MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgextf1 Structured version   Visualization version   GIF version

Theorem symgextf1 18541
Description: The extension of a permutation, fixing the additional element, is a 1-1 function. (Contributed by AV, 6-Jan-2019.)
Hypotheses
Ref Expression
symgext.s 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
symgext.e 𝐸 = (𝑥𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍𝑥)))
Assertion
Ref Expression
symgextf1 ((𝐾𝑁𝑍𝑆) → 𝐸:𝑁1-1𝑁)
Distinct variable groups:   𝑥,𝐾   𝑥,𝑁   𝑥,𝑆   𝑥,𝑍
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem symgextf1
Dummy variables 𝑦 𝑧 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 symgext.s . . 3 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
2 symgext.e . . 3 𝐸 = (𝑥𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍𝑥)))
31, 2symgextf 18537 . 2 ((𝐾𝑁𝑍𝑆) → 𝐸:𝑁𝑁)
4 difsnid 4735 . . . . . . . 8 (𝐾𝑁 → ((𝑁 ∖ {𝐾}) ∪ {𝐾}) = 𝑁)
54eqcomd 2825 . . . . . . 7 (𝐾𝑁𝑁 = ((𝑁 ∖ {𝐾}) ∪ {𝐾}))
65eleq2d 2896 . . . . . 6 (𝐾𝑁 → (𝑦𝑁𝑦 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})))
75eleq2d 2896 . . . . . 6 (𝐾𝑁 → (𝑧𝑁𝑧 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})))
86, 7anbi12d 632 . . . . 5 (𝐾𝑁 → ((𝑦𝑁𝑧𝑁) ↔ (𝑦 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ∧ 𝑧 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}))))
98adantr 483 . . . 4 ((𝐾𝑁𝑍𝑆) → ((𝑦𝑁𝑧𝑁) ↔ (𝑦 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ∧ 𝑧 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}))))
10 elun 4123 . . . . . 6 (𝑦 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ↔ (𝑦 ∈ (𝑁 ∖ {𝐾}) ∨ 𝑦 ∈ {𝐾}))
11 elun 4123 . . . . . 6 (𝑧 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ↔ (𝑧 ∈ (𝑁 ∖ {𝐾}) ∨ 𝑧 ∈ {𝐾}))
121, 2symgextfv 18538 . . . . . . . . . . . . 13 ((𝐾𝑁𝑍𝑆) → (𝑦 ∈ (𝑁 ∖ {𝐾}) → (𝐸𝑦) = (𝑍𝑦)))
1312com12 32 . . . . . . . . . . . 12 (𝑦 ∈ (𝑁 ∖ {𝐾}) → ((𝐾𝑁𝑍𝑆) → (𝐸𝑦) = (𝑍𝑦)))
1413adantr 483 . . . . . . . . . . 11 ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) → ((𝐾𝑁𝑍𝑆) → (𝐸𝑦) = (𝑍𝑦)))
1514imp 409 . . . . . . . . . 10 (((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) ∧ (𝐾𝑁𝑍𝑆)) → (𝐸𝑦) = (𝑍𝑦))
161, 2symgextfv 18538 . . . . . . . . . . . . 13 ((𝐾𝑁𝑍𝑆) → (𝑧 ∈ (𝑁 ∖ {𝐾}) → (𝐸𝑧) = (𝑍𝑧)))
1716com12 32 . . . . . . . . . . . 12 (𝑧 ∈ (𝑁 ∖ {𝐾}) → ((𝐾𝑁𝑍𝑆) → (𝐸𝑧) = (𝑍𝑧)))
1817adantl 484 . . . . . . . . . . 11 ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) → ((𝐾𝑁𝑍𝑆) → (𝐸𝑧) = (𝑍𝑧)))
1918imp 409 . . . . . . . . . 10 (((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) ∧ (𝐾𝑁𝑍𝑆)) → (𝐸𝑧) = (𝑍𝑧))
2015, 19eqeq12d 2835 . . . . . . . . 9 (((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) ∧ (𝐾𝑁𝑍𝑆)) → ((𝐸𝑦) = (𝐸𝑧) ↔ (𝑍𝑦) = (𝑍𝑧)))
21 eqid 2819 . . . . . . . . . . . . 13 (SymGrp‘(𝑁 ∖ {𝐾})) = (SymGrp‘(𝑁 ∖ {𝐾}))
2221, 1symgbasf1o 18495 . . . . . . . . . . . 12 (𝑍𝑆𝑍:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}))
23 f1of1 6607 . . . . . . . . . . . 12 (𝑍:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) → 𝑍:(𝑁 ∖ {𝐾})–1-1→(𝑁 ∖ {𝐾}))
24 dff13 7005 . . . . . . . . . . . . 13 (𝑍:(𝑁 ∖ {𝐾})–1-1→(𝑁 ∖ {𝐾}) ↔ (𝑍:(𝑁 ∖ {𝐾})⟶(𝑁 ∖ {𝐾}) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})∀𝑗 ∈ (𝑁 ∖ {𝐾})((𝑍𝑖) = (𝑍𝑗) → 𝑖 = 𝑗)))
25 fveqeq2 6672 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑦 → ((𝑍𝑖) = (𝑍𝑗) ↔ (𝑍𝑦) = (𝑍𝑗)))
26 equequ1 2025 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑦 → (𝑖 = 𝑗𝑦 = 𝑗))
2725, 26imbi12d 347 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑦 → (((𝑍𝑖) = (𝑍𝑗) → 𝑖 = 𝑗) ↔ ((𝑍𝑦) = (𝑍𝑗) → 𝑦 = 𝑗)))
28 fveq2 6663 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑧 → (𝑍𝑗) = (𝑍𝑧))
2928eqeq2d 2830 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑧 → ((𝑍𝑦) = (𝑍𝑗) ↔ (𝑍𝑦) = (𝑍𝑧)))
30 equequ2 2026 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑧 → (𝑦 = 𝑗𝑦 = 𝑧))
3129, 30imbi12d 347 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑧 → (((𝑍𝑦) = (𝑍𝑗) → 𝑦 = 𝑗) ↔ ((𝑍𝑦) = (𝑍𝑧) → 𝑦 = 𝑧)))
3227, 31rspc2va 3632 . . . . . . . . . . . . . . 15 (((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})∀𝑗 ∈ (𝑁 ∖ {𝐾})((𝑍𝑖) = (𝑍𝑗) → 𝑖 = 𝑗)) → ((𝑍𝑦) = (𝑍𝑧) → 𝑦 = 𝑧))
3332expcom 416 . . . . . . . . . . . . . 14 (∀𝑖 ∈ (𝑁 ∖ {𝐾})∀𝑗 ∈ (𝑁 ∖ {𝐾})((𝑍𝑖) = (𝑍𝑗) → 𝑖 = 𝑗) → ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) → ((𝑍𝑦) = (𝑍𝑧) → 𝑦 = 𝑧)))
3433a1d 25 . . . . . . . . . . . . 13 (∀𝑖 ∈ (𝑁 ∖ {𝐾})∀𝑗 ∈ (𝑁 ∖ {𝐾})((𝑍𝑖) = (𝑍𝑗) → 𝑖 = 𝑗) → (𝐾𝑁 → ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) → ((𝑍𝑦) = (𝑍𝑧) → 𝑦 = 𝑧))))
3524, 34simplbiim 507 . . . . . . . . . . . 12 (𝑍:(𝑁 ∖ {𝐾})–1-1→(𝑁 ∖ {𝐾}) → (𝐾𝑁 → ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) → ((𝑍𝑦) = (𝑍𝑧) → 𝑦 = 𝑧))))
3622, 23, 353syl 18 . . . . . . . . . . 11 (𝑍𝑆 → (𝐾𝑁 → ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) → ((𝑍𝑦) = (𝑍𝑧) → 𝑦 = 𝑧))))
3736impcom 410 . . . . . . . . . 10 ((𝐾𝑁𝑍𝑆) → ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) → ((𝑍𝑦) = (𝑍𝑧) → 𝑦 = 𝑧)))
3837impcom 410 . . . . . . . . 9 (((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) ∧ (𝐾𝑁𝑍𝑆)) → ((𝑍𝑦) = (𝑍𝑧) → 𝑦 = 𝑧))
3920, 38sylbid 242 . . . . . . . 8 (((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) ∧ (𝐾𝑁𝑍𝑆)) → ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧))
4039ex 415 . . . . . . 7 ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) → ((𝐾𝑁𝑍𝑆) → ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧)))
411, 2symgextf1lem 18540 . . . . . . . . 9 ((𝐾𝑁𝑍𝑆) → ((𝑧 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑦 ∈ {𝐾}) → (𝐸𝑧) ≠ (𝐸𝑦)))
42 eqneqall 3025 . . . . . . . . . . 11 ((𝐸𝑧) = (𝐸𝑦) → ((𝐸𝑧) ≠ (𝐸𝑦) → 𝑦 = 𝑧))
4342eqcoms 2827 . . . . . . . . . 10 ((𝐸𝑦) = (𝐸𝑧) → ((𝐸𝑧) ≠ (𝐸𝑦) → 𝑦 = 𝑧))
4443com12 32 . . . . . . . . 9 ((𝐸𝑧) ≠ (𝐸𝑦) → ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧))
4541, 44syl6com 37 . . . . . . . 8 ((𝑧 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑦 ∈ {𝐾}) → ((𝐾𝑁𝑍𝑆) → ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧)))
4645ancoms 461 . . . . . . 7 ((𝑦 ∈ {𝐾} ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) → ((𝐾𝑁𝑍𝑆) → ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧)))
471, 2symgextf1lem 18540 . . . . . . . 8 ((𝐾𝑁𝑍𝑆) → ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ {𝐾}) → (𝐸𝑦) ≠ (𝐸𝑧)))
48 eqneqall 3025 . . . . . . . . 9 ((𝐸𝑦) = (𝐸𝑧) → ((𝐸𝑦) ≠ (𝐸𝑧) → 𝑦 = 𝑧))
4948com12 32 . . . . . . . 8 ((𝐸𝑦) ≠ (𝐸𝑧) → ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧))
5047, 49syl6com 37 . . . . . . 7 ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ {𝐾}) → ((𝐾𝑁𝑍𝑆) → ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧)))
51 elsni 4576 . . . . . . . 8 (𝑦 ∈ {𝐾} → 𝑦 = 𝐾)
52 elsni 4576 . . . . . . . 8 (𝑧 ∈ {𝐾} → 𝑧 = 𝐾)
53 eqtr3 2841 . . . . . . . . 9 ((𝑦 = 𝐾𝑧 = 𝐾) → 𝑦 = 𝑧)
54532a1d 26 . . . . . . . 8 ((𝑦 = 𝐾𝑧 = 𝐾) → ((𝐾𝑁𝑍𝑆) → ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧)))
5551, 52, 54syl2an 597 . . . . . . 7 ((𝑦 ∈ {𝐾} ∧ 𝑧 ∈ {𝐾}) → ((𝐾𝑁𝑍𝑆) → ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧)))
5640, 46, 50, 55ccase 1031 . . . . . 6 (((𝑦 ∈ (𝑁 ∖ {𝐾}) ∨ 𝑦 ∈ {𝐾}) ∧ (𝑧 ∈ (𝑁 ∖ {𝐾}) ∨ 𝑧 ∈ {𝐾})) → ((𝐾𝑁𝑍𝑆) → ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧)))
5710, 11, 56syl2anb 599 . . . . 5 ((𝑦 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ∧ 𝑧 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})) → ((𝐾𝑁𝑍𝑆) → ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧)))
5857com12 32 . . . 4 ((𝐾𝑁𝑍𝑆) → ((𝑦 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ∧ 𝑧 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})) → ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧)))
599, 58sylbid 242 . . 3 ((𝐾𝑁𝑍𝑆) → ((𝑦𝑁𝑧𝑁) → ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧)))
6059ralrimivv 3188 . 2 ((𝐾𝑁𝑍𝑆) → ∀𝑦𝑁𝑧𝑁 ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧))
61 dff13 7005 . 2 (𝐸:𝑁1-1𝑁 ↔ (𝐸:𝑁𝑁 ∧ ∀𝑦𝑁𝑧𝑁 ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧)))
623, 60, 61sylanbrc 585 1 ((𝐾𝑁𝑍𝑆) → 𝐸:𝑁1-1𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843   = wceq 1530  wcel 2107  wne 3014  wral 3136  cdif 3931  cun 3932  ifcif 4465  {csn 4559  cmpt 5137  wf 6344  1-1wf1 6345  1-1-ontowf1o 6347  cfv 6348  Basecbs 16475  SymGrpcsymg 18487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-map 8400  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12885  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-tset 16576  df-efmnd 18026  df-symg 18488
This theorem is referenced by:  symgextf1o  18543
  Copyright terms: Public domain W3C validator