Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zmulcom Structured version   Visualization version   GIF version

Theorem zmulcom 42507
Description: Multiplication is commutative for integers. Proven without ax-mulcom 11070. From this result and grpcominv1 42547, we can show that rationals commute under multiplication without using ax-mulcom 11070. (Contributed by SN, 25-Jan-2025.)
Assertion
Ref Expression
zmulcom ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))

Proof of Theorem zmulcom
StepHypRef Expression
1 reelznn0nn 42500 . 2 (𝐴 ∈ ℤ ↔ (𝐴 ∈ ℕ0 ∨ (𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ)))
2 reelznn0nn 42500 . 2 (𝐵 ∈ ℤ ↔ (𝐵 ∈ ℕ0 ∨ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)))
3 nn0mulcom 42505 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
4 zmulcomlem 42506 . . 3 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
5 zmulcomlem 42506 . . . . 5 (((𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ) ∧ 𝐴 ∈ ℕ0) → (𝐵 · 𝐴) = (𝐴 · 𝐵))
65eqcomd 2737 . . . 4 (((𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ) ∧ 𝐴 ∈ ℕ0) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
76ancoms 458 . . 3 ((𝐴 ∈ ℕ0 ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
8 nnmulcom 42311 . . . . . . . . 9 (((0 − 𝐴) ∈ ℕ ∧ (0 − 𝐵) ∈ ℕ) → ((0 − 𝐴) · (0 − 𝐵)) = ((0 − 𝐵) · (0 − 𝐴)))
98ad2ant2l 746 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → ((0 − 𝐴) · (0 − 𝐵)) = ((0 − 𝐵) · (0 − 𝐴)))
109oveq2d 7362 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (0 − ((0 − 𝐴) · (0 − 𝐵))) = (0 − ((0 − 𝐵) · (0 − 𝐴))))
11 rernegcl 42410 . . . . . . . . 9 (𝐴 ∈ ℝ → (0 − 𝐴) ∈ ℝ)
1211ad2antrr 726 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (0 − 𝐴) ∈ ℝ)
13 simprr 772 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (0 − 𝐵) ∈ ℕ)
1412, 13renegmulnnass 42504 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → ((0 − (0 − 𝐴)) · (0 − 𝐵)) = (0 − ((0 − 𝐴) · (0 − 𝐵))))
15 rernegcl 42410 . . . . . . . . 9 (𝐵 ∈ ℝ → (0 − 𝐵) ∈ ℝ)
1615ad2antrl 728 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (0 − 𝐵) ∈ ℝ)
17 simplr 768 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (0 − 𝐴) ∈ ℕ)
1816, 17renegmulnnass 42504 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → ((0 − (0 − 𝐵)) · (0 − 𝐴)) = (0 − ((0 − 𝐵) · (0 − 𝐴))))
1910, 14, 183eqtr4d 2776 . . . . . 6 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → ((0 − (0 − 𝐴)) · (0 − 𝐵)) = ((0 − (0 − 𝐵)) · (0 − 𝐴)))
2019oveq2d 7362 . . . . 5 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (0 − ((0 − (0 − 𝐴)) · (0 − 𝐵))) = (0 − ((0 − (0 − 𝐵)) · (0 − 𝐴))))
21 rernegcl 42410 . . . . . . . 8 ((0 − 𝐴) ∈ ℝ → (0 − (0 − 𝐴)) ∈ ℝ)
2211, 21syl 17 . . . . . . 7 (𝐴 ∈ ℝ → (0 − (0 − 𝐴)) ∈ ℝ)
2322ad2antrr 726 . . . . . 6 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (0 − (0 − 𝐴)) ∈ ℝ)
2423, 16remulneg2d 42454 . . . . 5 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → ((0 − (0 − 𝐴)) · (0 − (0 − 𝐵))) = (0 − ((0 − (0 − 𝐴)) · (0 − 𝐵))))
25 rernegcl 42410 . . . . . . . 8 ((0 − 𝐵) ∈ ℝ → (0 − (0 − 𝐵)) ∈ ℝ)
2615, 25syl 17 . . . . . . 7 (𝐵 ∈ ℝ → (0 − (0 − 𝐵)) ∈ ℝ)
2726ad2antrl 728 . . . . . 6 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (0 − (0 − 𝐵)) ∈ ℝ)
2827, 12remulneg2d 42454 . . . . 5 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → ((0 − (0 − 𝐵)) · (0 − (0 − 𝐴))) = (0 − ((0 − (0 − 𝐵)) · (0 − 𝐴))))
2920, 24, 283eqtr4d 2776 . . . 4 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → ((0 − (0 − 𝐴)) · (0 − (0 − 𝐵))) = ((0 − (0 − 𝐵)) · (0 − (0 − 𝐴))))
30 renegneg 42451 . . . . . 6 (𝐴 ∈ ℝ → (0 − (0 − 𝐴)) = 𝐴)
3130ad2antrr 726 . . . . 5 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (0 − (0 − 𝐴)) = 𝐴)
32 renegneg 42451 . . . . . 6 (𝐵 ∈ ℝ → (0 − (0 − 𝐵)) = 𝐵)
3332ad2antrl 728 . . . . 5 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (0 − (0 − 𝐵)) = 𝐵)
3431, 33oveq12d 7364 . . . 4 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → ((0 − (0 − 𝐴)) · (0 − (0 − 𝐵))) = (𝐴 · 𝐵))
3533, 31oveq12d 7364 . . . 4 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → ((0 − (0 − 𝐵)) · (0 − (0 − 𝐴))) = (𝐵 · 𝐴))
3629, 34, 353eqtr3d 2774 . . 3 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
373, 4, 7, 36ccase 1037 . 2 (((𝐴 ∈ ℕ0 ∨ (𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ)) ∧ (𝐵 ∈ ℕ0 ∨ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ))) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
381, 2, 37syl2anb 598 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1541  wcel 2111  (class class class)co 7346  cr 11005  0cc0 11006   · cmul 11011  cn 12125  0cn0 12381  cz 12468   cresub 42404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-ltxr 11151  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-resub 42405
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator