Step | Hyp | Ref
| Expression |
1 | | elfznelfzo 13420 |
. . . . . . 7
⊢ ((𝑌 ∈ (0...𝐾) ∧ ¬ 𝑌 ∈ (1..^𝐾)) → (𝑌 = 0 ∨ 𝑌 = 𝐾)) |
2 | | fvinim0ffz 13434 |
. . . . . . . . . . . . 13
⊢ ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ ↔ ((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹‘𝐾) ∉ (𝐹 “ (1..^𝐾))))) |
3 | | df-nel 3049 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ↔ ¬ (𝐹‘0) ∈ (𝐹 “ (1..^𝐾))) |
4 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (0 =
𝑌 → (𝐹‘0) = (𝐹‘𝑌)) |
5 | 4 | eqcoms 2746 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑌 = 0 → (𝐹‘0) = (𝐹‘𝑌)) |
6 | 5 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑌 = 0 → ((𝐹‘0) ∈ (𝐹 “ (1..^𝐾)) ↔ (𝐹‘𝑌) ∈ (𝐹 “ (1..^𝐾)))) |
7 | 6 | notbid 317 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑌 = 0 → (¬ (𝐹‘0) ∈ (𝐹 “ (1..^𝐾)) ↔ ¬ (𝐹‘𝑌) ∈ (𝐹 “ (1..^𝐾)))) |
8 | 7 | biimpd 228 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑌 = 0 → (¬ (𝐹‘0) ∈ (𝐹 “ (1..^𝐾)) → ¬ (𝐹‘𝑌) ∈ (𝐹 “ (1..^𝐾)))) |
9 | | ffn 6584 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐹:(0...𝐾)⟶𝑉 → 𝐹 Fn (0...𝐾)) |
10 | | 1eluzge0 12561 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 1 ∈
(ℤ≥‘0) |
11 | | fzoss1 13342 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (1 ∈
(ℤ≥‘0) → (1..^𝐾) ⊆ (0..^𝐾)) |
12 | 10, 11 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐾 ∈ ℕ0
→ (1..^𝐾) ⊆
(0..^𝐾)) |
13 | | fzossfz 13334 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(0..^𝐾) ⊆
(0...𝐾) |
14 | 12, 13 | sstrdi 3929 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐾 ∈ ℕ0
→ (1..^𝐾) ⊆
(0...𝐾)) |
15 | | fvelimab 6823 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐹 Fn (0...𝐾) ∧ (1..^𝐾) ⊆ (0...𝐾)) → ((𝐹‘𝑌) ∈ (𝐹 “ (1..^𝐾)) ↔ ∃𝑧 ∈ (1..^𝐾)(𝐹‘𝑧) = (𝐹‘𝑌))) |
16 | 9, 14, 15 | syl2an 595 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → ((𝐹‘𝑌) ∈ (𝐹 “ (1..^𝐾)) ↔ ∃𝑧 ∈ (1..^𝐾)(𝐹‘𝑧) = (𝐹‘𝑌))) |
17 | 16 | notbid 317 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (¬
(𝐹‘𝑌) ∈ (𝐹 “ (1..^𝐾)) ↔ ¬ ∃𝑧 ∈ (1..^𝐾)(𝐹‘𝑧) = (𝐹‘𝑌))) |
18 | | ralnex 3163 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(∀𝑧 ∈
(1..^𝐾) ¬ (𝐹‘𝑧) = (𝐹‘𝑌) ↔ ¬ ∃𝑧 ∈ (1..^𝐾)(𝐹‘𝑧) = (𝐹‘𝑌)) |
19 | | fveqeq2 6765 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑧 = 𝑋 → ((𝐹‘𝑧) = (𝐹‘𝑌) ↔ (𝐹‘𝑋) = (𝐹‘𝑌))) |
20 | 19 | notbid 317 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑧 = 𝑋 → (¬ (𝐹‘𝑧) = (𝐹‘𝑌) ↔ ¬ (𝐹‘𝑋) = (𝐹‘𝑌))) |
21 | 20 | rspcva 3550 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑋 ∈ (1..^𝐾) ∧ ∀𝑧 ∈ (1..^𝐾) ¬ (𝐹‘𝑧) = (𝐹‘𝑌)) → ¬ (𝐹‘𝑋) = (𝐹‘𝑌)) |
22 | | pm2.21 123 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (¬
(𝐹‘𝑋) = (𝐹‘𝑌) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌)) |
23 | 22 | a1d 25 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (¬
(𝐹‘𝑋) = (𝐹‘𝑌) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))) |
24 | 23 | 2a1d 26 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (¬
(𝐹‘𝑋) = (𝐹‘𝑌) → (𝑋 ∈ (0...𝐾) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))))) |
25 | 21, 24 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑋 ∈ (1..^𝐾) ∧ ∀𝑧 ∈ (1..^𝐾) ¬ (𝐹‘𝑧) = (𝐹‘𝑌)) → (𝑋 ∈ (0...𝐾) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))))) |
26 | 25 | expcom 413 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(∀𝑧 ∈
(1..^𝐾) ¬ (𝐹‘𝑧) = (𝐹‘𝑌) → (𝑋 ∈ (1..^𝐾) → (𝑋 ∈ (0...𝐾) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌)))))) |
27 | 26 | com24 95 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(∀𝑧 ∈
(1..^𝐾) ¬ (𝐹‘𝑧) = (𝐹‘𝑌) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌)))))) |
28 | 18, 27 | sylbir 234 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (¬
∃𝑧 ∈ (1..^𝐾)(𝐹‘𝑧) = (𝐹‘𝑌) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌)))))) |
29 | 28 | com12 32 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (¬
∃𝑧 ∈ (1..^𝐾)(𝐹‘𝑧) = (𝐹‘𝑌) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌)))))) |
30 | 17, 29 | sylbid 239 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (¬
(𝐹‘𝑌) ∈ (𝐹 “ (1..^𝐾)) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌)))))) |
31 | 30 | com12 32 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
(𝐹‘𝑌) ∈ (𝐹 “ (1..^𝐾)) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌)))))) |
32 | 8, 31 | syl6com 37 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
(𝐹‘0) ∈ (𝐹 “ (1..^𝐾)) → (𝑌 = 0 → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))))))) |
33 | 3, 32 | sylbi 216 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) → (𝑌 = 0 → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))))))) |
34 | 33 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹‘𝐾) ∉ (𝐹 “ (1..^𝐾))) → (𝑌 = 0 → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))))))) |
35 | 34 | com12 32 |
. . . . . . . . . . . . . . 15
⊢ (𝑌 = 0 → (((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹‘𝐾) ∉ (𝐹 “ (1..^𝐾))) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))))))) |
36 | | df-nel 3049 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹‘𝐾) ∉ (𝐹 “ (1..^𝐾)) ↔ ¬ (𝐹‘𝐾) ∈ (𝐹 “ (1..^𝐾))) |
37 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐾 = 𝑌 → (𝐹‘𝐾) = (𝐹‘𝑌)) |
38 | 37 | eqcoms 2746 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑌 = 𝐾 → (𝐹‘𝐾) = (𝐹‘𝑌)) |
39 | 38 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑌 = 𝐾 → ((𝐹‘𝐾) ∈ (𝐹 “ (1..^𝐾)) ↔ (𝐹‘𝑌) ∈ (𝐹 “ (1..^𝐾)))) |
40 | 39 | notbid 317 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑌 = 𝐾 → (¬ (𝐹‘𝐾) ∈ (𝐹 “ (1..^𝐾)) ↔ ¬ (𝐹‘𝑌) ∈ (𝐹 “ (1..^𝐾)))) |
41 | 40 | biimpd 228 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑌 = 𝐾 → (¬ (𝐹‘𝐾) ∈ (𝐹 “ (1..^𝐾)) → ¬ (𝐹‘𝑌) ∈ (𝐹 “ (1..^𝐾)))) |
42 | 41, 31 | syl6com 37 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
(𝐹‘𝐾) ∈ (𝐹 “ (1..^𝐾)) → (𝑌 = 𝐾 → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))))))) |
43 | 36, 42 | sylbi 216 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹‘𝐾) ∉ (𝐹 “ (1..^𝐾)) → (𝑌 = 𝐾 → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))))))) |
44 | 43 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹‘𝐾) ∉ (𝐹 “ (1..^𝐾))) → (𝑌 = 𝐾 → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))))))) |
45 | 44 | com12 32 |
. . . . . . . . . . . . . . 15
⊢ (𝑌 = 𝐾 → (((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹‘𝐾) ∉ (𝐹 “ (1..^𝐾))) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))))))) |
46 | 35, 45 | jaoi 853 |
. . . . . . . . . . . . . 14
⊢ ((𝑌 = 0 ∨ 𝑌 = 𝐾) → (((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹‘𝐾) ∉ (𝐹 “ (1..^𝐾))) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))))))) |
47 | 46 | com13 88 |
. . . . . . . . . . . . 13
⊢ ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹‘𝐾) ∉ (𝐹 “ (1..^𝐾))) → ((𝑌 = 0 ∨ 𝑌 = 𝐾) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))))))) |
48 | 2, 47 | sylbid 239 |
. . . . . . . . . . . 12
⊢ ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑌 = 0 ∨ 𝑌 = 𝐾) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))))))) |
49 | 48 | com14 96 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ (0...𝐾) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑌 = 0 ∨ 𝑌 = 𝐾) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))))))) |
50 | 49 | com12 32 |
. . . . . . . . . 10
⊢ (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → (𝑋 ∈ (0...𝐾) → ((𝑌 = 0 ∨ 𝑌 = 𝐾) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))))))) |
51 | 50 | com15 101 |
. . . . . . . . 9
⊢ (𝑋 ∈ (1..^𝐾) → (𝑋 ∈ (0...𝐾) → ((𝑌 = 0 ∨ 𝑌 = 𝐾) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))))))) |
52 | | elfznelfzo 13420 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ (0...𝐾) ∧ ¬ 𝑋 ∈ (1..^𝐾)) → (𝑋 = 0 ∨ 𝑋 = 𝐾)) |
53 | | eqtr3 2764 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 = 0 ∧ 𝑌 = 0) → 𝑋 = 𝑌) |
54 | | 2a1 28 |
. . . . . . . . . . . . . . 15
⊢ (𝑋 = 𝑌 → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))) |
55 | 54 | 2a1d 26 |
. . . . . . . . . . . . . 14
⊢ (𝑋 = 𝑌 → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))))) |
56 | 53, 55 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝑋 = 0 ∧ 𝑌 = 0) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))))) |
57 | 5 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑋 = 𝐾 ∧ 𝑌 = 0) → (𝐹‘0) = (𝐹‘𝑌)) |
58 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐾 = 𝑋 → (𝐹‘𝐾) = (𝐹‘𝑋)) |
59 | 58 | eqcoms 2746 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑋 = 𝐾 → (𝐹‘𝐾) = (𝐹‘𝑋)) |
60 | 59 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑋 = 𝐾 ∧ 𝑌 = 0) → (𝐹‘𝐾) = (𝐹‘𝑋)) |
61 | 57, 60 | neeq12d 3004 |
. . . . . . . . . . . . . . 15
⊢ ((𝑋 = 𝐾 ∧ 𝑌 = 0) → ((𝐹‘0) ≠ (𝐹‘𝐾) ↔ (𝐹‘𝑌) ≠ (𝐹‘𝑋))) |
62 | | df-ne 2943 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹‘𝑌) ≠ (𝐹‘𝑋) ↔ ¬ (𝐹‘𝑌) = (𝐹‘𝑋)) |
63 | | pm2.24 124 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹‘𝑌) = (𝐹‘𝑋) → (¬ (𝐹‘𝑌) = (𝐹‘𝑋) → 𝑋 = 𝑌)) |
64 | 63 | eqcoms 2746 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹‘𝑋) = (𝐹‘𝑌) → (¬ (𝐹‘𝑌) = (𝐹‘𝑋) → 𝑋 = 𝑌)) |
65 | 64 | com12 32 |
. . . . . . . . . . . . . . . 16
⊢ (¬
(𝐹‘𝑌) = (𝐹‘𝑋) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌)) |
66 | 62, 65 | sylbi 216 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹‘𝑌) ≠ (𝐹‘𝑋) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌)) |
67 | 61, 66 | syl6bi 252 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 = 𝐾 ∧ 𝑌 = 0) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))) |
68 | 67 | 2a1d 26 |
. . . . . . . . . . . . 13
⊢ ((𝑋 = 𝐾 ∧ 𝑌 = 0) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))))) |
69 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . 18
⊢ (0 =
𝑋 → (𝐹‘0) = (𝐹‘𝑋)) |
70 | 69 | eqcoms 2746 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑋 = 0 → (𝐹‘0) = (𝐹‘𝑋)) |
71 | 70 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑋 = 0 ∧ 𝑌 = 𝐾) → (𝐹‘0) = (𝐹‘𝑋)) |
72 | 38 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑋 = 0 ∧ 𝑌 = 𝐾) → (𝐹‘𝐾) = (𝐹‘𝑌)) |
73 | 71, 72 | neeq12d 3004 |
. . . . . . . . . . . . . . 15
⊢ ((𝑋 = 0 ∧ 𝑌 = 𝐾) → ((𝐹‘0) ≠ (𝐹‘𝐾) ↔ (𝐹‘𝑋) ≠ (𝐹‘𝑌))) |
74 | | df-ne 2943 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹‘𝑋) ≠ (𝐹‘𝑌) ↔ ¬ (𝐹‘𝑋) = (𝐹‘𝑌)) |
75 | 74, 22 | sylbi 216 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹‘𝑋) ≠ (𝐹‘𝑌) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌)) |
76 | 73, 75 | syl6bi 252 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 = 0 ∧ 𝑌 = 𝐾) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))) |
77 | 76 | 2a1d 26 |
. . . . . . . . . . . . 13
⊢ ((𝑋 = 0 ∧ 𝑌 = 𝐾) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))))) |
78 | | eqtr3 2764 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 = 𝐾 ∧ 𝑌 = 𝐾) → 𝑋 = 𝑌) |
79 | 78, 55 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝑋 = 𝐾 ∧ 𝑌 = 𝐾) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))))) |
80 | 56, 68, 77, 79 | ccase 1034 |
. . . . . . . . . . . 12
⊢ (((𝑋 = 0 ∨ 𝑋 = 𝐾) ∧ (𝑌 = 0 ∨ 𝑌 = 𝐾)) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))))) |
81 | 80 | ex 412 |
. . . . . . . . . . 11
⊢ ((𝑋 = 0 ∨ 𝑋 = 𝐾) → ((𝑌 = 0 ∨ 𝑌 = 𝐾) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌)))))) |
82 | 52, 81 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ (0...𝐾) ∧ ¬ 𝑋 ∈ (1..^𝐾)) → ((𝑌 = 0 ∨ 𝑌 = 𝐾) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌)))))) |
83 | 82 | expcom 413 |
. . . . . . . . 9
⊢ (¬
𝑋 ∈ (1..^𝐾) → (𝑋 ∈ (0...𝐾) → ((𝑌 = 0 ∨ 𝑌 = 𝐾) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))))))) |
84 | 51, 83 | pm2.61i 182 |
. . . . . . . 8
⊢ (𝑋 ∈ (0...𝐾) → ((𝑌 = 0 ∨ 𝑌 = 𝐾) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌)))))) |
85 | 84 | com12 32 |
. . . . . . 7
⊢ ((𝑌 = 0 ∨ 𝑌 = 𝐾) → (𝑋 ∈ (0...𝐾) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌)))))) |
86 | 1, 85 | syl 17 |
. . . . . 6
⊢ ((𝑌 ∈ (0...𝐾) ∧ ¬ 𝑌 ∈ (1..^𝐾)) → (𝑋 ∈ (0...𝐾) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌)))))) |
87 | 86 | ex 412 |
. . . . 5
⊢ (𝑌 ∈ (0...𝐾) → (¬ 𝑌 ∈ (1..^𝐾) → (𝑋 ∈ (0...𝐾) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))))))) |
88 | 87 | com23 86 |
. . . 4
⊢ (𝑌 ∈ (0...𝐾) → (𝑋 ∈ (0...𝐾) → (¬ 𝑌 ∈ (1..^𝐾) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))))))) |
89 | 88 | impcom 407 |
. . 3
⊢ ((𝑋 ∈ (0...𝐾) ∧ 𝑌 ∈ (0...𝐾)) → (¬ 𝑌 ∈ (1..^𝐾) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌)))))) |
90 | 89 | com12 32 |
. 2
⊢ (¬
𝑌 ∈ (1..^𝐾) → ((𝑋 ∈ (0...𝐾) ∧ 𝑌 ∈ (0...𝐾)) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌)))))) |
91 | 90 | com25 99 |
1
⊢ (¬
𝑌 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑋 ∈ (0...𝐾) ∧ 𝑌 ∈ (0...𝐾)) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌)))))) |