MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgextf1 Structured version   Visualization version   GIF version

Theorem symgextf1 19439
Description: The extension of a permutation, fixing the additional element, is a 1-1 function. (Contributed by AV, 6-Jan-2019.)
Hypotheses
Ref Expression
symgext.s 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
symgext.e 𝐸 = (𝑥𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍𝑥)))
Assertion
Ref Expression
symgextf1 ((𝐾𝑁𝑍𝑆) → 𝐸:𝑁1-1𝑁)
Distinct variable groups:   𝑥,𝐾   𝑥,𝑁   𝑥,𝑆   𝑥,𝑍
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem symgextf1
Dummy variables 𝑦 𝑧 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 symgext.s . . 3 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
2 symgext.e . . 3 𝐸 = (𝑥𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍𝑥)))
31, 2symgextf 19435 . 2 ((𝐾𝑁𝑍𝑆) → 𝐸:𝑁𝑁)
4 difsnid 4810 . . . . . . . 8 (𝐾𝑁 → ((𝑁 ∖ {𝐾}) ∪ {𝐾}) = 𝑁)
54eqcomd 2743 . . . . . . 7 (𝐾𝑁𝑁 = ((𝑁 ∖ {𝐾}) ∪ {𝐾}))
65eleq2d 2827 . . . . . 6 (𝐾𝑁 → (𝑦𝑁𝑦 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})))
75eleq2d 2827 . . . . . 6 (𝐾𝑁 → (𝑧𝑁𝑧 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})))
86, 7anbi12d 632 . . . . 5 (𝐾𝑁 → ((𝑦𝑁𝑧𝑁) ↔ (𝑦 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ∧ 𝑧 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}))))
98adantr 480 . . . 4 ((𝐾𝑁𝑍𝑆) → ((𝑦𝑁𝑧𝑁) ↔ (𝑦 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ∧ 𝑧 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}))))
10 elun 4153 . . . . . 6 (𝑦 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ↔ (𝑦 ∈ (𝑁 ∖ {𝐾}) ∨ 𝑦 ∈ {𝐾}))
11 elun 4153 . . . . . 6 (𝑧 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ↔ (𝑧 ∈ (𝑁 ∖ {𝐾}) ∨ 𝑧 ∈ {𝐾}))
121, 2symgextfv 19436 . . . . . . . . . . . . 13 ((𝐾𝑁𝑍𝑆) → (𝑦 ∈ (𝑁 ∖ {𝐾}) → (𝐸𝑦) = (𝑍𝑦)))
1312com12 32 . . . . . . . . . . . 12 (𝑦 ∈ (𝑁 ∖ {𝐾}) → ((𝐾𝑁𝑍𝑆) → (𝐸𝑦) = (𝑍𝑦)))
1413adantr 480 . . . . . . . . . . 11 ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) → ((𝐾𝑁𝑍𝑆) → (𝐸𝑦) = (𝑍𝑦)))
1514imp 406 . . . . . . . . . 10 (((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) ∧ (𝐾𝑁𝑍𝑆)) → (𝐸𝑦) = (𝑍𝑦))
161, 2symgextfv 19436 . . . . . . . . . . . . 13 ((𝐾𝑁𝑍𝑆) → (𝑧 ∈ (𝑁 ∖ {𝐾}) → (𝐸𝑧) = (𝑍𝑧)))
1716com12 32 . . . . . . . . . . . 12 (𝑧 ∈ (𝑁 ∖ {𝐾}) → ((𝐾𝑁𝑍𝑆) → (𝐸𝑧) = (𝑍𝑧)))
1817adantl 481 . . . . . . . . . . 11 ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) → ((𝐾𝑁𝑍𝑆) → (𝐸𝑧) = (𝑍𝑧)))
1918imp 406 . . . . . . . . . 10 (((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) ∧ (𝐾𝑁𝑍𝑆)) → (𝐸𝑧) = (𝑍𝑧))
2015, 19eqeq12d 2753 . . . . . . . . 9 (((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) ∧ (𝐾𝑁𝑍𝑆)) → ((𝐸𝑦) = (𝐸𝑧) ↔ (𝑍𝑦) = (𝑍𝑧)))
21 eqid 2737 . . . . . . . . . . . . 13 (SymGrp‘(𝑁 ∖ {𝐾})) = (SymGrp‘(𝑁 ∖ {𝐾}))
2221, 1symgbasf1o 19392 . . . . . . . . . . . 12 (𝑍𝑆𝑍:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}))
23 f1of1 6847 . . . . . . . . . . . 12 (𝑍:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) → 𝑍:(𝑁 ∖ {𝐾})–1-1→(𝑁 ∖ {𝐾}))
24 dff13 7275 . . . . . . . . . . . . 13 (𝑍:(𝑁 ∖ {𝐾})–1-1→(𝑁 ∖ {𝐾}) ↔ (𝑍:(𝑁 ∖ {𝐾})⟶(𝑁 ∖ {𝐾}) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})∀𝑗 ∈ (𝑁 ∖ {𝐾})((𝑍𝑖) = (𝑍𝑗) → 𝑖 = 𝑗)))
25 fveqeq2 6915 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑦 → ((𝑍𝑖) = (𝑍𝑗) ↔ (𝑍𝑦) = (𝑍𝑗)))
26 equequ1 2024 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑦 → (𝑖 = 𝑗𝑦 = 𝑗))
2725, 26imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑦 → (((𝑍𝑖) = (𝑍𝑗) → 𝑖 = 𝑗) ↔ ((𝑍𝑦) = (𝑍𝑗) → 𝑦 = 𝑗)))
28 fveq2 6906 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑧 → (𝑍𝑗) = (𝑍𝑧))
2928eqeq2d 2748 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑧 → ((𝑍𝑦) = (𝑍𝑗) ↔ (𝑍𝑦) = (𝑍𝑧)))
30 equequ2 2025 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑧 → (𝑦 = 𝑗𝑦 = 𝑧))
3129, 30imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑧 → (((𝑍𝑦) = (𝑍𝑗) → 𝑦 = 𝑗) ↔ ((𝑍𝑦) = (𝑍𝑧) → 𝑦 = 𝑧)))
3227, 31rspc2va 3634 . . . . . . . . . . . . . . 15 (((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})∀𝑗 ∈ (𝑁 ∖ {𝐾})((𝑍𝑖) = (𝑍𝑗) → 𝑖 = 𝑗)) → ((𝑍𝑦) = (𝑍𝑧) → 𝑦 = 𝑧))
3332expcom 413 . . . . . . . . . . . . . 14 (∀𝑖 ∈ (𝑁 ∖ {𝐾})∀𝑗 ∈ (𝑁 ∖ {𝐾})((𝑍𝑖) = (𝑍𝑗) → 𝑖 = 𝑗) → ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) → ((𝑍𝑦) = (𝑍𝑧) → 𝑦 = 𝑧)))
3433a1d 25 . . . . . . . . . . . . 13 (∀𝑖 ∈ (𝑁 ∖ {𝐾})∀𝑗 ∈ (𝑁 ∖ {𝐾})((𝑍𝑖) = (𝑍𝑗) → 𝑖 = 𝑗) → (𝐾𝑁 → ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) → ((𝑍𝑦) = (𝑍𝑧) → 𝑦 = 𝑧))))
3524, 34simplbiim 504 . . . . . . . . . . . 12 (𝑍:(𝑁 ∖ {𝐾})–1-1→(𝑁 ∖ {𝐾}) → (𝐾𝑁 → ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) → ((𝑍𝑦) = (𝑍𝑧) → 𝑦 = 𝑧))))
3622, 23, 353syl 18 . . . . . . . . . . 11 (𝑍𝑆 → (𝐾𝑁 → ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) → ((𝑍𝑦) = (𝑍𝑧) → 𝑦 = 𝑧))))
3736impcom 407 . . . . . . . . . 10 ((𝐾𝑁𝑍𝑆) → ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) → ((𝑍𝑦) = (𝑍𝑧) → 𝑦 = 𝑧)))
3837impcom 407 . . . . . . . . 9 (((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) ∧ (𝐾𝑁𝑍𝑆)) → ((𝑍𝑦) = (𝑍𝑧) → 𝑦 = 𝑧))
3920, 38sylbid 240 . . . . . . . 8 (((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) ∧ (𝐾𝑁𝑍𝑆)) → ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧))
4039ex 412 . . . . . . 7 ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) → ((𝐾𝑁𝑍𝑆) → ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧)))
411, 2symgextf1lem 19438 . . . . . . . . 9 ((𝐾𝑁𝑍𝑆) → ((𝑧 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑦 ∈ {𝐾}) → (𝐸𝑧) ≠ (𝐸𝑦)))
42 eqneqall 2951 . . . . . . . . . . 11 ((𝐸𝑧) = (𝐸𝑦) → ((𝐸𝑧) ≠ (𝐸𝑦) → 𝑦 = 𝑧))
4342eqcoms 2745 . . . . . . . . . 10 ((𝐸𝑦) = (𝐸𝑧) → ((𝐸𝑧) ≠ (𝐸𝑦) → 𝑦 = 𝑧))
4443com12 32 . . . . . . . . 9 ((𝐸𝑧) ≠ (𝐸𝑦) → ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧))
4541, 44syl6com 37 . . . . . . . 8 ((𝑧 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑦 ∈ {𝐾}) → ((𝐾𝑁𝑍𝑆) → ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧)))
4645ancoms 458 . . . . . . 7 ((𝑦 ∈ {𝐾} ∧ 𝑧 ∈ (𝑁 ∖ {𝐾})) → ((𝐾𝑁𝑍𝑆) → ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧)))
471, 2symgextf1lem 19438 . . . . . . . 8 ((𝐾𝑁𝑍𝑆) → ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ {𝐾}) → (𝐸𝑦) ≠ (𝐸𝑧)))
48 eqneqall 2951 . . . . . . . . 9 ((𝐸𝑦) = (𝐸𝑧) → ((𝐸𝑦) ≠ (𝐸𝑧) → 𝑦 = 𝑧))
4948com12 32 . . . . . . . 8 ((𝐸𝑦) ≠ (𝐸𝑧) → ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧))
5047, 49syl6com 37 . . . . . . 7 ((𝑦 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑧 ∈ {𝐾}) → ((𝐾𝑁𝑍𝑆) → ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧)))
51 elsni 4643 . . . . . . . 8 (𝑦 ∈ {𝐾} → 𝑦 = 𝐾)
52 elsni 4643 . . . . . . . 8 (𝑧 ∈ {𝐾} → 𝑧 = 𝐾)
53 eqtr3 2763 . . . . . . . . 9 ((𝑦 = 𝐾𝑧 = 𝐾) → 𝑦 = 𝑧)
54532a1d 26 . . . . . . . 8 ((𝑦 = 𝐾𝑧 = 𝐾) → ((𝐾𝑁𝑍𝑆) → ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧)))
5551, 52, 54syl2an 596 . . . . . . 7 ((𝑦 ∈ {𝐾} ∧ 𝑧 ∈ {𝐾}) → ((𝐾𝑁𝑍𝑆) → ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧)))
5640, 46, 50, 55ccase 1038 . . . . . 6 (((𝑦 ∈ (𝑁 ∖ {𝐾}) ∨ 𝑦 ∈ {𝐾}) ∧ (𝑧 ∈ (𝑁 ∖ {𝐾}) ∨ 𝑧 ∈ {𝐾})) → ((𝐾𝑁𝑍𝑆) → ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧)))
5710, 11, 56syl2anb 598 . . . . 5 ((𝑦 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ∧ 𝑧 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})) → ((𝐾𝑁𝑍𝑆) → ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧)))
5857com12 32 . . . 4 ((𝐾𝑁𝑍𝑆) → ((𝑦 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ∧ 𝑧 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})) → ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧)))
599, 58sylbid 240 . . 3 ((𝐾𝑁𝑍𝑆) → ((𝑦𝑁𝑧𝑁) → ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧)))
6059ralrimivv 3200 . 2 ((𝐾𝑁𝑍𝑆) → ∀𝑦𝑁𝑧𝑁 ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧))
61 dff13 7275 . 2 (𝐸:𝑁1-1𝑁 ↔ (𝐸:𝑁𝑁 ∧ ∀𝑦𝑁𝑧𝑁 ((𝐸𝑦) = (𝐸𝑧) → 𝑦 = 𝑧)))
623, 60, 61sylanbrc 583 1 ((𝐾𝑁𝑍𝑆) → 𝐸:𝑁1-1𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108  wne 2940  wral 3061  cdif 3948  cun 3949  ifcif 4525  {csn 4626  cmpt 5225  wf 6557  1-1wf1 6558  1-1-ontowf1o 6560  cfv 6561  Basecbs 17247  SymGrpcsymg 19386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-tset 17316  df-efmnd 18882  df-symg 19387
This theorem is referenced by:  symgextf1o  19441
  Copyright terms: Public domain W3C validator