MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  injresinjlem Structured version   Visualization version   GIF version

Theorem injresinjlem 13698
Description: Lemma for injresinj 13699. (Contributed by Alexander van der Vekens, 31-Oct-2017.) (Proof shortened by AV, 14-Feb-2021.) (Revised by Thierry Arnoux, 23-Dec-2021.)
Assertion
Ref Expression
injresinjlem (Β¬ π‘Œ ∈ (1..^𝐾) β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (((𝐹 β€œ {0, 𝐾}) ∩ (𝐹 β€œ (1..^𝐾))) = βˆ… β†’ ((𝑋 ∈ (0...𝐾) ∧ π‘Œ ∈ (0...𝐾)) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ))))))

Proof of Theorem injresinjlem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elfznelfzo 13683 . . . . . . 7 ((π‘Œ ∈ (0...𝐾) ∧ Β¬ π‘Œ ∈ (1..^𝐾)) β†’ (π‘Œ = 0 ∨ π‘Œ = 𝐾))
2 fvinim0ffz 13697 . . . . . . . . . . . . 13 ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (((𝐹 β€œ {0, 𝐾}) ∩ (𝐹 β€œ (1..^𝐾))) = βˆ… ↔ ((πΉβ€˜0) βˆ‰ (𝐹 β€œ (1..^𝐾)) ∧ (πΉβ€˜πΎ) βˆ‰ (𝐹 β€œ (1..^𝐾)))))
3 df-nel 3047 . . . . . . . . . . . . . . . . . 18 ((πΉβ€˜0) βˆ‰ (𝐹 β€œ (1..^𝐾)) ↔ Β¬ (πΉβ€˜0) ∈ (𝐹 β€œ (1..^𝐾)))
4 fveq2 6843 . . . . . . . . . . . . . . . . . . . . . . 23 (0 = π‘Œ β†’ (πΉβ€˜0) = (πΉβ€˜π‘Œ))
54eqcoms 2741 . . . . . . . . . . . . . . . . . . . . . 22 (π‘Œ = 0 β†’ (πΉβ€˜0) = (πΉβ€˜π‘Œ))
65eleq1d 2819 . . . . . . . . . . . . . . . . . . . . 21 (π‘Œ = 0 β†’ ((πΉβ€˜0) ∈ (𝐹 β€œ (1..^𝐾)) ↔ (πΉβ€˜π‘Œ) ∈ (𝐹 β€œ (1..^𝐾))))
76notbid 318 . . . . . . . . . . . . . . . . . . . 20 (π‘Œ = 0 β†’ (Β¬ (πΉβ€˜0) ∈ (𝐹 β€œ (1..^𝐾)) ↔ Β¬ (πΉβ€˜π‘Œ) ∈ (𝐹 β€œ (1..^𝐾))))
87biimpd 228 . . . . . . . . . . . . . . . . . . 19 (π‘Œ = 0 β†’ (Β¬ (πΉβ€˜0) ∈ (𝐹 β€œ (1..^𝐾)) β†’ Β¬ (πΉβ€˜π‘Œ) ∈ (𝐹 β€œ (1..^𝐾))))
9 ffn 6669 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:(0...𝐾)βŸΆπ‘‰ β†’ 𝐹 Fn (0...𝐾))
10 1eluzge0 12822 . . . . . . . . . . . . . . . . . . . . . . . . 25 1 ∈ (β„€β‰₯β€˜0)
11 fzoss1 13605 . . . . . . . . . . . . . . . . . . . . . . . . 25 (1 ∈ (β„€β‰₯β€˜0) β†’ (1..^𝐾) βŠ† (0..^𝐾))
1210, 11mp1i 13 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐾 ∈ β„•0 β†’ (1..^𝐾) βŠ† (0..^𝐾))
13 fzossfz 13597 . . . . . . . . . . . . . . . . . . . . . . . 24 (0..^𝐾) βŠ† (0...𝐾)
1412, 13sstrdi 3957 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐾 ∈ β„•0 β†’ (1..^𝐾) βŠ† (0...𝐾))
15 fvelimab 6915 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹 Fn (0...𝐾) ∧ (1..^𝐾) βŠ† (0...𝐾)) β†’ ((πΉβ€˜π‘Œ) ∈ (𝐹 β€œ (1..^𝐾)) ↔ βˆƒπ‘§ ∈ (1..^𝐾)(πΉβ€˜π‘§) = (πΉβ€˜π‘Œ)))
169, 14, 15syl2an 597 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ ((πΉβ€˜π‘Œ) ∈ (𝐹 β€œ (1..^𝐾)) ↔ βˆƒπ‘§ ∈ (1..^𝐾)(πΉβ€˜π‘§) = (πΉβ€˜π‘Œ)))
1716notbid 318 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (Β¬ (πΉβ€˜π‘Œ) ∈ (𝐹 β€œ (1..^𝐾)) ↔ Β¬ βˆƒπ‘§ ∈ (1..^𝐾)(πΉβ€˜π‘§) = (πΉβ€˜π‘Œ)))
18 ralnex 3072 . . . . . . . . . . . . . . . . . . . . . . 23 (βˆ€π‘§ ∈ (1..^𝐾) Β¬ (πΉβ€˜π‘§) = (πΉβ€˜π‘Œ) ↔ Β¬ βˆƒπ‘§ ∈ (1..^𝐾)(πΉβ€˜π‘§) = (πΉβ€˜π‘Œ))
19 fveqeq2 6852 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 = 𝑋 β†’ ((πΉβ€˜π‘§) = (πΉβ€˜π‘Œ) ↔ (πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ)))
2019notbid 318 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 = 𝑋 β†’ (Β¬ (πΉβ€˜π‘§) = (πΉβ€˜π‘Œ) ↔ Β¬ (πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ)))
2120rspcva 3578 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑋 ∈ (1..^𝐾) ∧ βˆ€π‘§ ∈ (1..^𝐾) Β¬ (πΉβ€˜π‘§) = (πΉβ€˜π‘Œ)) β†’ Β¬ (πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ))
22 pm2.21 123 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (Β¬ (πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ))
2322a1d 25 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (Β¬ (πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ)))
24232a1d 26 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (Β¬ (πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ (𝑋 ∈ (0...𝐾) β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ)))))
2521, 24syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑋 ∈ (1..^𝐾) ∧ βˆ€π‘§ ∈ (1..^𝐾) Β¬ (πΉβ€˜π‘§) = (πΉβ€˜π‘Œ)) β†’ (𝑋 ∈ (0...𝐾) β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ)))))
2625expcom 415 . . . . . . . . . . . . . . . . . . . . . . . 24 (βˆ€π‘§ ∈ (1..^𝐾) Β¬ (πΉβ€˜π‘§) = (πΉβ€˜π‘Œ) β†’ (𝑋 ∈ (1..^𝐾) β†’ (𝑋 ∈ (0...𝐾) β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ))))))
2726com24 95 . . . . . . . . . . . . . . . . . . . . . . 23 (βˆ€π‘§ ∈ (1..^𝐾) Β¬ (πΉβ€˜π‘§) = (πΉβ€˜π‘Œ) β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (𝑋 ∈ (0...𝐾) β†’ (𝑋 ∈ (1..^𝐾) β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ))))))
2818, 27sylbir 234 . . . . . . . . . . . . . . . . . . . . . 22 (Β¬ βˆƒπ‘§ ∈ (1..^𝐾)(πΉβ€˜π‘§) = (πΉβ€˜π‘Œ) β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (𝑋 ∈ (0...𝐾) β†’ (𝑋 ∈ (1..^𝐾) β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ))))))
2928com12 32 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (Β¬ βˆƒπ‘§ ∈ (1..^𝐾)(πΉβ€˜π‘§) = (πΉβ€˜π‘Œ) β†’ (𝑋 ∈ (0...𝐾) β†’ (𝑋 ∈ (1..^𝐾) β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ))))))
3017, 29sylbid 239 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (Β¬ (πΉβ€˜π‘Œ) ∈ (𝐹 β€œ (1..^𝐾)) β†’ (𝑋 ∈ (0...𝐾) β†’ (𝑋 ∈ (1..^𝐾) β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ))))))
3130com12 32 . . . . . . . . . . . . . . . . . . 19 (Β¬ (πΉβ€˜π‘Œ) ∈ (𝐹 β€œ (1..^𝐾)) β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (𝑋 ∈ (0...𝐾) β†’ (𝑋 ∈ (1..^𝐾) β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ))))))
328, 31syl6com 37 . . . . . . . . . . . . . . . . . 18 (Β¬ (πΉβ€˜0) ∈ (𝐹 β€œ (1..^𝐾)) β†’ (π‘Œ = 0 β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (𝑋 ∈ (0...𝐾) β†’ (𝑋 ∈ (1..^𝐾) β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ)))))))
333, 32sylbi 216 . . . . . . . . . . . . . . . . 17 ((πΉβ€˜0) βˆ‰ (𝐹 β€œ (1..^𝐾)) β†’ (π‘Œ = 0 β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (𝑋 ∈ (0...𝐾) β†’ (𝑋 ∈ (1..^𝐾) β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ)))))))
3433adantr 482 . . . . . . . . . . . . . . . 16 (((πΉβ€˜0) βˆ‰ (𝐹 β€œ (1..^𝐾)) ∧ (πΉβ€˜πΎ) βˆ‰ (𝐹 β€œ (1..^𝐾))) β†’ (π‘Œ = 0 β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (𝑋 ∈ (0...𝐾) β†’ (𝑋 ∈ (1..^𝐾) β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ)))))))
3534com12 32 . . . . . . . . . . . . . . 15 (π‘Œ = 0 β†’ (((πΉβ€˜0) βˆ‰ (𝐹 β€œ (1..^𝐾)) ∧ (πΉβ€˜πΎ) βˆ‰ (𝐹 β€œ (1..^𝐾))) β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (𝑋 ∈ (0...𝐾) β†’ (𝑋 ∈ (1..^𝐾) β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ)))))))
36 df-nel 3047 . . . . . . . . . . . . . . . . . 18 ((πΉβ€˜πΎ) βˆ‰ (𝐹 β€œ (1..^𝐾)) ↔ Β¬ (πΉβ€˜πΎ) ∈ (𝐹 β€œ (1..^𝐾)))
37 fveq2 6843 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐾 = π‘Œ β†’ (πΉβ€˜πΎ) = (πΉβ€˜π‘Œ))
3837eqcoms 2741 . . . . . . . . . . . . . . . . . . . . . 22 (π‘Œ = 𝐾 β†’ (πΉβ€˜πΎ) = (πΉβ€˜π‘Œ))
3938eleq1d 2819 . . . . . . . . . . . . . . . . . . . . 21 (π‘Œ = 𝐾 β†’ ((πΉβ€˜πΎ) ∈ (𝐹 β€œ (1..^𝐾)) ↔ (πΉβ€˜π‘Œ) ∈ (𝐹 β€œ (1..^𝐾))))
4039notbid 318 . . . . . . . . . . . . . . . . . . . 20 (π‘Œ = 𝐾 β†’ (Β¬ (πΉβ€˜πΎ) ∈ (𝐹 β€œ (1..^𝐾)) ↔ Β¬ (πΉβ€˜π‘Œ) ∈ (𝐹 β€œ (1..^𝐾))))
4140biimpd 228 . . . . . . . . . . . . . . . . . . 19 (π‘Œ = 𝐾 β†’ (Β¬ (πΉβ€˜πΎ) ∈ (𝐹 β€œ (1..^𝐾)) β†’ Β¬ (πΉβ€˜π‘Œ) ∈ (𝐹 β€œ (1..^𝐾))))
4241, 31syl6com 37 . . . . . . . . . . . . . . . . . 18 (Β¬ (πΉβ€˜πΎ) ∈ (𝐹 β€œ (1..^𝐾)) β†’ (π‘Œ = 𝐾 β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (𝑋 ∈ (0...𝐾) β†’ (𝑋 ∈ (1..^𝐾) β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ)))))))
4336, 42sylbi 216 . . . . . . . . . . . . . . . . 17 ((πΉβ€˜πΎ) βˆ‰ (𝐹 β€œ (1..^𝐾)) β†’ (π‘Œ = 𝐾 β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (𝑋 ∈ (0...𝐾) β†’ (𝑋 ∈ (1..^𝐾) β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ)))))))
4443adantl 483 . . . . . . . . . . . . . . . 16 (((πΉβ€˜0) βˆ‰ (𝐹 β€œ (1..^𝐾)) ∧ (πΉβ€˜πΎ) βˆ‰ (𝐹 β€œ (1..^𝐾))) β†’ (π‘Œ = 𝐾 β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (𝑋 ∈ (0...𝐾) β†’ (𝑋 ∈ (1..^𝐾) β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ)))))))
4544com12 32 . . . . . . . . . . . . . . 15 (π‘Œ = 𝐾 β†’ (((πΉβ€˜0) βˆ‰ (𝐹 β€œ (1..^𝐾)) ∧ (πΉβ€˜πΎ) βˆ‰ (𝐹 β€œ (1..^𝐾))) β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (𝑋 ∈ (0...𝐾) β†’ (𝑋 ∈ (1..^𝐾) β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ)))))))
4635, 45jaoi 856 . . . . . . . . . . . . . 14 ((π‘Œ = 0 ∨ π‘Œ = 𝐾) β†’ (((πΉβ€˜0) βˆ‰ (𝐹 β€œ (1..^𝐾)) ∧ (πΉβ€˜πΎ) βˆ‰ (𝐹 β€œ (1..^𝐾))) β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (𝑋 ∈ (0...𝐾) β†’ (𝑋 ∈ (1..^𝐾) β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ)))))))
4746com13 88 . . . . . . . . . . . . 13 ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (((πΉβ€˜0) βˆ‰ (𝐹 β€œ (1..^𝐾)) ∧ (πΉβ€˜πΎ) βˆ‰ (𝐹 β€œ (1..^𝐾))) β†’ ((π‘Œ = 0 ∨ π‘Œ = 𝐾) β†’ (𝑋 ∈ (0...𝐾) β†’ (𝑋 ∈ (1..^𝐾) β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ)))))))
482, 47sylbid 239 . . . . . . . . . . . 12 ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (((𝐹 β€œ {0, 𝐾}) ∩ (𝐹 β€œ (1..^𝐾))) = βˆ… β†’ ((π‘Œ = 0 ∨ π‘Œ = 𝐾) β†’ (𝑋 ∈ (0...𝐾) β†’ (𝑋 ∈ (1..^𝐾) β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ)))))))
4948com14 96 . . . . . . . . . . 11 (𝑋 ∈ (0...𝐾) β†’ (((𝐹 β€œ {0, 𝐾}) ∩ (𝐹 β€œ (1..^𝐾))) = βˆ… β†’ ((π‘Œ = 0 ∨ π‘Œ = 𝐾) β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (𝑋 ∈ (1..^𝐾) β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ)))))))
5049com12 32 . . . . . . . . . 10 (((𝐹 β€œ {0, 𝐾}) ∩ (𝐹 β€œ (1..^𝐾))) = βˆ… β†’ (𝑋 ∈ (0...𝐾) β†’ ((π‘Œ = 0 ∨ π‘Œ = 𝐾) β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (𝑋 ∈ (1..^𝐾) β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ)))))))
5150com15 101 . . . . . . . . 9 (𝑋 ∈ (1..^𝐾) β†’ (𝑋 ∈ (0...𝐾) β†’ ((π‘Œ = 0 ∨ π‘Œ = 𝐾) β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (((𝐹 β€œ {0, 𝐾}) ∩ (𝐹 β€œ (1..^𝐾))) = βˆ… β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ)))))))
52 elfznelfzo 13683 . . . . . . . . . . 11 ((𝑋 ∈ (0...𝐾) ∧ Β¬ 𝑋 ∈ (1..^𝐾)) β†’ (𝑋 = 0 ∨ 𝑋 = 𝐾))
53 eqtr3 2759 . . . . . . . . . . . . . 14 ((𝑋 = 0 ∧ π‘Œ = 0) β†’ 𝑋 = π‘Œ)
54 2a1 28 . . . . . . . . . . . . . . 15 (𝑋 = π‘Œ β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ)))
55542a1d 26 . . . . . . . . . . . . . 14 (𝑋 = π‘Œ β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (((𝐹 β€œ {0, 𝐾}) ∩ (𝐹 β€œ (1..^𝐾))) = βˆ… β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ)))))
5653, 55syl 17 . . . . . . . . . . . . 13 ((𝑋 = 0 ∧ π‘Œ = 0) β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (((𝐹 β€œ {0, 𝐾}) ∩ (𝐹 β€œ (1..^𝐾))) = βˆ… β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ)))))
575adantl 483 . . . . . . . . . . . . . . . 16 ((𝑋 = 𝐾 ∧ π‘Œ = 0) β†’ (πΉβ€˜0) = (πΉβ€˜π‘Œ))
58 fveq2 6843 . . . . . . . . . . . . . . . . . 18 (𝐾 = 𝑋 β†’ (πΉβ€˜πΎ) = (πΉβ€˜π‘‹))
5958eqcoms 2741 . . . . . . . . . . . . . . . . 17 (𝑋 = 𝐾 β†’ (πΉβ€˜πΎ) = (πΉβ€˜π‘‹))
6059adantr 482 . . . . . . . . . . . . . . . 16 ((𝑋 = 𝐾 ∧ π‘Œ = 0) β†’ (πΉβ€˜πΎ) = (πΉβ€˜π‘‹))
6157, 60neeq12d 3002 . . . . . . . . . . . . . . 15 ((𝑋 = 𝐾 ∧ π‘Œ = 0) β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) ↔ (πΉβ€˜π‘Œ) β‰  (πΉβ€˜π‘‹)))
62 df-ne 2941 . . . . . . . . . . . . . . . 16 ((πΉβ€˜π‘Œ) β‰  (πΉβ€˜π‘‹) ↔ Β¬ (πΉβ€˜π‘Œ) = (πΉβ€˜π‘‹))
63 pm2.24 124 . . . . . . . . . . . . . . . . . 18 ((πΉβ€˜π‘Œ) = (πΉβ€˜π‘‹) β†’ (Β¬ (πΉβ€˜π‘Œ) = (πΉβ€˜π‘‹) β†’ 𝑋 = π‘Œ))
6463eqcoms 2741 . . . . . . . . . . . . . . . . 17 ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ (Β¬ (πΉβ€˜π‘Œ) = (πΉβ€˜π‘‹) β†’ 𝑋 = π‘Œ))
6564com12 32 . . . . . . . . . . . . . . . 16 (Β¬ (πΉβ€˜π‘Œ) = (πΉβ€˜π‘‹) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ))
6662, 65sylbi 216 . . . . . . . . . . . . . . 15 ((πΉβ€˜π‘Œ) β‰  (πΉβ€˜π‘‹) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ))
6761, 66syl6bi 253 . . . . . . . . . . . . . 14 ((𝑋 = 𝐾 ∧ π‘Œ = 0) β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ)))
68672a1d 26 . . . . . . . . . . . . 13 ((𝑋 = 𝐾 ∧ π‘Œ = 0) β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (((𝐹 β€œ {0, 𝐾}) ∩ (𝐹 β€œ (1..^𝐾))) = βˆ… β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ)))))
69 fveq2 6843 . . . . . . . . . . . . . . . . . 18 (0 = 𝑋 β†’ (πΉβ€˜0) = (πΉβ€˜π‘‹))
7069eqcoms 2741 . . . . . . . . . . . . . . . . 17 (𝑋 = 0 β†’ (πΉβ€˜0) = (πΉβ€˜π‘‹))
7170adantr 482 . . . . . . . . . . . . . . . 16 ((𝑋 = 0 ∧ π‘Œ = 𝐾) β†’ (πΉβ€˜0) = (πΉβ€˜π‘‹))
7238adantl 483 . . . . . . . . . . . . . . . 16 ((𝑋 = 0 ∧ π‘Œ = 𝐾) β†’ (πΉβ€˜πΎ) = (πΉβ€˜π‘Œ))
7371, 72neeq12d 3002 . . . . . . . . . . . . . . 15 ((𝑋 = 0 ∧ π‘Œ = 𝐾) β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) ↔ (πΉβ€˜π‘‹) β‰  (πΉβ€˜π‘Œ)))
74 df-ne 2941 . . . . . . . . . . . . . . . 16 ((πΉβ€˜π‘‹) β‰  (πΉβ€˜π‘Œ) ↔ Β¬ (πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ))
7574, 22sylbi 216 . . . . . . . . . . . . . . 15 ((πΉβ€˜π‘‹) β‰  (πΉβ€˜π‘Œ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ))
7673, 75syl6bi 253 . . . . . . . . . . . . . 14 ((𝑋 = 0 ∧ π‘Œ = 𝐾) β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ)))
77762a1d 26 . . . . . . . . . . . . 13 ((𝑋 = 0 ∧ π‘Œ = 𝐾) β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (((𝐹 β€œ {0, 𝐾}) ∩ (𝐹 β€œ (1..^𝐾))) = βˆ… β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ)))))
78 eqtr3 2759 . . . . . . . . . . . . . 14 ((𝑋 = 𝐾 ∧ π‘Œ = 𝐾) β†’ 𝑋 = π‘Œ)
7978, 55syl 17 . . . . . . . . . . . . 13 ((𝑋 = 𝐾 ∧ π‘Œ = 𝐾) β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (((𝐹 β€œ {0, 𝐾}) ∩ (𝐹 β€œ (1..^𝐾))) = βˆ… β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ)))))
8056, 68, 77, 79ccase 1037 . . . . . . . . . . . 12 (((𝑋 = 0 ∨ 𝑋 = 𝐾) ∧ (π‘Œ = 0 ∨ π‘Œ = 𝐾)) β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (((𝐹 β€œ {0, 𝐾}) ∩ (𝐹 β€œ (1..^𝐾))) = βˆ… β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ)))))
8180ex 414 . . . . . . . . . . 11 ((𝑋 = 0 ∨ 𝑋 = 𝐾) β†’ ((π‘Œ = 0 ∨ π‘Œ = 𝐾) β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (((𝐹 β€œ {0, 𝐾}) ∩ (𝐹 β€œ (1..^𝐾))) = βˆ… β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ))))))
8252, 81syl 17 . . . . . . . . . 10 ((𝑋 ∈ (0...𝐾) ∧ Β¬ 𝑋 ∈ (1..^𝐾)) β†’ ((π‘Œ = 0 ∨ π‘Œ = 𝐾) β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (((𝐹 β€œ {0, 𝐾}) ∩ (𝐹 β€œ (1..^𝐾))) = βˆ… β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ))))))
8382expcom 415 . . . . . . . . 9 (Β¬ 𝑋 ∈ (1..^𝐾) β†’ (𝑋 ∈ (0...𝐾) β†’ ((π‘Œ = 0 ∨ π‘Œ = 𝐾) β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (((𝐹 β€œ {0, 𝐾}) ∩ (𝐹 β€œ (1..^𝐾))) = βˆ… β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ)))))))
8451, 83pm2.61i 182 . . . . . . . 8 (𝑋 ∈ (0...𝐾) β†’ ((π‘Œ = 0 ∨ π‘Œ = 𝐾) β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (((𝐹 β€œ {0, 𝐾}) ∩ (𝐹 β€œ (1..^𝐾))) = βˆ… β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ))))))
8584com12 32 . . . . . . 7 ((π‘Œ = 0 ∨ π‘Œ = 𝐾) β†’ (𝑋 ∈ (0...𝐾) β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (((𝐹 β€œ {0, 𝐾}) ∩ (𝐹 β€œ (1..^𝐾))) = βˆ… β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ))))))
861, 85syl 17 . . . . . 6 ((π‘Œ ∈ (0...𝐾) ∧ Β¬ π‘Œ ∈ (1..^𝐾)) β†’ (𝑋 ∈ (0...𝐾) β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (((𝐹 β€œ {0, 𝐾}) ∩ (𝐹 β€œ (1..^𝐾))) = βˆ… β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ))))))
8786ex 414 . . . . 5 (π‘Œ ∈ (0...𝐾) β†’ (Β¬ π‘Œ ∈ (1..^𝐾) β†’ (𝑋 ∈ (0...𝐾) β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (((𝐹 β€œ {0, 𝐾}) ∩ (𝐹 β€œ (1..^𝐾))) = βˆ… β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ)))))))
8887com23 86 . . . 4 (π‘Œ ∈ (0...𝐾) β†’ (𝑋 ∈ (0...𝐾) β†’ (Β¬ π‘Œ ∈ (1..^𝐾) β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (((𝐹 β€œ {0, 𝐾}) ∩ (𝐹 β€œ (1..^𝐾))) = βˆ… β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ)))))))
8988impcom 409 . . 3 ((𝑋 ∈ (0...𝐾) ∧ π‘Œ ∈ (0...𝐾)) β†’ (Β¬ π‘Œ ∈ (1..^𝐾) β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (((𝐹 β€œ {0, 𝐾}) ∩ (𝐹 β€œ (1..^𝐾))) = βˆ… β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ))))))
9089com12 32 . 2 (Β¬ π‘Œ ∈ (1..^𝐾) β†’ ((𝑋 ∈ (0...𝐾) ∧ π‘Œ ∈ (0...𝐾)) β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (((𝐹 β€œ {0, 𝐾}) ∩ (𝐹 β€œ (1..^𝐾))) = βˆ… β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ))))))
9190com25 99 1 (Β¬ π‘Œ ∈ (1..^𝐾) β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (((𝐹 β€œ {0, 𝐾}) ∩ (𝐹 β€œ (1..^𝐾))) = βˆ… β†’ ((𝑋 ∈ (0...𝐾) ∧ π‘Œ ∈ (0...𝐾)) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ))))))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∨ wo 846   = wceq 1542   ∈ wcel 2107   β‰  wne 2940   βˆ‰ wnel 3046  βˆ€wral 3061  βˆƒwrex 3070   ∩ cin 3910   βŠ† wss 3911  βˆ…c0 4283  {cpr 4589   β€œ cima 5637   Fn wfn 6492  βŸΆwf 6493  β€˜cfv 6497  (class class class)co 7358  0cc0 11056  1c1 11057  β„•0cn0 12418  β„€β‰₯cuz 12768  ...cfz 13430  ..^cfzo 13573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-er 8651  df-en 8887  df-dom 8888  df-sdom 8889  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-nn 12159  df-n0 12419  df-z 12505  df-uz 12769  df-fz 13431  df-fzo 13574
This theorem is referenced by:  injresinj  13699
  Copyright terms: Public domain W3C validator