MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0expgcd Structured version   Visualization version   GIF version

Theorem nn0expgcd 16598
Description: Exponentiation distributes over GCD. nn0gcdsq 16786 extended to nonnegative exponents. expgcd 16597 extended to nonnegative bases. (Contributed by Steven Nguyen, 5-Apr-2023.)
Assertion
Ref Expression
nn0expgcd ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁)))

Proof of Theorem nn0expgcd
StepHypRef Expression
1 elnn0 12526 . . 3 (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0))
2 elnn0 12526 . . 3 (𝐵 ∈ ℕ0 ↔ (𝐵 ∈ ℕ ∨ 𝐵 = 0))
3 expgcd 16597 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁)))
433expia 1120 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝑁 ∈ ℕ0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
5 elnn0 12526 . . . . 5 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
6 0exp 14135 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (0↑𝑁) = 0)
763ad2ant3 1134 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (0↑𝑁) = 0)
87oveq1d 7446 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((0↑𝑁) gcd (𝐵𝑁)) = (0 gcd (𝐵𝑁)))
9 simp2 1136 . . . . . . . . . . . 12 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝐵 ∈ ℕ)
10 nnnn0 12531 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
11103ad2ant3 1134 . . . . . . . . . . . 12 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0)
129, 11nnexpcld 14281 . . . . . . . . . . 11 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐵𝑁) ∈ ℕ)
1312nnzd 12638 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐵𝑁) ∈ ℤ)
14 gcd0id 16553 . . . . . . . . . 10 ((𝐵𝑁) ∈ ℤ → (0 gcd (𝐵𝑁)) = (abs‘(𝐵𝑁)))
1513, 14syl 17 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (0 gcd (𝐵𝑁)) = (abs‘(𝐵𝑁)))
1612nnred 12279 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐵𝑁) ∈ ℝ)
17 0red 11262 . . . . . . . . . . 11 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 ∈ ℝ)
1812nngt0d 12313 . . . . . . . . . . 11 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 < (𝐵𝑁))
1917, 16, 18ltled 11407 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 ≤ (𝐵𝑁))
2016, 19absidd 15458 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (abs‘(𝐵𝑁)) = (𝐵𝑁))
218, 15, 203eqtrrd 2780 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐵𝑁) = ((0↑𝑁) gcd (𝐵𝑁)))
22 oveq1 7438 . . . . . . . . . . 11 (𝐴 = 0 → (𝐴 gcd 𝐵) = (0 gcd 𝐵))
23223ad2ant1 1132 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 gcd 𝐵) = (0 gcd 𝐵))
24 nnz 12632 . . . . . . . . . . . 12 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
25243ad2ant2 1133 . . . . . . . . . . 11 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝐵 ∈ ℤ)
26 gcd0id 16553 . . . . . . . . . . 11 (𝐵 ∈ ℤ → (0 gcd 𝐵) = (abs‘𝐵))
2725, 26syl 17 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (0 gcd 𝐵) = (abs‘𝐵))
28 nnre 12271 . . . . . . . . . . . 12 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
29 0red 11262 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ → 0 ∈ ℝ)
30 nngt0 12295 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ → 0 < 𝐵)
3129, 28, 30ltled 11407 . . . . . . . . . . . 12 (𝐵 ∈ ℕ → 0 ≤ 𝐵)
3228, 31absidd 15458 . . . . . . . . . . 11 (𝐵 ∈ ℕ → (abs‘𝐵) = 𝐵)
33323ad2ant2 1133 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (abs‘𝐵) = 𝐵)
3423, 27, 333eqtrd 2779 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 gcd 𝐵) = 𝐵)
3534oveq1d 7446 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵)↑𝑁) = (𝐵𝑁))
36 oveq1 7438 . . . . . . . . . 10 (𝐴 = 0 → (𝐴𝑁) = (0↑𝑁))
37363ad2ant1 1132 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) = (0↑𝑁))
3837oveq1d 7446 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) gcd (𝐵𝑁)) = ((0↑𝑁) gcd (𝐵𝑁)))
3921, 35, 383eqtr4d 2785 . . . . . . 7 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁)))
40393expia 1120 . . . . . 6 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (𝑁 ∈ ℕ → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
41 1z 12645 . . . . . . . . . 10 1 ∈ ℤ
42 gcd1 16562 . . . . . . . . . 10 (1 ∈ ℤ → (1 gcd 1) = 1)
4341, 42ax-mp 5 . . . . . . . . 9 (1 gcd 1) = 1
4443eqcomi 2744 . . . . . . . 8 1 = (1 gcd 1)
45 simp1 1135 . . . . . . . . . . . 12 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → 𝐴 = 0)
4645oveq1d 7446 . . . . . . . . . . 11 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (𝐴 gcd 𝐵) = (0 gcd 𝐵))
47 simp2 1136 . . . . . . . . . . . . 13 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → 𝐵 ∈ ℕ)
4847nnzd 12638 . . . . . . . . . . . 12 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → 𝐵 ∈ ℤ)
4948, 26syl 17 . . . . . . . . . . 11 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (0 gcd 𝐵) = (abs‘𝐵))
50323ad2ant2 1133 . . . . . . . . . . 11 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (abs‘𝐵) = 𝐵)
5146, 49, 503eqtrd 2779 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (𝐴 gcd 𝐵) = 𝐵)
52 simp3 1137 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → 𝑁 = 0)
5351, 52oveq12d 7449 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = (𝐵↑0))
5447nncnd 12280 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → 𝐵 ∈ ℂ)
5554exp0d 14177 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (𝐵↑0) = 1)
5653, 55eqtrd 2775 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = 1)
5745, 52oveq12d 7449 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (𝐴𝑁) = (0↑0))
58 0exp0e1 14104 . . . . . . . . . . 11 (0↑0) = 1
5958a1i 11 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (0↑0) = 1)
6057, 59eqtrd 2775 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (𝐴𝑁) = 1)
6152oveq2d 7447 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (𝐵𝑁) = (𝐵↑0))
6261, 55eqtrd 2775 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → (𝐵𝑁) = 1)
6360, 62oveq12d 7449 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → ((𝐴𝑁) gcd (𝐵𝑁)) = (1 gcd 1))
6444, 56, 633eqtr4a 2801 . . . . . . 7 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ ∧ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁)))
65643expia 1120 . . . . . 6 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (𝑁 = 0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
6640, 65jaod 859 . . . . 5 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
675, 66biimtrid 242 . . . 4 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (𝑁 ∈ ℕ0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
68 nnnn0 12531 . . . . . . . . . . 11 (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0)
69683ad2ant1 1132 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℕ0)
70103ad2ant3 1134 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0)
7169, 70nn0expcld 14282 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) ∈ ℕ0)
72 nn0gcdid0 16555 . . . . . . . . 9 ((𝐴𝑁) ∈ ℕ0 → ((𝐴𝑁) gcd 0) = (𝐴𝑁))
7371, 72syl 17 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) gcd 0) = (𝐴𝑁))
74 simp2 1136 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → 𝐵 = 0)
7574oveq1d 7446 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐵𝑁) = (0↑𝑁))
7663ad2ant3 1134 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (0↑𝑁) = 0)
7775, 76eqtrd 2775 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐵𝑁) = 0)
7877oveq2d 7447 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) gcd (𝐵𝑁)) = ((𝐴𝑁) gcd 0))
7974oveq2d 7447 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐴 gcd 𝐵) = (𝐴 gcd 0))
80 nn0gcdid0 16555 . . . . . . . . . . . 12 (𝐴 ∈ ℕ0 → (𝐴 gcd 0) = 𝐴)
8168, 80syl 17 . . . . . . . . . . 11 (𝐴 ∈ ℕ → (𝐴 gcd 0) = 𝐴)
82813ad2ant1 1132 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐴 gcd 0) = 𝐴)
8379, 82eqtrd 2775 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐴 gcd 𝐵) = 𝐴)
8483oveq1d 7446 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵)↑𝑁) = (𝐴𝑁))
8573, 78, 843eqtr4rd 2786 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁)))
86853expia 1120 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 = 0) → (𝑁 ∈ ℕ → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
87 nncn 12272 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
8887exp0d 14177 . . . . . . . . . . 11 (𝐴 ∈ ℕ → (𝐴↑0) = 1)
8988, 43eqtr4di 2793 . . . . . . . . . 10 (𝐴 ∈ ℕ → (𝐴↑0) = (1 gcd 1))
9081oveq1d 7446 . . . . . . . . . 10 (𝐴 ∈ ℕ → ((𝐴 gcd 0)↑0) = (𝐴↑0))
9158a1i 11 . . . . . . . . . . 11 (𝐴 ∈ ℕ → (0↑0) = 1)
9288, 91oveq12d 7449 . . . . . . . . . 10 (𝐴 ∈ ℕ → ((𝐴↑0) gcd (0↑0)) = (1 gcd 1))
9389, 90, 923eqtr4d 2785 . . . . . . . . 9 (𝐴 ∈ ℕ → ((𝐴 gcd 0)↑0) = ((𝐴↑0) gcd (0↑0)))
94933ad2ant1 1132 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → ((𝐴 gcd 0)↑0) = ((𝐴↑0) gcd (0↑0)))
95 simp2 1136 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → 𝐵 = 0)
9695oveq2d 7447 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → (𝐴 gcd 𝐵) = (𝐴 gcd 0))
97 simp3 1137 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → 𝑁 = 0)
9896, 97oveq12d 7449 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴 gcd 0)↑0))
9997oveq2d 7447 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → (𝐴𝑁) = (𝐴↑0))
10095, 97oveq12d 7449 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → (𝐵𝑁) = (0↑0))
10199, 100oveq12d 7449 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → ((𝐴𝑁) gcd (𝐵𝑁)) = ((𝐴↑0) gcd (0↑0)))
10294, 98, 1013eqtr4d 2785 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 = 0 ∧ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁)))
1031023expia 1120 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 = 0) → (𝑁 = 0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
10486, 103jaod 859 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 = 0) → ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
1055, 104biimtrid 242 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 = 0) → (𝑁 ∈ ℕ0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
106 gcd0val 16531 . . . . . . . . . . 11 (0 gcd 0) = 0
1076, 106eqtr4di 2793 . . . . . . . . . 10 (𝑁 ∈ ℕ → (0↑𝑁) = (0 gcd 0))
108106a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (0 gcd 0) = 0)
109108oveq1d 7446 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((0 gcd 0)↑𝑁) = (0↑𝑁))
1106, 6oveq12d 7449 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((0↑𝑁) gcd (0↑𝑁)) = (0 gcd 0))
111107, 109, 1103eqtr4d 2785 . . . . . . . . 9 (𝑁 ∈ ℕ → ((0 gcd 0)↑𝑁) = ((0↑𝑁) gcd (0↑𝑁)))
1121113ad2ant3 1134 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → ((0 gcd 0)↑𝑁) = ((0↑𝑁) gcd (0↑𝑁)))
113 simp1 1135 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → 𝐴 = 0)
114 simp2 1136 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → 𝐵 = 0)
115113, 114oveq12d 7449 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐴 gcd 𝐵) = (0 gcd 0))
116115oveq1d 7446 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵)↑𝑁) = ((0 gcd 0)↑𝑁))
117113oveq1d 7446 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) = (0↑𝑁))
118114oveq1d 7446 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → (𝐵𝑁) = (0↑𝑁))
119117, 118oveq12d 7449 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) gcd (𝐵𝑁)) = ((0↑𝑁) gcd (0↑𝑁)))
120112, 116, 1193eqtr4d 2785 . . . . . . 7 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁)))
1211203expia 1120 . . . . . 6 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝑁 ∈ ℕ → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
12258, 43eqtr4i 2766 . . . . . . . . 9 (0↑0) = (1 gcd 1)
123106oveq1i 7441 . . . . . . . . 9 ((0 gcd 0)↑0) = (0↑0)
12458, 58oveq12i 7443 . . . . . . . . 9 ((0↑0) gcd (0↑0)) = (1 gcd 1)
125122, 123, 1243eqtr4i 2773 . . . . . . . 8 ((0 gcd 0)↑0) = ((0↑0) gcd (0↑0))
126 simp1 1135 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → 𝐴 = 0)
127 simp2 1136 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → 𝐵 = 0)
128126, 127oveq12d 7449 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → (𝐴 gcd 𝐵) = (0 gcd 0))
129 simp3 1137 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → 𝑁 = 0)
130128, 129oveq12d 7449 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = ((0 gcd 0)↑0))
131126, 129oveq12d 7449 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → (𝐴𝑁) = (0↑0))
132127, 129oveq12d 7449 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → (𝐵𝑁) = (0↑0))
133131, 132oveq12d 7449 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → ((𝐴𝑁) gcd (𝐵𝑁)) = ((0↑0) gcd (0↑0)))
134125, 130, 1333eqtr4a 2801 . . . . . . 7 ((𝐴 = 0 ∧ 𝐵 = 0 ∧ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁)))
1351343expia 1120 . . . . . 6 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝑁 = 0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
136121, 135jaod 859 . . . . 5 ((𝐴 = 0 ∧ 𝐵 = 0) → ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
1375, 136biimtrid 242 . . . 4 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝑁 ∈ ℕ0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
1384, 67, 105, 137ccase 1037 . . 3 (((𝐴 ∈ ℕ ∨ 𝐴 = 0) ∧ (𝐵 ∈ ℕ ∨ 𝐵 = 0)) → (𝑁 ∈ ℕ0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
1391, 2, 138syl2anb 598 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝑁 ∈ ℕ0 → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁))))
1401393impia 1116 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1537  wcel 2106  cfv 6563  (class class class)co 7431  0cc0 11153  1c1 11154  cn 12264  0cn0 12524  cz 12611  cexp 14099  abscabs 15270   gcd cgcd 16528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-dvds 16288  df-gcd 16529
This theorem is referenced by:  zexpgcd  16599
  Copyright terms: Public domain W3C validator