MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0expgcd Structured version   Visualization version   GIF version

Theorem nn0expgcd 16482
Description: Exponentiation distributes over GCD. nn0gcdsq 16670 extended to nonnegative exponents. expgcd 16481 extended to nonnegative bases. (Contributed by Steven Nguyen, 5-Apr-2023.)
Assertion
Ref Expression
nn0expgcd ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁)))

Proof of Theorem nn0expgcd
StepHypRef Expression
1 elnn0 12394 . . 3 (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0))
2 elnn0 12394 . . 3 (𝐵 ∈ ℕ0 ↔ (𝐵 ∈ ℕ ∨ 𝐵 = 0))
3 expgcd 16481 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁)))
433expia 1121 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝑁 ∈ ℕ0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
5 elnn0 12394 . . . . 5 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
6 0exp 14011 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (0↑𝑁) = 0)
763ad2ant3 1135 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (0↑𝑁) = 0)
87oveq1d 7370 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((0↑𝑁) gcd (𝐵𝑁)) = (0 gcd (𝐵𝑁)))
9 simp2 1137 . . . . . . . . . . . 12 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝐵 ∈ ℕ)
10 nnnn0 12399 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
11103ad2ant3 1135 . . . . . . . . . . . 12 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0)
129, 11nnexpcld 14159 . . . . . . . . . . 11 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐵𝑁) ∈ ℕ)
1312nnzd 12505 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐵𝑁) ∈ ℤ)
14 gcd0id 16437 . . . . . . . . . 10 ((𝐵𝑁) ∈ ℤ → (0 gcd (𝐵𝑁)) = (abs‘(𝐵𝑁)))
1513, 14syl 17 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (0 gcd (𝐵𝑁)) = (abs‘(𝐵𝑁)))
1612nnred 12151 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐵𝑁) ∈ ℝ)
17 0red 11126 . . . . . . . . . . 11 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 ∈ ℝ)
1812nngt0d 12185 . . . . . . . . . . 11 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 < (𝐵𝑁))
1917, 16, 18ltled 11272 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 ≤ (𝐵𝑁))
2016, 19absidd 15337 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (abs‘(𝐵𝑁)) = (𝐵𝑁))
218, 15, 203eqtrrd 2773 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐵𝑁) = ((0↑𝑁) gcd (𝐵𝑁)))
22 oveq1 7362 . . . . . . . . . . 11 (𝐴 = 0 → (𝐴 gcd 𝐵) = (0 gcd 𝐵))
23223ad2ant1 1133 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 gcd 𝐵) = (0 gcd 𝐵))
24 nnz 12500 . . . . . . . . . . . 12 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
25243ad2ant2 1134 . . . . . . . . . . 11 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝐵 ∈ ℤ)
26 gcd0id 16437 . . . . . . . . . . 11 (𝐵 ∈ ℤ → (0 gcd 𝐵) = (abs‘𝐵))
2725, 26syl 17 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (0 gcd 𝐵) = (abs‘𝐵))
28 nnre 12143 . . . . . . . . . . . 12 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
29 0red 11126 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ → 0 ∈ ℝ)
30 nngt0 12167 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ → 0 < 𝐵)
3129, 28, 30ltled 11272 . . . . . . . . . . . 12 (𝐵 ∈ ℕ → 0 ≤ 𝐵)
3228, 31absidd 15337 . . . . . . . . . . 11 (𝐵 ∈ ℕ → (abs‘𝐵) = 𝐵)
33323ad2ant2 1134 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (abs‘𝐵) = 𝐵)
3423, 27, 333eqtrd 2772 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 gcd 𝐵) = 𝐵)
3534oveq1d 7370 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵)↑𝑁) = (𝐵𝑁))
36 oveq1 7362 . . . . . . . . . 10 (𝐴 = 0 → (𝐴𝑁) = (0↑𝑁))
37363ad2ant1 1133 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) = (0↑𝑁))
3837oveq1d 7370 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) gcd (𝐵𝑁)) = ((0↑𝑁) gcd (𝐵𝑁)))
3921, 35, 383eqtr4d 2778 . . . . . . 7 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁)))
40393expia 1121 . . . . . 6 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (𝑁 ∈ ℕ → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
41 1z 12512 . . . . . . . . . 10 1 ∈ ℤ
42 gcd1 16446 . . . . . . . . . 10 (1 ∈ ℤ → (1 gcd 1) = 1)
4341, 42ax-mp 5 . . . . . . . . 9 (1 gcd 1) = 1
4443eqcomi 2742 . . . . . . . 8 1 = (1 gcd 1)
45 simp1 1136 . . . . . . . . . . . 12 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → 𝐴 = 0)
4645oveq1d 7370 . . . . . . . . . . 11 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (𝐴 gcd 𝐵) = (0 gcd 𝐵))
47 simp2 1137 . . . . . . . . . . . . 13 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → 𝐵 ∈ ℕ)
4847nnzd 12505 . . . . . . . . . . . 12 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → 𝐵 ∈ ℤ)
4948, 26syl 17 . . . . . . . . . . 11 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (0 gcd 𝐵) = (abs‘𝐵))
50323ad2ant2 1134 . . . . . . . . . . 11 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (abs‘𝐵) = 𝐵)
5146, 49, 503eqtrd 2772 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (𝐴 gcd 𝐵) = 𝐵)
52 simp3 1138 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → 𝑁 = 0)
5351, 52oveq12d 7373 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = (𝐵↑0))
5447nncnd 12152 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → 𝐵 ∈ ℂ)
5554exp0d 14054 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (𝐵↑0) = 1)
5653, 55eqtrd 2768 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = 1)
5745, 52oveq12d 7373 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (𝐴𝑁) = (0↑0))
58 0exp0e1 13980 . . . . . . . . . . 11 (0↑0) = 1
5958a1i 11 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (0↑0) = 1)
6057, 59eqtrd 2768 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (𝐴𝑁) = 1)
6152oveq2d 7371 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (𝐵𝑁) = (𝐵↑0))
6261, 55eqtrd 2768 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (𝐵𝑁) = 1)
6360, 62oveq12d 7373 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → ((𝐴𝑁) gcd (𝐵𝑁)) = (1 gcd 1))
6444, 56, 633eqtr4a 2794 . . . . . . 7 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁)))
65643expia 1121 . . . . . 6 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (𝑁 = 0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
6640, 65jaod 859 . . . . 5 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
675, 66biimtrid 242 . . . 4 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (𝑁 ∈ ℕ0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
68 nnnn0 12399 . . . . . . . . . . 11 (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0)
69683ad2ant1 1133 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℕ0)
70103ad2ant3 1135 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0)
7169, 70nn0expcld 14160 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) ∈ ℕ0)
72 nn0gcdid0 16439 . . . . . . . . 9 ((𝐴𝑁) ∈ ℕ0 → ((𝐴𝑁) gcd 0) = (𝐴𝑁))
7371, 72syl 17 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) gcd 0) = (𝐴𝑁))
74 simp2 1137 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → 𝐵 = 0)
7574oveq1d 7370 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐵𝑁) = (0↑𝑁))
7663ad2ant3 1135 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (0↑𝑁) = 0)
7775, 76eqtrd 2768 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐵𝑁) = 0)
7877oveq2d 7371 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) gcd (𝐵𝑁)) = ((𝐴𝑁) gcd 0))
7974oveq2d 7371 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐴 gcd 𝐵) = (𝐴 gcd 0))
80 nn0gcdid0 16439 . . . . . . . . . . . 12 (𝐴 ∈ ℕ0 → (𝐴 gcd 0) = 𝐴)
8168, 80syl 17 . . . . . . . . . . 11 (𝐴 ∈ ℕ → (𝐴 gcd 0) = 𝐴)
82813ad2ant1 1133 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐴 gcd 0) = 𝐴)
8379, 82eqtrd 2768 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐴 gcd 𝐵) = 𝐴)
8483oveq1d 7370 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵)↑𝑁) = (𝐴𝑁))
8573, 78, 843eqtr4rd 2779 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁)))
86853expia 1121 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 = 0) → (𝑁 ∈ ℕ → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
87 nncn 12144 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
8887exp0d 14054 . . . . . . . . . . 11 (𝐴 ∈ ℕ → (𝐴↑0) = 1)
8988, 43eqtr4di 2786 . . . . . . . . . 10 (𝐴 ∈ ℕ → (𝐴↑0) = (1 gcd 1))
9081oveq1d 7370 . . . . . . . . . 10 (𝐴 ∈ ℕ → ((𝐴 gcd 0)↑0) = (𝐴↑0))
9158a1i 11 . . . . . . . . . . 11 (𝐴 ∈ ℕ → (0↑0) = 1)
9288, 91oveq12d 7373 . . . . . . . . . 10 (𝐴 ∈ ℕ → ((𝐴↑0) gcd (0↑0)) = (1 gcd 1))
9389, 90, 923eqtr4d 2778 . . . . . . . . 9 (𝐴 ∈ ℕ → ((𝐴 gcd 0)↑0) = ((𝐴↑0) gcd (0↑0)))
94933ad2ant1 1133 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → ((𝐴 gcd 0)↑0) = ((𝐴↑0) gcd (0↑0)))
95 simp2 1137 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → 𝐵 = 0)
9695oveq2d 7371 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → (𝐴 gcd 𝐵) = (𝐴 gcd 0))
97 simp3 1138 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → 𝑁 = 0)
9896, 97oveq12d 7373 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴 gcd 0)↑0))
9997oveq2d 7371 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → (𝐴𝑁) = (𝐴↑0))
10095, 97oveq12d 7373 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → (𝐵𝑁) = (0↑0))
10199, 100oveq12d 7373 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → ((𝐴𝑁) gcd (𝐵𝑁)) = ((𝐴↑0) gcd (0↑0)))
10294, 98, 1013eqtr4d 2778 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁)))
1031023expia 1121 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 = 0) → (𝑁 = 0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
10486, 103jaod 859 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 = 0) → ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
1055, 104biimtrid 242 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 = 0) → (𝑁 ∈ ℕ0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
106 gcd0val 16415 . . . . . . . . . . 11 (0 gcd 0) = 0
1076, 106eqtr4di 2786 . . . . . . . . . 10 (𝑁 ∈ ℕ → (0↑𝑁) = (0 gcd 0))
108106a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (0 gcd 0) = 0)
109108oveq1d 7370 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((0 gcd 0)↑𝑁) = (0↑𝑁))
1106, 6oveq12d 7373 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((0↑𝑁) gcd (0↑𝑁)) = (0 gcd 0))
111107, 109, 1103eqtr4d 2778 . . . . . . . . 9 (𝑁 ∈ ℕ → ((0 gcd 0)↑𝑁) = ((0↑𝑁) gcd (0↑𝑁)))
1121113ad2ant3 1135 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → ((0 gcd 0)↑𝑁) = ((0↑𝑁) gcd (0↑𝑁)))
113 simp1 1136 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → 𝐴 = 0)
114 simp2 1137 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → 𝐵 = 0)
115113, 114oveq12d 7373 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐴 gcd 𝐵) = (0 gcd 0))
116115oveq1d 7370 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵)↑𝑁) = ((0 gcd 0)↑𝑁))
117113oveq1d 7370 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) = (0↑𝑁))
118114oveq1d 7370 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐵𝑁) = (0↑𝑁))
119117, 118oveq12d 7373 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) gcd (𝐵𝑁)) = ((0↑𝑁) gcd (0↑𝑁)))
120112, 116, 1193eqtr4d 2778 . . . . . . 7 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁)))
1211203expia 1121 . . . . . 6 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝑁 ∈ ℕ → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
12258, 43eqtr4i 2759 . . . . . . . . 9 (0↑0) = (1 gcd 1)
123106oveq1i 7365 . . . . . . . . 9 ((0 gcd 0)↑0) = (0↑0)
12458, 58oveq12i 7367 . . . . . . . . 9 ((0↑0) gcd (0↑0)) = (1 gcd 1)
125122, 123, 1243eqtr4i 2766 . . . . . . . 8 ((0 gcd 0)↑0) = ((0↑0) gcd (0↑0))
126 simp1 1136 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → 𝐴 = 0)
127 simp2 1137 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → 𝐵 = 0)
128126, 127oveq12d 7373 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → (𝐴 gcd 𝐵) = (0 gcd 0))
129 simp3 1138 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → 𝑁 = 0)
130128, 129oveq12d 7373 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = ((0 gcd 0)↑0))
131126, 129oveq12d 7373 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → (𝐴𝑁) = (0↑0))
132127, 129oveq12d 7373 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → (𝐵𝑁) = (0↑0))
133131, 132oveq12d 7373 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → ((𝐴𝑁) gcd (𝐵𝑁)) = ((0↑0) gcd (0↑0)))
134125, 130, 1333eqtr4a 2794 . . . . . . 7 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁)))
1351343expia 1121 . . . . . 6 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝑁 = 0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
136121, 135jaod 859 . . . . 5 ((𝐴 = 0 ∧ 𝐵 = 0) → ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
1375, 136biimtrid 242 . . . 4 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝑁 ∈ ℕ0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
1384, 67, 105, 137ccase 1037 . . 3 (((𝐴 ∈ ℕ ∨ 𝐴 = 0) ∧ (𝐵 ∈ ℕ ∨ 𝐵 = 0)) → (𝑁 ∈ ℕ0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
1391, 2, 138syl2anb 598 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝑁 ∈ ℕ0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
1401393impia 1117 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2113  cfv 6489  (class class class)co 7355  0cc0 11017  1c1 11018  cn 12136  0cn0 12392  cz 12479  cexp 13975  abscabs 15148   gcd cgcd 16412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9337  df-inf 9338  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-n0 12393  df-z 12480  df-uz 12743  df-rp 12897  df-fl 13703  df-mod 13781  df-seq 13916  df-exp 13976  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-dvds 16171  df-gcd 16413
This theorem is referenced by:  zexpgcd  16483
  Copyright terms: Public domain W3C validator