| Step | Hyp | Ref
| Expression |
| 1 | | symgext.s |
. . 3
⊢ 𝑆 =
(Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) |
| 2 | | symgext.e |
. . 3
⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) |
| 3 | 1, 2 | symgextf 19435 |
. 2
⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → 𝐸:𝑁⟶𝑁) |
| 4 | | difsnid 4810 |
. . . . . . . 8
⊢ (𝐾 ∈ 𝑁 → ((𝑁 ∖ {𝐾}) ∪ {𝐾}) = 𝑁) |
| 5 | 4 | eqcomd 2743 |
. . . . . . 7
⊢ (𝐾 ∈ 𝑁 → 𝑁 = ((𝑁 ∖ {𝐾}) ∪ {𝐾})) |
| 6 | 5 | eleq2d 2827 |
. . . . . 6
⊢ (𝐾 ∈ 𝑁 → (𝑦 ∈ 𝑁 ↔ 𝑦 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}))) |
| 7 | 5 | eleq2d 2827 |
. . . . . 6
⊢ (𝐾 ∈ 𝑁 → (𝑧 ∈ 𝑁 ↔ 𝑧 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}))) |
| 8 | 6, 7 | anbi12d 632 |
. . . . 5
⊢ (𝐾 ∈ 𝑁 → ((𝑦 ∈ 𝑁 ∧ 𝑧 ∈ 𝑁) ↔ (𝑦 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ∧ 𝑧 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})))) |
| 9 | 8 | adantr 480 |
. . . 4
⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → ((𝑦 ∈ 𝑁 ∧ 𝑧 ∈ 𝑁) ↔ (𝑦 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ∧ 𝑧 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})))) |
| 10 | | elun 4153 |
. . . . . 6
⊢ (𝑦 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ↔ (𝑦 ∈ (𝑁 ∖ {𝐾}) ∨ 𝑦 ∈ {𝐾})) |
| 11 | | elun 4153 |
. . . . . 6
⊢ (𝑧 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ↔ (𝑧 ∈ (𝑁 ∖ {𝐾}) ∨ 𝑧 ∈ {𝐾})) |
| 12 | 1, 2 | symgextfv 19436 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → (𝑦 ∈ (𝑁 ∖ {𝐾}) → (𝐸‘𝑦) = (𝑍‘𝑦))) |
| 13 | 12 | com12 32 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (𝑁 ∖ {𝐾}) → ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → (𝐸‘𝑦) = (𝑍‘𝑦))) |
| 14 | 13 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) → ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → (𝐸‘𝑦) = (𝑍‘𝑦))) |
| 15 | 14 | imp 406 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) ∧ (𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆)) → (𝐸‘𝑦) = (𝑍‘𝑦)) |
| 16 | 1, 2 | symgextfv 19436 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → (𝑧 ∈ (𝑁 ∖ {𝐾}) → (𝐸‘𝑧) = (𝑍‘𝑧))) |
| 17 | 16 | com12 32 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ (𝑁 ∖ {𝐾}) → ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → (𝐸‘𝑧) = (𝑍‘𝑧))) |
| 18 | 17 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) → ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → (𝐸‘𝑧) = (𝑍‘𝑧))) |
| 19 | 18 | imp 406 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) ∧ (𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆)) → (𝐸‘𝑧) = (𝑍‘𝑧)) |
| 20 | 15, 19 | eqeq12d 2753 |
. . . . . . . . 9
⊢ (((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) ∧ (𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆)) → ((𝐸‘𝑦) = (𝐸‘𝑧) ↔ (𝑍‘𝑦) = (𝑍‘𝑧))) |
| 21 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢
(SymGrp‘(𝑁
∖ {𝐾})) =
(SymGrp‘(𝑁 ∖
{𝐾})) |
| 22 | 21, 1 | symgbasf1o 19392 |
. . . . . . . . . . . 12
⊢ (𝑍 ∈ 𝑆 → 𝑍:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾})) |
| 23 | | f1of1 6847 |
. . . . . . . . . . . 12
⊢ (𝑍:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) → 𝑍:(𝑁 ∖ {𝐾})–1-1→(𝑁 ∖ {𝐾})) |
| 24 | | dff13 7275 |
. . . . . . . . . . . . 13
⊢ (𝑍:(𝑁 ∖ {𝐾})–1-1→(𝑁 ∖ {𝐾}) ↔ (𝑍:(𝑁 ∖ {𝐾})⟶(𝑁 ∖ {𝐾}) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})∀𝑗 ∈ (𝑁 ∖ {𝐾})((𝑍‘𝑖) = (𝑍‘𝑗) → 𝑖 = 𝑗))) |
| 25 | | fveqeq2 6915 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = 𝑦 → ((𝑍‘𝑖) = (𝑍‘𝑗) ↔ (𝑍‘𝑦) = (𝑍‘𝑗))) |
| 26 | | equequ1 2024 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = 𝑦 → (𝑖 = 𝑗 ↔ 𝑦 = 𝑗)) |
| 27 | 25, 26 | imbi12d 344 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = 𝑦 → (((𝑍‘𝑖) = (𝑍‘𝑗) → 𝑖 = 𝑗) ↔ ((𝑍‘𝑦) = (𝑍‘𝑗) → 𝑦 = 𝑗))) |
| 28 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = 𝑧 → (𝑍‘𝑗) = (𝑍‘𝑧)) |
| 29 | 28 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 𝑧 → ((𝑍‘𝑦) = (𝑍‘𝑗) ↔ (𝑍‘𝑦) = (𝑍‘𝑧))) |
| 30 | | equequ2 2025 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 𝑧 → (𝑦 = 𝑗 ↔ 𝑦 = 𝑧)) |
| 31 | 29, 30 | imbi12d 344 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝑧 → (((𝑍‘𝑦) = (𝑍‘𝑗) → 𝑦 = 𝑗) ↔ ((𝑍‘𝑦) = (𝑍‘𝑧) → 𝑦 = 𝑧))) |
| 32 | 27, 31 | rspc2va 3634 |
. . . . . . . . . . . . . . 15
⊢ (((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})∀𝑗 ∈ (𝑁 ∖ {𝐾})((𝑍‘𝑖) = (𝑍‘𝑗) → 𝑖 = 𝑗)) → ((𝑍‘𝑦) = (𝑍‘𝑧) → 𝑦 = 𝑧)) |
| 33 | 32 | expcom 413 |
. . . . . . . . . . . . . 14
⊢
(∀𝑖 ∈
(𝑁 ∖ {𝐾})∀𝑗 ∈ (𝑁 ∖ {𝐾})((𝑍‘𝑖) = (𝑍‘𝑗) → 𝑖 = 𝑗) → ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) → ((𝑍‘𝑦) = (𝑍‘𝑧) → 𝑦 = 𝑧))) |
| 34 | 33 | a1d 25 |
. . . . . . . . . . . . 13
⊢
(∀𝑖 ∈
(𝑁 ∖ {𝐾})∀𝑗 ∈ (𝑁 ∖ {𝐾})((𝑍‘𝑖) = (𝑍‘𝑗) → 𝑖 = 𝑗) → (𝐾 ∈ 𝑁 → ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) → ((𝑍‘𝑦) = (𝑍‘𝑧) → 𝑦 = 𝑧)))) |
| 35 | 24, 34 | simplbiim 504 |
. . . . . . . . . . . 12
⊢ (𝑍:(𝑁 ∖ {𝐾})–1-1→(𝑁 ∖ {𝐾}) → (𝐾 ∈ 𝑁 → ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) → ((𝑍‘𝑦) = (𝑍‘𝑧) → 𝑦 = 𝑧)))) |
| 36 | 22, 23, 35 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝑍 ∈ 𝑆 → (𝐾 ∈ 𝑁 → ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) → ((𝑍‘𝑦) = (𝑍‘𝑧) → 𝑦 = 𝑧)))) |
| 37 | 36 | impcom 407 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) → ((𝑍‘𝑦) = (𝑍‘𝑧) → 𝑦 = 𝑧))) |
| 38 | 37 | impcom 407 |
. . . . . . . . 9
⊢ (((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) ∧ (𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆)) → ((𝑍‘𝑦) = (𝑍‘𝑧) → 𝑦 = 𝑧)) |
| 39 | 20, 38 | sylbid 240 |
. . . . . . . 8
⊢ (((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) ∧ (𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆)) → ((𝐸‘𝑦) = (𝐸‘𝑧) → 𝑦 = 𝑧)) |
| 40 | 39 | ex 412 |
. . . . . . 7
⊢ ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) → ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → ((𝐸‘𝑦) = (𝐸‘𝑧) → 𝑦 = 𝑧))) |
| 41 | 1, 2 | symgextf1lem 19438 |
. . . . . . . . 9
⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → ((𝑧 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑦 ∈ {𝐾}) → (𝐸‘𝑧) ≠ (𝐸‘𝑦))) |
| 42 | | eqneqall 2951 |
. . . . . . . . . . 11
⊢ ((𝐸‘𝑧) = (𝐸‘𝑦) → ((𝐸‘𝑧) ≠ (𝐸‘𝑦) → 𝑦 = 𝑧)) |
| 43 | 42 | eqcoms 2745 |
. . . . . . . . . 10
⊢ ((𝐸‘𝑦) = (𝐸‘𝑧) → ((𝐸‘𝑧) ≠ (𝐸‘𝑦) → 𝑦 = 𝑧)) |
| 44 | 43 | com12 32 |
. . . . . . . . 9
⊢ ((𝐸‘𝑧) ≠ (𝐸‘𝑦) → ((𝐸‘𝑦) = (𝐸‘𝑧) → 𝑦 = 𝑧)) |
| 45 | 41, 44 | syl6com 37 |
. . . . . . . 8
⊢ ((𝑧 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑦 ∈ {𝐾}) → ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → ((𝐸‘𝑦) = (𝐸‘𝑧) → 𝑦 = 𝑧))) |
| 46 | 45 | ancoms 458 |
. . . . . . 7
⊢ ((𝑦 ∈ {𝐾} ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) → ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → ((𝐸‘𝑦) = (𝐸‘𝑧) → 𝑦 = 𝑧))) |
| 47 | 1, 2 | symgextf1lem 19438 |
. . . . . . . 8
⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ {𝐾}) → (𝐸‘𝑦) ≠ (𝐸‘𝑧))) |
| 48 | | eqneqall 2951 |
. . . . . . . . 9
⊢ ((𝐸‘𝑦) = (𝐸‘𝑧) → ((𝐸‘𝑦) ≠ (𝐸‘𝑧) → 𝑦 = 𝑧)) |
| 49 | 48 | com12 32 |
. . . . . . . 8
⊢ ((𝐸‘𝑦) ≠ (𝐸‘𝑧) → ((𝐸‘𝑦) = (𝐸‘𝑧) → 𝑦 = 𝑧)) |
| 50 | 47, 49 | syl6com 37 |
. . . . . . 7
⊢ ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ {𝐾}) → ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → ((𝐸‘𝑦) = (𝐸‘𝑧) → 𝑦 = 𝑧))) |
| 51 | | elsni 4643 |
. . . . . . . 8
⊢ (𝑦 ∈ {𝐾} → 𝑦 = 𝐾) |
| 52 | | elsni 4643 |
. . . . . . . 8
⊢ (𝑧 ∈ {𝐾} → 𝑧 = 𝐾) |
| 53 | | eqtr3 2763 |
. . . . . . . . 9
⊢ ((𝑦 = 𝐾 ∧ 𝑧 = 𝐾) → 𝑦 = 𝑧) |
| 54 | 53 | 2a1d 26 |
. . . . . . . 8
⊢ ((𝑦 = 𝐾 ∧ 𝑧 = 𝐾) → ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → ((𝐸‘𝑦) = (𝐸‘𝑧) → 𝑦 = 𝑧))) |
| 55 | 51, 52, 54 | syl2an 596 |
. . . . . . 7
⊢ ((𝑦 ∈ {𝐾} ∧ 𝑧 ∈ {𝐾}) → ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → ((𝐸‘𝑦) = (𝐸‘𝑧) → 𝑦 = 𝑧))) |
| 56 | 40, 46, 50, 55 | ccase 1038 |
. . . . . 6
⊢ (((𝑦 ∈ (𝑁 ∖ {𝐾}) ∨ 𝑦 ∈ {𝐾}) ∧ (𝑧 ∈ (𝑁 ∖ {𝐾}) ∨ 𝑧 ∈ {𝐾})) → ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → ((𝐸‘𝑦) = (𝐸‘𝑧) → 𝑦 = 𝑧))) |
| 57 | 10, 11, 56 | syl2anb 598 |
. . . . 5
⊢ ((𝑦 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ∧ 𝑧 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})) → ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → ((𝐸‘𝑦) = (𝐸‘𝑧) → 𝑦 = 𝑧))) |
| 58 | 57 | com12 32 |
. . . 4
⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → ((𝑦 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ∧ 𝑧 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})) → ((𝐸‘𝑦) = (𝐸‘𝑧) → 𝑦 = 𝑧))) |
| 59 | 9, 58 | sylbid 240 |
. . 3
⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → ((𝑦 ∈ 𝑁 ∧ 𝑧 ∈ 𝑁) → ((𝐸‘𝑦) = (𝐸‘𝑧) → 𝑦 = 𝑧))) |
| 60 | 59 | ralrimivv 3200 |
. 2
⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → ∀𝑦 ∈ 𝑁 ∀𝑧 ∈ 𝑁 ((𝐸‘𝑦) = (𝐸‘𝑧) → 𝑦 = 𝑧)) |
| 61 | | dff13 7275 |
. 2
⊢ (𝐸:𝑁–1-1→𝑁 ↔ (𝐸:𝑁⟶𝑁 ∧ ∀𝑦 ∈ 𝑁 ∀𝑧 ∈ 𝑁 ((𝐸‘𝑦) = (𝐸‘𝑧) → 𝑦 = 𝑧))) |
| 62 | 3, 60, 61 | sylanbrc 583 |
1
⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → 𝐸:𝑁–1-1→𝑁) |