MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  injresinjlem Structured version   Visualization version   GIF version

Theorem injresinjlem 13507
Description: Lemma for injresinj 13508. (Contributed by Alexander van der Vekens, 31-Oct-2017.) (Proof shortened by AV, 14-Feb-2021.) (Revised by Thierry Arnoux, 23-Dec-2021.)
Assertion
Ref Expression
injresinjlem 𝑌 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑋 ∈ (0...𝐾) ∧ 𝑌 ∈ (0...𝐾)) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))))))

Proof of Theorem injresinjlem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elfznelfzo 13492 . . . . . . 7 ((𝑌 ∈ (0...𝐾) ∧ ¬ 𝑌 ∈ (1..^𝐾)) → (𝑌 = 0 ∨ 𝑌 = 𝐾))
2 fvinim0ffz 13506 . . . . . . . . . . . . 13 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ ↔ ((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹𝐾) ∉ (𝐹 “ (1..^𝐾)))))
3 df-nel 3050 . . . . . . . . . . . . . . . . . 18 ((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ↔ ¬ (𝐹‘0) ∈ (𝐹 “ (1..^𝐾)))
4 fveq2 6774 . . . . . . . . . . . . . . . . . . . . . . 23 (0 = 𝑌 → (𝐹‘0) = (𝐹𝑌))
54eqcoms 2746 . . . . . . . . . . . . . . . . . . . . . 22 (𝑌 = 0 → (𝐹‘0) = (𝐹𝑌))
65eleq1d 2823 . . . . . . . . . . . . . . . . . . . . 21 (𝑌 = 0 → ((𝐹‘0) ∈ (𝐹 “ (1..^𝐾)) ↔ (𝐹𝑌) ∈ (𝐹 “ (1..^𝐾))))
76notbid 318 . . . . . . . . . . . . . . . . . . . 20 (𝑌 = 0 → (¬ (𝐹‘0) ∈ (𝐹 “ (1..^𝐾)) ↔ ¬ (𝐹𝑌) ∈ (𝐹 “ (1..^𝐾))))
87biimpd 228 . . . . . . . . . . . . . . . . . . 19 (𝑌 = 0 → (¬ (𝐹‘0) ∈ (𝐹 “ (1..^𝐾)) → ¬ (𝐹𝑌) ∈ (𝐹 “ (1..^𝐾))))
9 ffn 6600 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:(0...𝐾)⟶𝑉𝐹 Fn (0...𝐾))
10 1eluzge0 12632 . . . . . . . . . . . . . . . . . . . . . . . . 25 1 ∈ (ℤ‘0)
11 fzoss1 13414 . . . . . . . . . . . . . . . . . . . . . . . . 25 (1 ∈ (ℤ‘0) → (1..^𝐾) ⊆ (0..^𝐾))
1210, 11mp1i 13 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐾 ∈ ℕ0 → (1..^𝐾) ⊆ (0..^𝐾))
13 fzossfz 13406 . . . . . . . . . . . . . . . . . . . . . . . 24 (0..^𝐾) ⊆ (0...𝐾)
1412, 13sstrdi 3933 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐾 ∈ ℕ0 → (1..^𝐾) ⊆ (0...𝐾))
15 fvelimab 6841 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹 Fn (0...𝐾) ∧ (1..^𝐾) ⊆ (0...𝐾)) → ((𝐹𝑌) ∈ (𝐹 “ (1..^𝐾)) ↔ ∃𝑧 ∈ (1..^𝐾)(𝐹𝑧) = (𝐹𝑌)))
169, 14, 15syl2an 596 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → ((𝐹𝑌) ∈ (𝐹 “ (1..^𝐾)) ↔ ∃𝑧 ∈ (1..^𝐾)(𝐹𝑧) = (𝐹𝑌)))
1716notbid 318 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (¬ (𝐹𝑌) ∈ (𝐹 “ (1..^𝐾)) ↔ ¬ ∃𝑧 ∈ (1..^𝐾)(𝐹𝑧) = (𝐹𝑌)))
18 ralnex 3167 . . . . . . . . . . . . . . . . . . . . . . 23 (∀𝑧 ∈ (1..^𝐾) ¬ (𝐹𝑧) = (𝐹𝑌) ↔ ¬ ∃𝑧 ∈ (1..^𝐾)(𝐹𝑧) = (𝐹𝑌))
19 fveqeq2 6783 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 = 𝑋 → ((𝐹𝑧) = (𝐹𝑌) ↔ (𝐹𝑋) = (𝐹𝑌)))
2019notbid 318 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 = 𝑋 → (¬ (𝐹𝑧) = (𝐹𝑌) ↔ ¬ (𝐹𝑋) = (𝐹𝑌)))
2120rspcva 3559 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑋 ∈ (1..^𝐾) ∧ ∀𝑧 ∈ (1..^𝐾) ¬ (𝐹𝑧) = (𝐹𝑌)) → ¬ (𝐹𝑋) = (𝐹𝑌))
22 pm2.21 123 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (¬ (𝐹𝑋) = (𝐹𝑌) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))
2322a1d 25 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (¬ (𝐹𝑋) = (𝐹𝑌) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))
24232a1d 26 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (¬ (𝐹𝑋) = (𝐹𝑌) → (𝑋 ∈ (0...𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))
2521, 24syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑋 ∈ (1..^𝐾) ∧ ∀𝑧 ∈ (1..^𝐾) ¬ (𝐹𝑧) = (𝐹𝑌)) → (𝑋 ∈ (0...𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))
2625expcom 414 . . . . . . . . . . . . . . . . . . . . . . . 24 (∀𝑧 ∈ (1..^𝐾) ¬ (𝐹𝑧) = (𝐹𝑌) → (𝑋 ∈ (1..^𝐾) → (𝑋 ∈ (0...𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))))))
2726com24 95 . . . . . . . . . . . . . . . . . . . . . . 23 (∀𝑧 ∈ (1..^𝐾) ¬ (𝐹𝑧) = (𝐹𝑌) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))))))
2818, 27sylbir 234 . . . . . . . . . . . . . . . . . . . . . 22 (¬ ∃𝑧 ∈ (1..^𝐾)(𝐹𝑧) = (𝐹𝑌) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))))))
2928com12 32 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (¬ ∃𝑧 ∈ (1..^𝐾)(𝐹𝑧) = (𝐹𝑌) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))))))
3017, 29sylbid 239 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (¬ (𝐹𝑌) ∈ (𝐹 “ (1..^𝐾)) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))))))
3130com12 32 . . . . . . . . . . . . . . . . . . 19 (¬ (𝐹𝑌) ∈ (𝐹 “ (1..^𝐾)) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))))))
328, 31syl6com 37 . . . . . . . . . . . . . . . . . 18 (¬ (𝐹‘0) ∈ (𝐹 “ (1..^𝐾)) → (𝑌 = 0 → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))))
333, 32sylbi 216 . . . . . . . . . . . . . . . . 17 ((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) → (𝑌 = 0 → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))))
3433adantr 481 . . . . . . . . . . . . . . . 16 (((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹𝐾) ∉ (𝐹 “ (1..^𝐾))) → (𝑌 = 0 → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))))
3534com12 32 . . . . . . . . . . . . . . 15 (𝑌 = 0 → (((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹𝐾) ∉ (𝐹 “ (1..^𝐾))) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))))
36 df-nel 3050 . . . . . . . . . . . . . . . . . 18 ((𝐹𝐾) ∉ (𝐹 “ (1..^𝐾)) ↔ ¬ (𝐹𝐾) ∈ (𝐹 “ (1..^𝐾)))
37 fveq2 6774 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐾 = 𝑌 → (𝐹𝐾) = (𝐹𝑌))
3837eqcoms 2746 . . . . . . . . . . . . . . . . . . . . . 22 (𝑌 = 𝐾 → (𝐹𝐾) = (𝐹𝑌))
3938eleq1d 2823 . . . . . . . . . . . . . . . . . . . . 21 (𝑌 = 𝐾 → ((𝐹𝐾) ∈ (𝐹 “ (1..^𝐾)) ↔ (𝐹𝑌) ∈ (𝐹 “ (1..^𝐾))))
4039notbid 318 . . . . . . . . . . . . . . . . . . . 20 (𝑌 = 𝐾 → (¬ (𝐹𝐾) ∈ (𝐹 “ (1..^𝐾)) ↔ ¬ (𝐹𝑌) ∈ (𝐹 “ (1..^𝐾))))
4140biimpd 228 . . . . . . . . . . . . . . . . . . 19 (𝑌 = 𝐾 → (¬ (𝐹𝐾) ∈ (𝐹 “ (1..^𝐾)) → ¬ (𝐹𝑌) ∈ (𝐹 “ (1..^𝐾))))
4241, 31syl6com 37 . . . . . . . . . . . . . . . . . 18 (¬ (𝐹𝐾) ∈ (𝐹 “ (1..^𝐾)) → (𝑌 = 𝐾 → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))))
4336, 42sylbi 216 . . . . . . . . . . . . . . . . 17 ((𝐹𝐾) ∉ (𝐹 “ (1..^𝐾)) → (𝑌 = 𝐾 → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))))
4443adantl 482 . . . . . . . . . . . . . . . 16 (((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹𝐾) ∉ (𝐹 “ (1..^𝐾))) → (𝑌 = 𝐾 → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))))
4544com12 32 . . . . . . . . . . . . . . 15 (𝑌 = 𝐾 → (((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹𝐾) ∉ (𝐹 “ (1..^𝐾))) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))))
4635, 45jaoi 854 . . . . . . . . . . . . . 14 ((𝑌 = 0 ∨ 𝑌 = 𝐾) → (((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹𝐾) ∉ (𝐹 “ (1..^𝐾))) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))))
4746com13 88 . . . . . . . . . . . . 13 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹𝐾) ∉ (𝐹 “ (1..^𝐾))) → ((𝑌 = 0 ∨ 𝑌 = 𝐾) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))))
482, 47sylbid 239 . . . . . . . . . . . 12 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑌 = 0 ∨ 𝑌 = 𝐾) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))))
4948com14 96 . . . . . . . . . . 11 (𝑋 ∈ (0...𝐾) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑌 = 0 ∨ 𝑌 = 𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))))
5049com12 32 . . . . . . . . . 10 (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → (𝑋 ∈ (0...𝐾) → ((𝑌 = 0 ∨ 𝑌 = 𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))))
5150com15 101 . . . . . . . . 9 (𝑋 ∈ (1..^𝐾) → (𝑋 ∈ (0...𝐾) → ((𝑌 = 0 ∨ 𝑌 = 𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))))
52 elfznelfzo 13492 . . . . . . . . . . 11 ((𝑋 ∈ (0...𝐾) ∧ ¬ 𝑋 ∈ (1..^𝐾)) → (𝑋 = 0 ∨ 𝑋 = 𝐾))
53 eqtr3 2764 . . . . . . . . . . . . . 14 ((𝑋 = 0 ∧ 𝑌 = 0) → 𝑋 = 𝑌)
54 2a1 28 . . . . . . . . . . . . . . 15 (𝑋 = 𝑌 → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))
55542a1d 26 . . . . . . . . . . . . . 14 (𝑋 = 𝑌 → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))
5653, 55syl 17 . . . . . . . . . . . . 13 ((𝑋 = 0 ∧ 𝑌 = 0) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))
575adantl 482 . . . . . . . . . . . . . . . 16 ((𝑋 = 𝐾𝑌 = 0) → (𝐹‘0) = (𝐹𝑌))
58 fveq2 6774 . . . . . . . . . . . . . . . . . 18 (𝐾 = 𝑋 → (𝐹𝐾) = (𝐹𝑋))
5958eqcoms 2746 . . . . . . . . . . . . . . . . 17 (𝑋 = 𝐾 → (𝐹𝐾) = (𝐹𝑋))
6059adantr 481 . . . . . . . . . . . . . . . 16 ((𝑋 = 𝐾𝑌 = 0) → (𝐹𝐾) = (𝐹𝑋))
6157, 60neeq12d 3005 . . . . . . . . . . . . . . 15 ((𝑋 = 𝐾𝑌 = 0) → ((𝐹‘0) ≠ (𝐹𝐾) ↔ (𝐹𝑌) ≠ (𝐹𝑋)))
62 df-ne 2944 . . . . . . . . . . . . . . . 16 ((𝐹𝑌) ≠ (𝐹𝑋) ↔ ¬ (𝐹𝑌) = (𝐹𝑋))
63 pm2.24 124 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑌) = (𝐹𝑋) → (¬ (𝐹𝑌) = (𝐹𝑋) → 𝑋 = 𝑌))
6463eqcoms 2746 . . . . . . . . . . . . . . . . 17 ((𝐹𝑋) = (𝐹𝑌) → (¬ (𝐹𝑌) = (𝐹𝑋) → 𝑋 = 𝑌))
6564com12 32 . . . . . . . . . . . . . . . 16 (¬ (𝐹𝑌) = (𝐹𝑋) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))
6662, 65sylbi 216 . . . . . . . . . . . . . . 15 ((𝐹𝑌) ≠ (𝐹𝑋) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))
6761, 66syl6bi 252 . . . . . . . . . . . . . 14 ((𝑋 = 𝐾𝑌 = 0) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))
68672a1d 26 . . . . . . . . . . . . 13 ((𝑋 = 𝐾𝑌 = 0) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))
69 fveq2 6774 . . . . . . . . . . . . . . . . . 18 (0 = 𝑋 → (𝐹‘0) = (𝐹𝑋))
7069eqcoms 2746 . . . . . . . . . . . . . . . . 17 (𝑋 = 0 → (𝐹‘0) = (𝐹𝑋))
7170adantr 481 . . . . . . . . . . . . . . . 16 ((𝑋 = 0 ∧ 𝑌 = 𝐾) → (𝐹‘0) = (𝐹𝑋))
7238adantl 482 . . . . . . . . . . . . . . . 16 ((𝑋 = 0 ∧ 𝑌 = 𝐾) → (𝐹𝐾) = (𝐹𝑌))
7371, 72neeq12d 3005 . . . . . . . . . . . . . . 15 ((𝑋 = 0 ∧ 𝑌 = 𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) ↔ (𝐹𝑋) ≠ (𝐹𝑌)))
74 df-ne 2944 . . . . . . . . . . . . . . . 16 ((𝐹𝑋) ≠ (𝐹𝑌) ↔ ¬ (𝐹𝑋) = (𝐹𝑌))
7574, 22sylbi 216 . . . . . . . . . . . . . . 15 ((𝐹𝑋) ≠ (𝐹𝑌) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))
7673, 75syl6bi 252 . . . . . . . . . . . . . 14 ((𝑋 = 0 ∧ 𝑌 = 𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))
77762a1d 26 . . . . . . . . . . . . 13 ((𝑋 = 0 ∧ 𝑌 = 𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))
78 eqtr3 2764 . . . . . . . . . . . . . 14 ((𝑋 = 𝐾𝑌 = 𝐾) → 𝑋 = 𝑌)
7978, 55syl 17 . . . . . . . . . . . . 13 ((𝑋 = 𝐾𝑌 = 𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))
8056, 68, 77, 79ccase 1035 . . . . . . . . . . . 12 (((𝑋 = 0 ∨ 𝑋 = 𝐾) ∧ (𝑌 = 0 ∨ 𝑌 = 𝐾)) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))
8180ex 413 . . . . . . . . . . 11 ((𝑋 = 0 ∨ 𝑋 = 𝐾) → ((𝑌 = 0 ∨ 𝑌 = 𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))))))
8252, 81syl 17 . . . . . . . . . 10 ((𝑋 ∈ (0...𝐾) ∧ ¬ 𝑋 ∈ (1..^𝐾)) → ((𝑌 = 0 ∨ 𝑌 = 𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))))))
8382expcom 414 . . . . . . . . 9 𝑋 ∈ (1..^𝐾) → (𝑋 ∈ (0...𝐾) → ((𝑌 = 0 ∨ 𝑌 = 𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))))
8451, 83pm2.61i 182 . . . . . . . 8 (𝑋 ∈ (0...𝐾) → ((𝑌 = 0 ∨ 𝑌 = 𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))))))
8584com12 32 . . . . . . 7 ((𝑌 = 0 ∨ 𝑌 = 𝐾) → (𝑋 ∈ (0...𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))))))
861, 85syl 17 . . . . . 6 ((𝑌 ∈ (0...𝐾) ∧ ¬ 𝑌 ∈ (1..^𝐾)) → (𝑋 ∈ (0...𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))))))
8786ex 413 . . . . 5 (𝑌 ∈ (0...𝐾) → (¬ 𝑌 ∈ (1..^𝐾) → (𝑋 ∈ (0...𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))))
8887com23 86 . . . 4 (𝑌 ∈ (0...𝐾) → (𝑋 ∈ (0...𝐾) → (¬ 𝑌 ∈ (1..^𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))))
8988impcom 408 . . 3 ((𝑋 ∈ (0...𝐾) ∧ 𝑌 ∈ (0...𝐾)) → (¬ 𝑌 ∈ (1..^𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))))))
9089com12 32 . 2 𝑌 ∈ (1..^𝐾) → ((𝑋 ∈ (0...𝐾) ∧ 𝑌 ∈ (0...𝐾)) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))))))
9190com25 99 1 𝑌 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑋 ∈ (0...𝐾) ∧ 𝑌 ∈ (0...𝐾)) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  wne 2943  wnel 3049  wral 3064  wrex 3065  cin 3886  wss 3887  c0 4256  {cpr 4563  cima 5592   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  0cc0 10871  1c1 10872  0cn0 12233  cuz 12582  ...cfz 13239  ..^cfzo 13382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383
This theorem is referenced by:  injresinj  13508
  Copyright terms: Public domain W3C validator