Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zmulcom Structured version   Visualization version   GIF version

Theorem zmulcom 42466
Description: Multiplication is commutative for integers. Proven without ax-mulcom 11198. From this result and grpcominv1 42498, we can show that rationals commute under multiplication without using ax-mulcom 11198. (Contributed by SN, 25-Jan-2025.)
Assertion
Ref Expression
zmulcom ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))

Proof of Theorem zmulcom
StepHypRef Expression
1 reelznn0nn 42459 . 2 (𝐴 ∈ ℤ ↔ (𝐴 ∈ ℕ0 ∨ (𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ)))
2 reelznn0nn 42459 . 2 (𝐵 ∈ ℤ ↔ (𝐵 ∈ ℕ0 ∨ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)))
3 nn0mulcom 42464 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
4 zmulcomlem 42465 . . 3 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
5 zmulcomlem 42465 . . . . 5 (((𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ) ∧ 𝐴 ∈ ℕ0) → (𝐵 · 𝐴) = (𝐴 · 𝐵))
65eqcomd 2742 . . . 4 (((𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ) ∧ 𝐴 ∈ ℕ0) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
76ancoms 458 . . 3 ((𝐴 ∈ ℕ0 ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
8 nnmulcom 42289 . . . . . . . . 9 (((0 − 𝐴) ∈ ℕ ∧ (0 − 𝐵) ∈ ℕ) → ((0 − 𝐴) · (0 − 𝐵)) = ((0 − 𝐵) · (0 − 𝐴)))
98ad2ant2l 746 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → ((0 − 𝐴) · (0 − 𝐵)) = ((0 − 𝐵) · (0 − 𝐴)))
109oveq2d 7426 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (0 − ((0 − 𝐴) · (0 − 𝐵))) = (0 − ((0 − 𝐵) · (0 − 𝐴))))
11 rernegcl 42381 . . . . . . . . 9 (𝐴 ∈ ℝ → (0 − 𝐴) ∈ ℝ)
1211ad2antrr 726 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (0 − 𝐴) ∈ ℝ)
13 simprr 772 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (0 − 𝐵) ∈ ℕ)
1412, 13renegmulnnass 42463 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → ((0 − (0 − 𝐴)) · (0 − 𝐵)) = (0 − ((0 − 𝐴) · (0 − 𝐵))))
15 rernegcl 42381 . . . . . . . . 9 (𝐵 ∈ ℝ → (0 − 𝐵) ∈ ℝ)
1615ad2antrl 728 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (0 − 𝐵) ∈ ℝ)
17 simplr 768 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (0 − 𝐴) ∈ ℕ)
1816, 17renegmulnnass 42463 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → ((0 − (0 − 𝐵)) · (0 − 𝐴)) = (0 − ((0 − 𝐵) · (0 − 𝐴))))
1910, 14, 183eqtr4d 2781 . . . . . 6 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → ((0 − (0 − 𝐴)) · (0 − 𝐵)) = ((0 − (0 − 𝐵)) · (0 − 𝐴)))
2019oveq2d 7426 . . . . 5 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (0 − ((0 − (0 − 𝐴)) · (0 − 𝐵))) = (0 − ((0 − (0 − 𝐵)) · (0 − 𝐴))))
21 rernegcl 42381 . . . . . . . 8 ((0 − 𝐴) ∈ ℝ → (0 − (0 − 𝐴)) ∈ ℝ)
2211, 21syl 17 . . . . . . 7 (𝐴 ∈ ℝ → (0 − (0 − 𝐴)) ∈ ℝ)
2322ad2antrr 726 . . . . . 6 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (0 − (0 − 𝐴)) ∈ ℝ)
2423, 16remulneg2d 42424 . . . . 5 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → ((0 − (0 − 𝐴)) · (0 − (0 − 𝐵))) = (0 − ((0 − (0 − 𝐴)) · (0 − 𝐵))))
25 rernegcl 42381 . . . . . . . 8 ((0 − 𝐵) ∈ ℝ → (0 − (0 − 𝐵)) ∈ ℝ)
2615, 25syl 17 . . . . . . 7 (𝐵 ∈ ℝ → (0 − (0 − 𝐵)) ∈ ℝ)
2726ad2antrl 728 . . . . . 6 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (0 − (0 − 𝐵)) ∈ ℝ)
2827, 12remulneg2d 42424 . . . . 5 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → ((0 − (0 − 𝐵)) · (0 − (0 − 𝐴))) = (0 − ((0 − (0 − 𝐵)) · (0 − 𝐴))))
2920, 24, 283eqtr4d 2781 . . . 4 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → ((0 − (0 − 𝐴)) · (0 − (0 − 𝐵))) = ((0 − (0 − 𝐵)) · (0 − (0 − 𝐴))))
30 renegneg 42421 . . . . . 6 (𝐴 ∈ ℝ → (0 − (0 − 𝐴)) = 𝐴)
3130ad2antrr 726 . . . . 5 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (0 − (0 − 𝐴)) = 𝐴)
32 renegneg 42421 . . . . . 6 (𝐵 ∈ ℝ → (0 − (0 − 𝐵)) = 𝐵)
3332ad2antrl 728 . . . . 5 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (0 − (0 − 𝐵)) = 𝐵)
3431, 33oveq12d 7428 . . . 4 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → ((0 − (0 − 𝐴)) · (0 − (0 − 𝐵))) = (𝐴 · 𝐵))
3533, 31oveq12d 7428 . . . 4 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → ((0 − (0 − 𝐵)) · (0 − (0 − 𝐴))) = (𝐵 · 𝐴))
3629, 34, 353eqtr3d 2779 . . 3 (((𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ) ∧ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ)) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
373, 4, 7, 36ccase 1037 . 2 (((𝐴 ∈ ℕ0 ∨ (𝐴 ∈ ℝ ∧ (0 − 𝐴) ∈ ℕ)) ∧ (𝐵 ∈ ℕ0 ∨ (𝐵 ∈ ℝ ∧ (0 − 𝐵) ∈ ℕ))) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
381, 2, 37syl2anb 598 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  (class class class)co 7410  cr 11133  0cc0 11134   · cmul 11139  cn 12245  0cn0 12506  cz 12593   cresub 42375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-ltxr 11279  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-resub 42376
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator