MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  injresinjlem Structured version   Visualization version   GIF version

Theorem injresinjlem 13752
Description: Lemma for injresinj 13753. (Contributed by Alexander van der Vekens, 31-Oct-2017.) (Proof shortened by AV, 14-Feb-2021.) (Revised by Thierry Arnoux, 23-Dec-2021.)
Assertion
Ref Expression
injresinjlem (Β¬ π‘Œ ∈ (1..^𝐾) β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (((𝐹 β€œ {0, 𝐾}) ∩ (𝐹 β€œ (1..^𝐾))) = βˆ… β†’ ((𝑋 ∈ (0...𝐾) ∧ π‘Œ ∈ (0...𝐾)) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ))))))

Proof of Theorem injresinjlem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elfznelfzo 13737 . . . . . . 7 ((π‘Œ ∈ (0...𝐾) ∧ Β¬ π‘Œ ∈ (1..^𝐾)) β†’ (π‘Œ = 0 ∨ π‘Œ = 𝐾))
2 fvinim0ffz 13751 . . . . . . . . . . . . 13 ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (((𝐹 β€œ {0, 𝐾}) ∩ (𝐹 β€œ (1..^𝐾))) = βˆ… ↔ ((πΉβ€˜0) βˆ‰ (𝐹 β€œ (1..^𝐾)) ∧ (πΉβ€˜πΎ) βˆ‰ (𝐹 β€œ (1..^𝐾)))))
3 df-nel 3048 . . . . . . . . . . . . . . . . . 18 ((πΉβ€˜0) βˆ‰ (𝐹 β€œ (1..^𝐾)) ↔ Β¬ (πΉβ€˜0) ∈ (𝐹 β€œ (1..^𝐾)))
4 fveq2 6892 . . . . . . . . . . . . . . . . . . . . . . 23 (0 = π‘Œ β†’ (πΉβ€˜0) = (πΉβ€˜π‘Œ))
54eqcoms 2741 . . . . . . . . . . . . . . . . . . . . . 22 (π‘Œ = 0 β†’ (πΉβ€˜0) = (πΉβ€˜π‘Œ))
65eleq1d 2819 . . . . . . . . . . . . . . . . . . . . 21 (π‘Œ = 0 β†’ ((πΉβ€˜0) ∈ (𝐹 β€œ (1..^𝐾)) ↔ (πΉβ€˜π‘Œ) ∈ (𝐹 β€œ (1..^𝐾))))
76notbid 318 . . . . . . . . . . . . . . . . . . . 20 (π‘Œ = 0 β†’ (Β¬ (πΉβ€˜0) ∈ (𝐹 β€œ (1..^𝐾)) ↔ Β¬ (πΉβ€˜π‘Œ) ∈ (𝐹 β€œ (1..^𝐾))))
87biimpd 228 . . . . . . . . . . . . . . . . . . 19 (π‘Œ = 0 β†’ (Β¬ (πΉβ€˜0) ∈ (𝐹 β€œ (1..^𝐾)) β†’ Β¬ (πΉβ€˜π‘Œ) ∈ (𝐹 β€œ (1..^𝐾))))
9 ffn 6718 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:(0...𝐾)βŸΆπ‘‰ β†’ 𝐹 Fn (0...𝐾))
10 1eluzge0 12876 . . . . . . . . . . . . . . . . . . . . . . . . 25 1 ∈ (β„€β‰₯β€˜0)
11 fzoss1 13659 . . . . . . . . . . . . . . . . . . . . . . . . 25 (1 ∈ (β„€β‰₯β€˜0) β†’ (1..^𝐾) βŠ† (0..^𝐾))
1210, 11mp1i 13 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐾 ∈ β„•0 β†’ (1..^𝐾) βŠ† (0..^𝐾))
13 fzossfz 13651 . . . . . . . . . . . . . . . . . . . . . . . 24 (0..^𝐾) βŠ† (0...𝐾)
1412, 13sstrdi 3995 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐾 ∈ β„•0 β†’ (1..^𝐾) βŠ† (0...𝐾))
15 fvelimab 6965 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹 Fn (0...𝐾) ∧ (1..^𝐾) βŠ† (0...𝐾)) β†’ ((πΉβ€˜π‘Œ) ∈ (𝐹 β€œ (1..^𝐾)) ↔ βˆƒπ‘§ ∈ (1..^𝐾)(πΉβ€˜π‘§) = (πΉβ€˜π‘Œ)))
169, 14, 15syl2an 597 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ ((πΉβ€˜π‘Œ) ∈ (𝐹 β€œ (1..^𝐾)) ↔ βˆƒπ‘§ ∈ (1..^𝐾)(πΉβ€˜π‘§) = (πΉβ€˜π‘Œ)))
1716notbid 318 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (Β¬ (πΉβ€˜π‘Œ) ∈ (𝐹 β€œ (1..^𝐾)) ↔ Β¬ βˆƒπ‘§ ∈ (1..^𝐾)(πΉβ€˜π‘§) = (πΉβ€˜π‘Œ)))
18 ralnex 3073 . . . . . . . . . . . . . . . . . . . . . . 23 (βˆ€π‘§ ∈ (1..^𝐾) Β¬ (πΉβ€˜π‘§) = (πΉβ€˜π‘Œ) ↔ Β¬ βˆƒπ‘§ ∈ (1..^𝐾)(πΉβ€˜π‘§) = (πΉβ€˜π‘Œ))
19 fveqeq2 6901 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 = 𝑋 β†’ ((πΉβ€˜π‘§) = (πΉβ€˜π‘Œ) ↔ (πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ)))
2019notbid 318 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 = 𝑋 β†’ (Β¬ (πΉβ€˜π‘§) = (πΉβ€˜π‘Œ) ↔ Β¬ (πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ)))
2120rspcva 3611 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑋 ∈ (1..^𝐾) ∧ βˆ€π‘§ ∈ (1..^𝐾) Β¬ (πΉβ€˜π‘§) = (πΉβ€˜π‘Œ)) β†’ Β¬ (πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ))
22 pm2.21 123 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (Β¬ (πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ))
2322a1d 25 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (Β¬ (πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ)))
24232a1d 26 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (Β¬ (πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ (𝑋 ∈ (0...𝐾) β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ)))))
2521, 24syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑋 ∈ (1..^𝐾) ∧ βˆ€π‘§ ∈ (1..^𝐾) Β¬ (πΉβ€˜π‘§) = (πΉβ€˜π‘Œ)) β†’ (𝑋 ∈ (0...𝐾) β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ)))))
2625expcom 415 . . . . . . . . . . . . . . . . . . . . . . . 24 (βˆ€π‘§ ∈ (1..^𝐾) Β¬ (πΉβ€˜π‘§) = (πΉβ€˜π‘Œ) β†’ (𝑋 ∈ (1..^𝐾) β†’ (𝑋 ∈ (0...𝐾) β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ))))))
2726com24 95 . . . . . . . . . . . . . . . . . . . . . . 23 (βˆ€π‘§ ∈ (1..^𝐾) Β¬ (πΉβ€˜π‘§) = (πΉβ€˜π‘Œ) β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (𝑋 ∈ (0...𝐾) β†’ (𝑋 ∈ (1..^𝐾) β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ))))))
2818, 27sylbir 234 . . . . . . . . . . . . . . . . . . . . . 22 (Β¬ βˆƒπ‘§ ∈ (1..^𝐾)(πΉβ€˜π‘§) = (πΉβ€˜π‘Œ) β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (𝑋 ∈ (0...𝐾) β†’ (𝑋 ∈ (1..^𝐾) β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ))))))
2928com12 32 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (Β¬ βˆƒπ‘§ ∈ (1..^𝐾)(πΉβ€˜π‘§) = (πΉβ€˜π‘Œ) β†’ (𝑋 ∈ (0...𝐾) β†’ (𝑋 ∈ (1..^𝐾) β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ))))))
3017, 29sylbid 239 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (Β¬ (πΉβ€˜π‘Œ) ∈ (𝐹 β€œ (1..^𝐾)) β†’ (𝑋 ∈ (0...𝐾) β†’ (𝑋 ∈ (1..^𝐾) β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ))))))
3130com12 32 . . . . . . . . . . . . . . . . . . 19 (Β¬ (πΉβ€˜π‘Œ) ∈ (𝐹 β€œ (1..^𝐾)) β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (𝑋 ∈ (0...𝐾) β†’ (𝑋 ∈ (1..^𝐾) β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ))))))
328, 31syl6com 37 . . . . . . . . . . . . . . . . . 18 (Β¬ (πΉβ€˜0) ∈ (𝐹 β€œ (1..^𝐾)) β†’ (π‘Œ = 0 β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (𝑋 ∈ (0...𝐾) β†’ (𝑋 ∈ (1..^𝐾) β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ)))))))
333, 32sylbi 216 . . . . . . . . . . . . . . . . 17 ((πΉβ€˜0) βˆ‰ (𝐹 β€œ (1..^𝐾)) β†’ (π‘Œ = 0 β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (𝑋 ∈ (0...𝐾) β†’ (𝑋 ∈ (1..^𝐾) β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ)))))))
3433adantr 482 . . . . . . . . . . . . . . . 16 (((πΉβ€˜0) βˆ‰ (𝐹 β€œ (1..^𝐾)) ∧ (πΉβ€˜πΎ) βˆ‰ (𝐹 β€œ (1..^𝐾))) β†’ (π‘Œ = 0 β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (𝑋 ∈ (0...𝐾) β†’ (𝑋 ∈ (1..^𝐾) β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ)))))))
3534com12 32 . . . . . . . . . . . . . . 15 (π‘Œ = 0 β†’ (((πΉβ€˜0) βˆ‰ (𝐹 β€œ (1..^𝐾)) ∧ (πΉβ€˜πΎ) βˆ‰ (𝐹 β€œ (1..^𝐾))) β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (𝑋 ∈ (0...𝐾) β†’ (𝑋 ∈ (1..^𝐾) β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ)))))))
36 df-nel 3048 . . . . . . . . . . . . . . . . . 18 ((πΉβ€˜πΎ) βˆ‰ (𝐹 β€œ (1..^𝐾)) ↔ Β¬ (πΉβ€˜πΎ) ∈ (𝐹 β€œ (1..^𝐾)))
37 fveq2 6892 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐾 = π‘Œ β†’ (πΉβ€˜πΎ) = (πΉβ€˜π‘Œ))
3837eqcoms 2741 . . . . . . . . . . . . . . . . . . . . . 22 (π‘Œ = 𝐾 β†’ (πΉβ€˜πΎ) = (πΉβ€˜π‘Œ))
3938eleq1d 2819 . . . . . . . . . . . . . . . . . . . . 21 (π‘Œ = 𝐾 β†’ ((πΉβ€˜πΎ) ∈ (𝐹 β€œ (1..^𝐾)) ↔ (πΉβ€˜π‘Œ) ∈ (𝐹 β€œ (1..^𝐾))))
4039notbid 318 . . . . . . . . . . . . . . . . . . . 20 (π‘Œ = 𝐾 β†’ (Β¬ (πΉβ€˜πΎ) ∈ (𝐹 β€œ (1..^𝐾)) ↔ Β¬ (πΉβ€˜π‘Œ) ∈ (𝐹 β€œ (1..^𝐾))))
4140biimpd 228 . . . . . . . . . . . . . . . . . . 19 (π‘Œ = 𝐾 β†’ (Β¬ (πΉβ€˜πΎ) ∈ (𝐹 β€œ (1..^𝐾)) β†’ Β¬ (πΉβ€˜π‘Œ) ∈ (𝐹 β€œ (1..^𝐾))))
4241, 31syl6com 37 . . . . . . . . . . . . . . . . . 18 (Β¬ (πΉβ€˜πΎ) ∈ (𝐹 β€œ (1..^𝐾)) β†’ (π‘Œ = 𝐾 β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (𝑋 ∈ (0...𝐾) β†’ (𝑋 ∈ (1..^𝐾) β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ)))))))
4336, 42sylbi 216 . . . . . . . . . . . . . . . . 17 ((πΉβ€˜πΎ) βˆ‰ (𝐹 β€œ (1..^𝐾)) β†’ (π‘Œ = 𝐾 β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (𝑋 ∈ (0...𝐾) β†’ (𝑋 ∈ (1..^𝐾) β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ)))))))
4443adantl 483 . . . . . . . . . . . . . . . 16 (((πΉβ€˜0) βˆ‰ (𝐹 β€œ (1..^𝐾)) ∧ (πΉβ€˜πΎ) βˆ‰ (𝐹 β€œ (1..^𝐾))) β†’ (π‘Œ = 𝐾 β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (𝑋 ∈ (0...𝐾) β†’ (𝑋 ∈ (1..^𝐾) β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ)))))))
4544com12 32 . . . . . . . . . . . . . . 15 (π‘Œ = 𝐾 β†’ (((πΉβ€˜0) βˆ‰ (𝐹 β€œ (1..^𝐾)) ∧ (πΉβ€˜πΎ) βˆ‰ (𝐹 β€œ (1..^𝐾))) β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (𝑋 ∈ (0...𝐾) β†’ (𝑋 ∈ (1..^𝐾) β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ)))))))
4635, 45jaoi 856 . . . . . . . . . . . . . 14 ((π‘Œ = 0 ∨ π‘Œ = 𝐾) β†’ (((πΉβ€˜0) βˆ‰ (𝐹 β€œ (1..^𝐾)) ∧ (πΉβ€˜πΎ) βˆ‰ (𝐹 β€œ (1..^𝐾))) β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (𝑋 ∈ (0...𝐾) β†’ (𝑋 ∈ (1..^𝐾) β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ)))))))
4746com13 88 . . . . . . . . . . . . 13 ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (((πΉβ€˜0) βˆ‰ (𝐹 β€œ (1..^𝐾)) ∧ (πΉβ€˜πΎ) βˆ‰ (𝐹 β€œ (1..^𝐾))) β†’ ((π‘Œ = 0 ∨ π‘Œ = 𝐾) β†’ (𝑋 ∈ (0...𝐾) β†’ (𝑋 ∈ (1..^𝐾) β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ)))))))
482, 47sylbid 239 . . . . . . . . . . . 12 ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (((𝐹 β€œ {0, 𝐾}) ∩ (𝐹 β€œ (1..^𝐾))) = βˆ… β†’ ((π‘Œ = 0 ∨ π‘Œ = 𝐾) β†’ (𝑋 ∈ (0...𝐾) β†’ (𝑋 ∈ (1..^𝐾) β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ)))))))
4948com14 96 . . . . . . . . . . 11 (𝑋 ∈ (0...𝐾) β†’ (((𝐹 β€œ {0, 𝐾}) ∩ (𝐹 β€œ (1..^𝐾))) = βˆ… β†’ ((π‘Œ = 0 ∨ π‘Œ = 𝐾) β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (𝑋 ∈ (1..^𝐾) β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ)))))))
5049com12 32 . . . . . . . . . 10 (((𝐹 β€œ {0, 𝐾}) ∩ (𝐹 β€œ (1..^𝐾))) = βˆ… β†’ (𝑋 ∈ (0...𝐾) β†’ ((π‘Œ = 0 ∨ π‘Œ = 𝐾) β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (𝑋 ∈ (1..^𝐾) β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ)))))))
5150com15 101 . . . . . . . . 9 (𝑋 ∈ (1..^𝐾) β†’ (𝑋 ∈ (0...𝐾) β†’ ((π‘Œ = 0 ∨ π‘Œ = 𝐾) β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (((𝐹 β€œ {0, 𝐾}) ∩ (𝐹 β€œ (1..^𝐾))) = βˆ… β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ)))))))
52 elfznelfzo 13737 . . . . . . . . . . 11 ((𝑋 ∈ (0...𝐾) ∧ Β¬ 𝑋 ∈ (1..^𝐾)) β†’ (𝑋 = 0 ∨ 𝑋 = 𝐾))
53 eqtr3 2759 . . . . . . . . . . . . . 14 ((𝑋 = 0 ∧ π‘Œ = 0) β†’ 𝑋 = π‘Œ)
54 2a1 28 . . . . . . . . . . . . . . 15 (𝑋 = π‘Œ β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ)))
55542a1d 26 . . . . . . . . . . . . . 14 (𝑋 = π‘Œ β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (((𝐹 β€œ {0, 𝐾}) ∩ (𝐹 β€œ (1..^𝐾))) = βˆ… β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ)))))
5653, 55syl 17 . . . . . . . . . . . . 13 ((𝑋 = 0 ∧ π‘Œ = 0) β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (((𝐹 β€œ {0, 𝐾}) ∩ (𝐹 β€œ (1..^𝐾))) = βˆ… β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ)))))
575adantl 483 . . . . . . . . . . . . . . . 16 ((𝑋 = 𝐾 ∧ π‘Œ = 0) β†’ (πΉβ€˜0) = (πΉβ€˜π‘Œ))
58 fveq2 6892 . . . . . . . . . . . . . . . . . 18 (𝐾 = 𝑋 β†’ (πΉβ€˜πΎ) = (πΉβ€˜π‘‹))
5958eqcoms 2741 . . . . . . . . . . . . . . . . 17 (𝑋 = 𝐾 β†’ (πΉβ€˜πΎ) = (πΉβ€˜π‘‹))
6059adantr 482 . . . . . . . . . . . . . . . 16 ((𝑋 = 𝐾 ∧ π‘Œ = 0) β†’ (πΉβ€˜πΎ) = (πΉβ€˜π‘‹))
6157, 60neeq12d 3003 . . . . . . . . . . . . . . 15 ((𝑋 = 𝐾 ∧ π‘Œ = 0) β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) ↔ (πΉβ€˜π‘Œ) β‰  (πΉβ€˜π‘‹)))
62 df-ne 2942 . . . . . . . . . . . . . . . 16 ((πΉβ€˜π‘Œ) β‰  (πΉβ€˜π‘‹) ↔ Β¬ (πΉβ€˜π‘Œ) = (πΉβ€˜π‘‹))
63 pm2.24 124 . . . . . . . . . . . . . . . . . 18 ((πΉβ€˜π‘Œ) = (πΉβ€˜π‘‹) β†’ (Β¬ (πΉβ€˜π‘Œ) = (πΉβ€˜π‘‹) β†’ 𝑋 = π‘Œ))
6463eqcoms 2741 . . . . . . . . . . . . . . . . 17 ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ (Β¬ (πΉβ€˜π‘Œ) = (πΉβ€˜π‘‹) β†’ 𝑋 = π‘Œ))
6564com12 32 . . . . . . . . . . . . . . . 16 (Β¬ (πΉβ€˜π‘Œ) = (πΉβ€˜π‘‹) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ))
6662, 65sylbi 216 . . . . . . . . . . . . . . 15 ((πΉβ€˜π‘Œ) β‰  (πΉβ€˜π‘‹) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ))
6761, 66syl6bi 253 . . . . . . . . . . . . . 14 ((𝑋 = 𝐾 ∧ π‘Œ = 0) β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ)))
68672a1d 26 . . . . . . . . . . . . 13 ((𝑋 = 𝐾 ∧ π‘Œ = 0) β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (((𝐹 β€œ {0, 𝐾}) ∩ (𝐹 β€œ (1..^𝐾))) = βˆ… β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ)))))
69 fveq2 6892 . . . . . . . . . . . . . . . . . 18 (0 = 𝑋 β†’ (πΉβ€˜0) = (πΉβ€˜π‘‹))
7069eqcoms 2741 . . . . . . . . . . . . . . . . 17 (𝑋 = 0 β†’ (πΉβ€˜0) = (πΉβ€˜π‘‹))
7170adantr 482 . . . . . . . . . . . . . . . 16 ((𝑋 = 0 ∧ π‘Œ = 𝐾) β†’ (πΉβ€˜0) = (πΉβ€˜π‘‹))
7238adantl 483 . . . . . . . . . . . . . . . 16 ((𝑋 = 0 ∧ π‘Œ = 𝐾) β†’ (πΉβ€˜πΎ) = (πΉβ€˜π‘Œ))
7371, 72neeq12d 3003 . . . . . . . . . . . . . . 15 ((𝑋 = 0 ∧ π‘Œ = 𝐾) β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) ↔ (πΉβ€˜π‘‹) β‰  (πΉβ€˜π‘Œ)))
74 df-ne 2942 . . . . . . . . . . . . . . . 16 ((πΉβ€˜π‘‹) β‰  (πΉβ€˜π‘Œ) ↔ Β¬ (πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ))
7574, 22sylbi 216 . . . . . . . . . . . . . . 15 ((πΉβ€˜π‘‹) β‰  (πΉβ€˜π‘Œ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ))
7673, 75syl6bi 253 . . . . . . . . . . . . . 14 ((𝑋 = 0 ∧ π‘Œ = 𝐾) β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ)))
77762a1d 26 . . . . . . . . . . . . 13 ((𝑋 = 0 ∧ π‘Œ = 𝐾) β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (((𝐹 β€œ {0, 𝐾}) ∩ (𝐹 β€œ (1..^𝐾))) = βˆ… β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ)))))
78 eqtr3 2759 . . . . . . . . . . . . . 14 ((𝑋 = 𝐾 ∧ π‘Œ = 𝐾) β†’ 𝑋 = π‘Œ)
7978, 55syl 17 . . . . . . . . . . . . 13 ((𝑋 = 𝐾 ∧ π‘Œ = 𝐾) β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (((𝐹 β€œ {0, 𝐾}) ∩ (𝐹 β€œ (1..^𝐾))) = βˆ… β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ)))))
8056, 68, 77, 79ccase 1037 . . . . . . . . . . . 12 (((𝑋 = 0 ∨ 𝑋 = 𝐾) ∧ (π‘Œ = 0 ∨ π‘Œ = 𝐾)) β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (((𝐹 β€œ {0, 𝐾}) ∩ (𝐹 β€œ (1..^𝐾))) = βˆ… β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ)))))
8180ex 414 . . . . . . . . . . 11 ((𝑋 = 0 ∨ 𝑋 = 𝐾) β†’ ((π‘Œ = 0 ∨ π‘Œ = 𝐾) β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (((𝐹 β€œ {0, 𝐾}) ∩ (𝐹 β€œ (1..^𝐾))) = βˆ… β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ))))))
8252, 81syl 17 . . . . . . . . . 10 ((𝑋 ∈ (0...𝐾) ∧ Β¬ 𝑋 ∈ (1..^𝐾)) β†’ ((π‘Œ = 0 ∨ π‘Œ = 𝐾) β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (((𝐹 β€œ {0, 𝐾}) ∩ (𝐹 β€œ (1..^𝐾))) = βˆ… β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ))))))
8382expcom 415 . . . . . . . . 9 (Β¬ 𝑋 ∈ (1..^𝐾) β†’ (𝑋 ∈ (0...𝐾) β†’ ((π‘Œ = 0 ∨ π‘Œ = 𝐾) β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (((𝐹 β€œ {0, 𝐾}) ∩ (𝐹 β€œ (1..^𝐾))) = βˆ… β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ)))))))
8451, 83pm2.61i 182 . . . . . . . 8 (𝑋 ∈ (0...𝐾) β†’ ((π‘Œ = 0 ∨ π‘Œ = 𝐾) β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (((𝐹 β€œ {0, 𝐾}) ∩ (𝐹 β€œ (1..^𝐾))) = βˆ… β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ))))))
8584com12 32 . . . . . . 7 ((π‘Œ = 0 ∨ π‘Œ = 𝐾) β†’ (𝑋 ∈ (0...𝐾) β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (((𝐹 β€œ {0, 𝐾}) ∩ (𝐹 β€œ (1..^𝐾))) = βˆ… β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ))))))
861, 85syl 17 . . . . . 6 ((π‘Œ ∈ (0...𝐾) ∧ Β¬ π‘Œ ∈ (1..^𝐾)) β†’ (𝑋 ∈ (0...𝐾) β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (((𝐹 β€œ {0, 𝐾}) ∩ (𝐹 β€œ (1..^𝐾))) = βˆ… β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ))))))
8786ex 414 . . . . 5 (π‘Œ ∈ (0...𝐾) β†’ (Β¬ π‘Œ ∈ (1..^𝐾) β†’ (𝑋 ∈ (0...𝐾) β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (((𝐹 β€œ {0, 𝐾}) ∩ (𝐹 β€œ (1..^𝐾))) = βˆ… β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ)))))))
8887com23 86 . . . 4 (π‘Œ ∈ (0...𝐾) β†’ (𝑋 ∈ (0...𝐾) β†’ (Β¬ π‘Œ ∈ (1..^𝐾) β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (((𝐹 β€œ {0, 𝐾}) ∩ (𝐹 β€œ (1..^𝐾))) = βˆ… β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ)))))))
8988impcom 409 . . 3 ((𝑋 ∈ (0...𝐾) ∧ π‘Œ ∈ (0...𝐾)) β†’ (Β¬ π‘Œ ∈ (1..^𝐾) β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (((𝐹 β€œ {0, 𝐾}) ∩ (𝐹 β€œ (1..^𝐾))) = βˆ… β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ))))))
9089com12 32 . 2 (Β¬ π‘Œ ∈ (1..^𝐾) β†’ ((𝑋 ∈ (0...𝐾) ∧ π‘Œ ∈ (0...𝐾)) β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (((𝐹 β€œ {0, 𝐾}) ∩ (𝐹 β€œ (1..^𝐾))) = βˆ… β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ))))))
9190com25 99 1 (Β¬ π‘Œ ∈ (1..^𝐾) β†’ ((πΉβ€˜0) β‰  (πΉβ€˜πΎ) β†’ ((𝐹:(0...𝐾)βŸΆπ‘‰ ∧ 𝐾 ∈ β„•0) β†’ (((𝐹 β€œ {0, 𝐾}) ∩ (𝐹 β€œ (1..^𝐾))) = βˆ… β†’ ((𝑋 ∈ (0...𝐾) ∧ π‘Œ ∈ (0...𝐾)) β†’ ((πΉβ€˜π‘‹) = (πΉβ€˜π‘Œ) β†’ 𝑋 = π‘Œ))))))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∨ wo 846   = wceq 1542   ∈ wcel 2107   β‰  wne 2941   βˆ‰ wnel 3047  βˆ€wral 3062  βˆƒwrex 3071   ∩ cin 3948   βŠ† wss 3949  βˆ…c0 4323  {cpr 4631   β€œ cima 5680   Fn wfn 6539  βŸΆwf 6540  β€˜cfv 6544  (class class class)co 7409  0cc0 11110  1c1 11111  β„•0cn0 12472  β„€β‰₯cuz 12822  ...cfz 13484  ..^cfzo 13627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-n0 12473  df-z 12559  df-uz 12823  df-fz 13485  df-fzo 13628
This theorem is referenced by:  injresinj  13753
  Copyright terms: Public domain W3C validator