MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgextf1 Structured version   Visualization version   GIF version

Theorem symgextf1 19351
Description: The extension of a permutation, fixing the additional element, is a 1-1 function. (Contributed by AV, 6-Jan-2019.)
Hypotheses
Ref Expression
symgext.s 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
symgext.e 𝐸 = (𝑥𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍𝑥)))
Assertion
Ref Expression
symgextf1 ((𝐾𝑁𝑍𝑆) → 𝐸:𝑁1-1𝑁)
Distinct variable groups:   𝑥,𝐾   𝑥,𝑁   𝑥,𝑆   𝑥,𝑍
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem symgextf1
Dummy variables 𝑦 𝑧 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 symgext.s . . 3 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
2 symgext.e . . 3 𝐸 = (𝑥𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍𝑥)))
31, 2symgextf 19347 . 2 ((𝐾𝑁𝑍𝑆) → 𝐸:𝑁𝑁)
4 difsnid 4774 . . . . . . . 8 (𝐾𝑁 → ((𝑁 ∖ {𝐾}) ∪ {𝐾}) = 𝑁)
54eqcomd 2735 . . . . . . 7 (𝐾𝑁𝑁 = ((𝑁 ∖ {𝐾}) ∪ {𝐾}))
65eleq2d 2814 . . . . . 6 (𝐾𝑁 → (𝑦𝑁𝑦 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})))
75eleq2d 2814 . . . . . 6 (𝐾𝑁 → (𝑧𝑁𝑧 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})))
86, 7anbi12d 632 . . . . 5 (𝐾𝑁 → ((𝑦𝑁𝑧𝑁) ↔ (𝑦 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ∧ 𝑧 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}))))
98adantr 480 . . . 4 ((𝐾𝑁𝑍𝑆) → ((𝑦𝑁𝑧𝑁) ↔ (𝑦 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ∧ 𝑧 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}))))
10 elun 4116 . . . . . 6 (𝑦 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ↔ (𝑦 ∈ (𝑁 ∖ {𝐾}) ∨ 𝑦 ∈ {𝐾}))
11 elun 4116 . . . . . 6 (𝑧 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ↔ (𝑧 ∈ (𝑁 ∖ {𝐾}) ∨ 𝑧 ∈ {𝐾}))
121, 2symgextfv 19348 . . . . . . . . . . . . 13 ((𝐾𝑁𝑍𝑆) → (𝑦 ∈ (𝑁 ∖ {𝐾}) → (𝐸𝑦) = (𝑍𝑦)))
1312com12 32 . . . . . . . . . . . 12 (𝑦 ∈ (𝑁 ∖ {𝐾}) → ((𝐾𝑁𝑍𝑆) → (𝐸𝑦) = (𝑍𝑦)))
1413adantr 480 . . . . . . . . . . 11 ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) → ((𝐾𝑁𝑍𝑆) → (𝐸𝑦) = (𝑍𝑦)))
1514imp 406 . . . . . . . . . 10 (((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) ∧ (𝐾𝑁𝑍𝑆)) → (𝐸𝑦) = (𝑍𝑦))
161, 2symgextfv 19348 . . . . . . . . . . . . 13 ((𝐾𝑁𝑍𝑆) → (𝑧 ∈ (𝑁 ∖ {𝐾}) → (𝐸𝑧) = (𝑍𝑧)))
1716com12 32 . . . . . . . . . . . 12 (𝑧 ∈ (𝑁 ∖ {𝐾}) → ((𝐾𝑁𝑍𝑆) → (𝐸𝑧) = (𝑍𝑧)))
1817adantl 481 . . . . . . . . . . 11 ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) → ((𝐾𝑁𝑍𝑆) → (𝐸𝑧) = (𝑍𝑧)))
1918imp 406 . . . . . . . . . 10 (((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) ∧ (𝐾𝑁𝑍𝑆)) → (𝐸𝑧) = (𝑍𝑧))
2015, 19eqeq12d 2745 . . . . . . . . 9 (((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) ∧ (𝐾𝑁𝑍𝑆)) → ((𝐸𝑦) = (𝐸𝑧) ↔ (𝑍𝑦) = (𝑍𝑧)))
21 eqid 2729 . . . . . . . . . . . . 13 (SymGrp‘(𝑁 ∖ {𝐾})) = (SymGrp‘(𝑁 ∖ {𝐾}))
2221, 1symgbasf1o 19305 . . . . . . . . . . . 12 (𝑍𝑆𝑍:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}))
23 f1of1 6799 . . . . . . . . . . . 12 (𝑍:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) → 𝑍:(𝑁 ∖ {𝐾})–1-1→(𝑁 ∖ {𝐾}))
24 dff13 7229 . . . . . . . . . . . . 13 (𝑍:(𝑁 ∖ {𝐾})–1-1→(𝑁 ∖ {𝐾}) ↔ (𝑍:(𝑁 ∖ {𝐾})⟶(𝑁 ∖ {𝐾}) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})∀𝑗 ∈ (𝑁 ∖ {𝐾})((𝑍𝑖) = (𝑍𝑗) → 𝑖 = 𝑗)))
25 fveqeq2 6867 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑦 → ((𝑍𝑖) = (𝑍𝑗) ↔ (𝑍𝑦) = (𝑍𝑗)))
26 equequ1 2025 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑦 → (𝑖 = 𝑗𝑦 = 𝑗))
2725, 26imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑦 → (((𝑍𝑖) = (𝑍𝑗) → 𝑖 = 𝑗) ↔ ((𝑍𝑦) = (𝑍𝑗) → 𝑦 = 𝑗)))
28 fveq2 6858 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑧 → (𝑍𝑗) = (𝑍𝑧))
2928eqeq2d 2740 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑧 → ((𝑍𝑦) = (𝑍𝑗) ↔ (𝑍𝑦) = (𝑍𝑧)))
30 equequ2 2026 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑧 → (𝑦 = 𝑗𝑦 = 𝑧))
3129, 30imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑧 → (((𝑍𝑦) = (𝑍𝑗) → 𝑦 = 𝑗) ↔ ((𝑍𝑦) = (𝑍𝑧) → 𝑦 = 𝑧)))
3227, 31rspc2va 3600 . . . . . . . . . . . . . . 15 (((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})∀𝑗 ∈ (𝑁 ∖ {𝐾})((𝑍𝑖) = (𝑍𝑗) → 𝑖 = 𝑗)) → ((𝑍𝑦) = (𝑍𝑧) → 𝑦 = 𝑧))
3332expcom 413 . . . . . . . . . . . . . 14 (∀𝑖 ∈ (𝑁 ∖ {𝐾})∀𝑗 ∈ (𝑁 ∖ {𝐾})((𝑍𝑖) = (𝑍𝑗) → 𝑖 = 𝑗) → ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) → ((𝑍𝑦) = (𝑍𝑧) → 𝑦 = 𝑧)))
3433a1d 25 . . . . . . . . . . . . 13 (∀𝑖 ∈ (𝑁 ∖ {𝐾})∀𝑗 ∈ (𝑁 ∖ {𝐾})((𝑍𝑖) = (𝑍𝑗) → 𝑖 = 𝑗) → (𝐾𝑁 → ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) → ((𝑍𝑦) = (𝑍𝑧) → 𝑦 = 𝑧))))
3524, 34simplbiim 504 . . . . . . . . . . . 12 (𝑍:(𝑁 ∖ {𝐾})–1-1→(𝑁 ∖ {𝐾}) → (𝐾𝑁 → ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) → ((𝑍𝑦) = (𝑍𝑧) → 𝑦 = 𝑧))))
3622, 23, 353syl 18 . . . . . . . . . . 11 (𝑍𝑆 → (𝐾𝑁 → ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) → ((𝑍𝑦) = (𝑍𝑧) → 𝑦 = 𝑧))))
3736impcom 407 . . . . . . . . . 10 ((𝐾𝑁𝑍𝑆) → ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) → ((𝑍𝑦) = (𝑍𝑧) → 𝑦 = 𝑧)))
3837impcom 407 . . . . . . . . 9 (((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) ∧ (𝐾𝑁𝑍𝑆)) → ((𝑍𝑦) = (𝑍𝑧) → 𝑦 = 𝑧))
3920, 38sylbid 240 . . . . . . . 8 (((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) ∧ (𝐾𝑁𝑍𝑆)) → ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧))
4039ex 412 . . . . . . 7 ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) → ((𝐾𝑁𝑍𝑆) → ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧)))
411, 2symgextf1lem 19350 . . . . . . . . 9 ((𝐾𝑁𝑍𝑆) → ((𝑧 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑦 ∈ {𝐾}) → (𝐸𝑧) ≠ (𝐸𝑦)))
42 eqneqall 2936 . . . . . . . . . . 11 ((𝐸𝑧) = (𝐸𝑦) → ((𝐸𝑧) ≠ (𝐸𝑦) → 𝑦 = 𝑧))
4342eqcoms 2737 . . . . . . . . . 10 ((𝐸𝑦) = (𝐸𝑧) → ((𝐸𝑧) ≠ (𝐸𝑦) → 𝑦 = 𝑧))
4443com12 32 . . . . . . . . 9 ((𝐸𝑧) ≠ (𝐸𝑦) → ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧))
4541, 44syl6com 37 . . . . . . . 8 ((𝑧 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑦 ∈ {𝐾}) → ((𝐾𝑁𝑍𝑆) → ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧)))
4645ancoms 458 . . . . . . 7 ((𝑦 ∈ {𝐾} ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) → ((𝐾𝑁𝑍𝑆) → ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧)))
471, 2symgextf1lem 19350 . . . . . . . 8 ((𝐾𝑁𝑍𝑆) → ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ {𝐾}) → (𝐸𝑦) ≠ (𝐸𝑧)))
48 eqneqall 2936 . . . . . . . . 9 ((𝐸𝑦) = (𝐸𝑧) → ((𝐸𝑦) ≠ (𝐸𝑧) → 𝑦 = 𝑧))
4948com12 32 . . . . . . . 8 ((𝐸𝑦) ≠ (𝐸𝑧) → ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧))
5047, 49syl6com 37 . . . . . . 7 ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ {𝐾}) → ((𝐾𝑁𝑍𝑆) → ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧)))
51 elsni 4606 . . . . . . . 8 (𝑦 ∈ {𝐾} → 𝑦 = 𝐾)
52 elsni 4606 . . . . . . . 8 (𝑧 ∈ {𝐾} → 𝑧 = 𝐾)
53 eqtr3 2751 . . . . . . . . 9 ((𝑦 = 𝐾𝑧 = 𝐾) → 𝑦 = 𝑧)
54532a1d 26 . . . . . . . 8 ((𝑦 = 𝐾𝑧 = 𝐾) → ((𝐾𝑁𝑍𝑆) → ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧)))
5551, 52, 54syl2an 596 . . . . . . 7 ((𝑦 ∈ {𝐾} ∧ 𝑧 ∈ {𝐾}) → ((𝐾𝑁𝑍𝑆) → ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧)))
5640, 46, 50, 55ccase 1037 . . . . . 6 (((𝑦 ∈ (𝑁 ∖ {𝐾}) ∨ 𝑦 ∈ {𝐾}) ∧ (𝑧 ∈ (𝑁 ∖ {𝐾}) ∨ 𝑧 ∈ {𝐾})) → ((𝐾𝑁𝑍𝑆) → ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧)))
5710, 11, 56syl2anb 598 . . . . 5 ((𝑦 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ∧ 𝑧 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})) → ((𝐾𝑁𝑍𝑆) → ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧)))
5857com12 32 . . . 4 ((𝐾𝑁𝑍𝑆) → ((𝑦 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ∧ 𝑧 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})) → ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧)))
599, 58sylbid 240 . . 3 ((𝐾𝑁𝑍𝑆) → ((𝑦𝑁𝑧𝑁) → ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧)))
6059ralrimivv 3178 . 2 ((𝐾𝑁𝑍𝑆) → ∀𝑦𝑁𝑧𝑁 ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧))
61 dff13 7229 . 2 (𝐸:𝑁1-1𝑁 ↔ (𝐸:𝑁𝑁 ∧ ∀𝑦𝑁𝑧𝑁 ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧)))
623, 60, 61sylanbrc 583 1 ((𝐾𝑁𝑍𝑆) → 𝐸:𝑁1-1𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wral 3044  cdif 3911  cun 3912  ifcif 4488  {csn 4589  cmpt 5188  wf 6507  1-1wf1 6508  1-1-ontowf1o 6510  cfv 6511  Basecbs 17179  SymGrpcsymg 19299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-tset 17239  df-efmnd 18796  df-symg 19300
This theorem is referenced by:  symgextf1o  19353
  Copyright terms: Public domain W3C validator