
| 126 | | simp1 1136 |
. . . . . . . . . 10
⊢ ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → 𝐴 = 0) |
| 127 | | simp2 1137 |
. . . . . . . . . 10
⊢ ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → 𝐵 = 0) |
| 128 | 126, 127 | oveq12d 7450 |
. . . . . . . . 9
⊢ ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → (𝐴 gcd 𝐵) = (0 gcd 0)) |
| 129 | | simp3 1138 |
. . . . . . . . 9
⊢ ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → 𝑁 = 0) |
| 130 | 128, 129 | oveq12d 7450 |
. . . . . . . 8
⊢ ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = ((0 gcd 0)↑0)) |
| 131 | 126, 129 | oveq12d 7450 |
. . . . . . . . 9
⊢ ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → (𝐴↑𝑁) = (0↑0)) |
| 132 | 127, 129 | oveq12d 7450 |
. . . . . . . . 9
⊢ ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → (𝐵↑𝑁) = (0↑0)) |
| 133 | 131, 132 | oveq12d 7450 |
. . . . . . . 8
⊢ ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → ((𝐴↑𝑁) gcd (𝐵↑𝑁)) = ((0↑0) gcd
(0↑0))) |
| 134 | 125, 130,
133 | 3eqtr4a 2802 |
. . . . . . 7
⊢ ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁))) |
| 135 | 134 | 3expia 1121 |
. . . . . 6
⊢ ((𝐴 = 0 ∧ 𝐵 = 0) → (𝑁 = 0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁)))) |
| 136 | 121, 135 | jaod 859 |
. . . . 5
⊢ ((𝐴 = 0 ∧ 𝐵 = 0) → ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁)))) |
| 137 | 5, 136 | biimtrid 242 |
. . . 4
⊢ ((𝐴 = 0 ∧ 𝐵 = 0) → (𝑁 ∈ ℕ0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁)))) |
| 138 | 4, 67, 105, 137 | ccase 1037 |
. . 3
⊢ (((𝐴 ∈ ℕ ∨ 𝐴 = 0) ∧ (𝐵 ∈ ℕ ∨ 𝐵 = 0)) → (𝑁 ∈ ℕ0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁)))) |
| 139 | 1, 2, 138 | syl2anb 598 |
. 2
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → (𝑁 ∈ ℕ0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁)))) |
| 140 | 139 | 3impia 1117 |
1
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0 ∧ 𝑁
∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁))) |