MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0expgcd Structured version   Visualization version   GIF version

Theorem nn0expgcd 16602
Description: Exponentiation distributes over GCD. nn0gcdsq 16790 extended to nonnegative exponents. expgcd 16601 extended to nonnegative bases. (Contributed by Steven Nguyen, 5-Apr-2023.)
Assertion
Ref Expression
nn0expgcd ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁)))

Proof of Theorem nn0expgcd
StepHypRef Expression
1 elnn0 12530 . . 3 (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0))
2 elnn0 12530 . . 3 (𝐵 ∈ ℕ0 ↔ (𝐵 ∈ ℕ ∨ 𝐵 = 0))
3 expgcd 16601 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁)))
433expia 1121 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝑁 ∈ ℕ0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
5 elnn0 12530 . . . . 5 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
6 0exp 14139 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (0↑𝑁) = 0)
763ad2ant3 1135 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (0↑𝑁) = 0)
87oveq1d 7447 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((0↑𝑁) gcd (𝐵𝑁)) = (0 gcd (𝐵𝑁)))
9 simp2 1137 . . . . . . . . . . . 12 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝐵 ∈ ℕ)
10 nnnn0 12535 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
11103ad2ant3 1135 . . . . . . . . . . . 12 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0)
129, 11nnexpcld 14285 . . . . . . . . . . 11 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐵𝑁) ∈ ℕ)
1312nnzd 12642 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐵𝑁) ∈ ℤ)
14 gcd0id 16557 . . . . . . . . . 10 ((𝐵𝑁) ∈ ℤ → (0 gcd (𝐵𝑁)) = (abs‘(𝐵𝑁)))
1513, 14syl 17 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (0 gcd (𝐵𝑁)) = (abs‘(𝐵𝑁)))
1612nnred 12282 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐵𝑁) ∈ ℝ)
17 0red 11265 . . . . . . . . . . 11 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 ∈ ℝ)
1812nngt0d 12316 . . . . . . . . . . 11 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 < (𝐵𝑁))
1917, 16, 18ltled 11410 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 ≤ (𝐵𝑁))
2016, 19absidd 15462 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (abs‘(𝐵𝑁)) = (𝐵𝑁))
218, 15, 203eqtrrd 2781 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐵𝑁) = ((0↑𝑁) gcd (𝐵𝑁)))
22 oveq1 7439 . . . . . . . . . . 11 (𝐴 = 0 → (𝐴 gcd 𝐵) = (0 gcd 𝐵))
23223ad2ant1 1133 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 gcd 𝐵) = (0 gcd 𝐵))
24 nnz 12636 . . . . . . . . . . . 12 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
25243ad2ant2 1134 . . . . . . . . . . 11 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝐵 ∈ ℤ)
26 gcd0id 16557 . . . . . . . . . . 11 (𝐵 ∈ ℤ → (0 gcd 𝐵) = (abs‘𝐵))
2725, 26syl 17 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (0 gcd 𝐵) = (abs‘𝐵))
28 nnre 12274 . . . . . . . . . . . 12 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
29 0red 11265 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ → 0 ∈ ℝ)
30 nngt0 12298 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ → 0 < 𝐵)
3129, 28, 30ltled 11410 . . . . . . . . . . . 12 (𝐵 ∈ ℕ → 0 ≤ 𝐵)
3228, 31absidd 15462 . . . . . . . . . . 11 (𝐵 ∈ ℕ → (abs‘𝐵) = 𝐵)
33323ad2ant2 1134 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (abs‘𝐵) = 𝐵)
3423, 27, 333eqtrd 2780 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 gcd 𝐵) = 𝐵)
3534oveq1d 7447 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵)↑𝑁) = (𝐵𝑁))
36 oveq1 7439 . . . . . . . . . 10 (𝐴 = 0 → (𝐴𝑁) = (0↑𝑁))
37363ad2ant1 1133 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) = (0↑𝑁))
3837oveq1d 7447 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) gcd (𝐵𝑁)) = ((0↑𝑁) gcd (𝐵𝑁)))
3921, 35, 383eqtr4d 2786 . . . . . . 7 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁)))
40393expia 1121 . . . . . 6 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (𝑁 ∈ ℕ → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
41 1z 12649 . . . . . . . . . 10 1 ∈ ℤ
42 gcd1 16566 . . . . . . . . . 10 (1 ∈ ℤ → (1 gcd 1) = 1)
4341, 42ax-mp 5 . . . . . . . . 9 (1 gcd 1) = 1
4443eqcomi 2745 . . . . . . . 8 1 = (1 gcd 1)
45 simp1 1136 . . . . . . . . . . . 12 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → 𝐴 = 0)
4645oveq1d 7447 . . . . . . . . . . 11 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (𝐴 gcd 𝐵) = (0 gcd 𝐵))
47 simp2 1137 . . . . . . . . . . . . 13 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → 𝐵 ∈ ℕ)
4847nnzd 12642 . . . . . . . . . . . 12 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → 𝐵 ∈ ℤ)
4948, 26syl 17 . . . . . . . . . . 11 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (0 gcd 𝐵) = (abs‘𝐵))
50323ad2ant2 1134 . . . . . . . . . . 11 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (abs‘𝐵) = 𝐵)
5146, 49, 503eqtrd 2780 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (𝐴 gcd 𝐵) = 𝐵)
52 simp3 1138 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → 𝑁 = 0)
5351, 52oveq12d 7450 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = (𝐵↑0))
5447nncnd 12283 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → 𝐵 ∈ ℂ)
5554exp0d 14181 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (𝐵↑0) = 1)
5653, 55eqtrd 2776 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = 1)
5745, 52oveq12d 7450 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (𝐴𝑁) = (0↑0))
58 0exp0e1 14108 . . . . . . . . . . 11 (0↑0) = 1
5958a1i 11 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (0↑0) = 1)
6057, 59eqtrd 2776 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (𝐴𝑁) = 1)
6152oveq2d 7448 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (𝐵𝑁) = (𝐵↑0))
6261, 55eqtrd 2776 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (𝐵𝑁) = 1)
6360, 62oveq12d 7450 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → ((𝐴𝑁) gcd (𝐵𝑁)) = (1 gcd 1))
6444, 56, 633eqtr4a 2802 . . . . . . 7 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁)))
65643expia 1121 . . . . . 6 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (𝑁 = 0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
6640, 65jaod 859 . . . . 5 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
675, 66biimtrid 242 . . . 4 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (𝑁 ∈ ℕ0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
68 nnnn0 12535 . . . . . . . . . . 11 (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0)
69683ad2ant1 1133 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℕ0)
70103ad2ant3 1135 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0)
7169, 70nn0expcld 14286 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) ∈ ℕ0)
72 nn0gcdid0 16559 . . . . . . . . 9 ((𝐴𝑁) ∈ ℕ0 → ((𝐴𝑁) gcd 0) = (𝐴𝑁))
7371, 72syl 17 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) gcd 0) = (𝐴𝑁))
74 simp2 1137 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → 𝐵 = 0)
7574oveq1d 7447 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐵𝑁) = (0↑𝑁))
7663ad2ant3 1135 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (0↑𝑁) = 0)
7775, 76eqtrd 2776 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐵𝑁) = 0)
7877oveq2d 7448 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) gcd (𝐵𝑁)) = ((𝐴𝑁) gcd 0))
7974oveq2d 7448 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐴 gcd 𝐵) = (𝐴 gcd 0))
80 nn0gcdid0 16559 . . . . . . . . . . . 12 (𝐴 ∈ ℕ0 → (𝐴 gcd 0) = 𝐴)
8168, 80syl 17 . . . . . . . . . . 11 (𝐴 ∈ ℕ → (𝐴 gcd 0) = 𝐴)
82813ad2ant1 1133 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐴 gcd 0) = 𝐴)
8379, 82eqtrd 2776 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐴 gcd 𝐵) = 𝐴)
8483oveq1d 7447 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵)↑𝑁) = (𝐴𝑁))
8573, 78, 843eqtr4rd 2787 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁)))
86853expia 1121 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 = 0) → (𝑁 ∈ ℕ → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
87 nncn 12275 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
8887exp0d 14181 . . . . . . . . . . 11 (𝐴 ∈ ℕ → (𝐴↑0) = 1)
8988, 43eqtr4di 2794 . . . . . . . . . 10 (𝐴 ∈ ℕ → (𝐴↑0) = (1 gcd 1))
9081oveq1d 7447 . . . . . . . . . 10 (𝐴 ∈ ℕ → ((𝐴 gcd 0)↑0) = (𝐴↑0))
9158a1i 11 . . . . . . . . . . 11 (𝐴 ∈ ℕ → (0↑0) = 1)
9288, 91oveq12d 7450 . . . . . . . . . 10 (𝐴 ∈ ℕ → ((𝐴↑0) gcd (0↑0)) = (1 gcd 1))
9389, 90, 923eqtr4d 2786 . . . . . . . . 9 (𝐴 ∈ ℕ → ((𝐴 gcd 0)↑0) = ((𝐴↑0) gcd (0↑0)))
94933ad2ant1 1133 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → ((𝐴 gcd 0)↑0) = ((𝐴↑0) gcd (0↑0)))
95 simp2 1137 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → 𝐵 = 0)
9695oveq2d 7448 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → (𝐴 gcd 𝐵) = (𝐴 gcd 0))
97 simp3 1138 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → 𝑁 = 0)
9896, 97oveq12d 7450 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴 gcd 0)↑0))
9997oveq2d 7448 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → (𝐴𝑁) = (𝐴↑0))
10095, 97oveq12d 7450 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → (𝐵𝑁) = (0↑0))
10199, 100oveq12d 7450 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → ((𝐴𝑁) gcd (𝐵𝑁)) = ((𝐴↑0) gcd (0↑0)))
10294, 98, 1013eqtr4d 2786 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁)))
1031023expia 1121 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 = 0) → (𝑁 = 0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
10486, 103jaod 859 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 = 0) → ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
1055, 104biimtrid 242 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 = 0) → (𝑁 ∈ ℕ0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
106 gcd0val 16535 . . . . . . . . . . 11 (0 gcd 0) = 0
1076, 106eqtr4di 2794 . . . . . . . . . 10 (𝑁 ∈ ℕ → (0↑𝑁) = (0 gcd 0))
108106a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (0 gcd 0) = 0)
109108oveq1d 7447 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((0 gcd 0)↑𝑁) = (0↑𝑁))
1106, 6oveq12d 7450 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((0↑𝑁) gcd (0↑𝑁)) = (0 gcd 0))
111107, 109, 1103eqtr4d 2786 . . . . . . . . 9 (𝑁 ∈ ℕ → ((0 gcd 0)↑𝑁) = ((0↑𝑁) gcd (0↑𝑁)))
1121113ad2ant3 1135 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → ((0 gcd 0)↑𝑁) = ((0↑𝑁) gcd (0↑𝑁)))
113 simp1 1136 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → 𝐴 = 0)
114 simp2 1137 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → 𝐵 = 0)
115113, 114oveq12d 7450 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐴 gcd 𝐵) = (0 gcd 0))
116115oveq1d 7447 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵)↑𝑁) = ((0 gcd 0)↑𝑁))
117113oveq1d 7447 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) = (0↑𝑁))
118114oveq1d 7447 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐵𝑁) = (0↑𝑁))
119117, 118oveq12d 7450 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) gcd (𝐵𝑁)) = ((0↑𝑁) gcd (0↑𝑁)))
120112, 116, 1193eqtr4d 2786 . . . . . . 7 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁)))
1211203expia 1121 . . . . . 6 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝑁 ∈ ℕ → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
12258, 43eqtr4i 2767 . . . . . . . . 9 (0↑0) = (1 gcd 1)
123106oveq1i 7442 . . . . . . . . 9 ((0 gcd 0)↑0) = (0↑0)
12458, 58oveq12i 7444 . . . . . . . . 9 ((0↑0) gcd (0↑0)) = (1 gcd 1)
125122, 123, 1243eqtr4i 2774 . . . . . . . 8 ((0 gcd 0)↑0) = ((0↑0) gcd (0↑0))
126 simp1 1136 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → 𝐴 = 0)
127 simp2 1137 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → 𝐵 = 0)
128126, 127oveq12d 7450 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → (𝐴 gcd 𝐵) = (0 gcd 0))
129 simp3 1138 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → 𝑁 = 0)
130128, 129oveq12d 7450 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = ((0 gcd 0)↑0))
131126, 129oveq12d 7450 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → (𝐴𝑁) = (0↑0))
132127, 129oveq12d 7450 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → (𝐵𝑁) = (0↑0))
133131, 132oveq12d 7450 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → ((𝐴𝑁) gcd (𝐵𝑁)) = ((0↑0) gcd (0↑0)))
134125, 130, 1333eqtr4a 2802 . . . . . . 7 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁)))
1351343expia 1121 . . . . . 6 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝑁 = 0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
136121, 135jaod 859 . . . . 5 ((𝐴 = 0 ∧ 𝐵 = 0) → ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
1375, 136biimtrid 242 . . . 4 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝑁 ∈ ℕ0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
1384, 67, 105, 137ccase 1037 . . 3 (((𝐴 ∈ ℕ ∨ 𝐴 = 0) ∧ (𝐵 ∈ ℕ ∨ 𝐵 = 0)) → (𝑁 ∈ ℕ0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
1391, 2, 138syl2anb 598 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝑁 ∈ ℕ0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
1401393impia 1117 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1539  wcel 2107  cfv 6560  (class class class)co 7432  0cc0 11156  1c1 11157  cn 12267  0cn0 12528  cz 12615  cexp 14103  abscabs 15274   gcd cgcd 16532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-sup 9483  df-inf 9484  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-n0 12529  df-z 12616  df-uz 12880  df-rp 13036  df-fl 13833  df-mod 13911  df-seq 14044  df-exp 14104  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-dvds 16292  df-gcd 16533
This theorem is referenced by:  zexpgcd  16603
  Copyright terms: Public domain W3C validator