MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  injresinjlem Structured version   Visualization version   GIF version

Theorem injresinjlem 13748
Description: Lemma for injresinj 13749. (Contributed by Alexander van der Vekens, 31-Oct-2017.) (Proof shortened by AV, 14-Feb-2021.) (Revised by Thierry Arnoux, 23-Dec-2021.)
Assertion
Ref Expression
injresinjlem 𝑌 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑋 ∈ (0...𝐾) ∧ 𝑌 ∈ (0...𝐾)) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))))))

Proof of Theorem injresinjlem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elfznelfzo 13733 . . . . . . 7 ((𝑌 ∈ (0...𝐾) ∧ ¬ 𝑌 ∈ (1..^𝐾)) → (𝑌 = 0 ∨ 𝑌 = 𝐾))
2 fvinim0ffz 13747 . . . . . . . . . . . . 13 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ ↔ ((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹𝐾) ∉ (𝐹 “ (1..^𝐾)))))
3 df-nel 3030 . . . . . . . . . . . . . . . . . 18 ((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ↔ ¬ (𝐹‘0) ∈ (𝐹 “ (1..^𝐾)))
4 fveq2 6858 . . . . . . . . . . . . . . . . . . . . . . 23 (0 = 𝑌 → (𝐹‘0) = (𝐹𝑌))
54eqcoms 2737 . . . . . . . . . . . . . . . . . . . . . 22 (𝑌 = 0 → (𝐹‘0) = (𝐹𝑌))
65eleq1d 2813 . . . . . . . . . . . . . . . . . . . . 21 (𝑌 = 0 → ((𝐹‘0) ∈ (𝐹 “ (1..^𝐾)) ↔ (𝐹𝑌) ∈ (𝐹 “ (1..^𝐾))))
76notbid 318 . . . . . . . . . . . . . . . . . . . 20 (𝑌 = 0 → (¬ (𝐹‘0) ∈ (𝐹 “ (1..^𝐾)) ↔ ¬ (𝐹𝑌) ∈ (𝐹 “ (1..^𝐾))))
87biimpd 229 . . . . . . . . . . . . . . . . . . 19 (𝑌 = 0 → (¬ (𝐹‘0) ∈ (𝐹 “ (1..^𝐾)) → ¬ (𝐹𝑌) ∈ (𝐹 “ (1..^𝐾))))
9 ffn 6688 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:(0...𝐾)⟶𝑉𝐹 Fn (0...𝐾))
10 1eluzge0 12839 . . . . . . . . . . . . . . . . . . . . . . . . 25 1 ∈ (ℤ‘0)
11 fzoss1 13647 . . . . . . . . . . . . . . . . . . . . . . . . 25 (1 ∈ (ℤ‘0) → (1..^𝐾) ⊆ (0..^𝐾))
1210, 11mp1i 13 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐾 ∈ ℕ0 → (1..^𝐾) ⊆ (0..^𝐾))
13 fzossfz 13639 . . . . . . . . . . . . . . . . . . . . . . . 24 (0..^𝐾) ⊆ (0...𝐾)
1412, 13sstrdi 3959 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐾 ∈ ℕ0 → (1..^𝐾) ⊆ (0...𝐾))
15 fvelimab 6933 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹 Fn (0...𝐾) ∧ (1..^𝐾) ⊆ (0...𝐾)) → ((𝐹𝑌) ∈ (𝐹 “ (1..^𝐾)) ↔ ∃𝑧 ∈ (1..^𝐾)(𝐹𝑧) = (𝐹𝑌)))
169, 14, 15syl2an 596 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → ((𝐹𝑌) ∈ (𝐹 “ (1..^𝐾)) ↔ ∃𝑧 ∈ (1..^𝐾)(𝐹𝑧) = (𝐹𝑌)))
1716notbid 318 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (¬ (𝐹𝑌) ∈ (𝐹 “ (1..^𝐾)) ↔ ¬ ∃𝑧 ∈ (1..^𝐾)(𝐹𝑧) = (𝐹𝑌)))
18 ralnex 3055 . . . . . . . . . . . . . . . . . . . . . . 23 (∀𝑧 ∈ (1..^𝐾) ¬ (𝐹𝑧) = (𝐹𝑌) ↔ ¬ ∃𝑧 ∈ (1..^𝐾)(𝐹𝑧) = (𝐹𝑌))
19 fveqeq2 6867 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 = 𝑋 → ((𝐹𝑧) = (𝐹𝑌) ↔ (𝐹𝑋) = (𝐹𝑌)))
2019notbid 318 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 = 𝑋 → (¬ (𝐹𝑧) = (𝐹𝑌) ↔ ¬ (𝐹𝑋) = (𝐹𝑌)))
2120rspcva 3586 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑋 ∈ (1..^𝐾) ∧ ∀𝑧 ∈ (1..^𝐾) ¬ (𝐹𝑧) = (𝐹𝑌)) → ¬ (𝐹𝑋) = (𝐹𝑌))
22 pm2.21 123 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (¬ (𝐹𝑋) = (𝐹𝑌) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))
2322a1d 25 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (¬ (𝐹𝑋) = (𝐹𝑌) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))
24232a1d 26 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (¬ (𝐹𝑋) = (𝐹𝑌) → (𝑋 ∈ (0...𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))
2521, 24syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑋 ∈ (1..^𝐾) ∧ ∀𝑧 ∈ (1..^𝐾) ¬ (𝐹𝑧) = (𝐹𝑌)) → (𝑋 ∈ (0...𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))
2625expcom 413 . . . . . . . . . . . . . . . . . . . . . . . 24 (∀𝑧 ∈ (1..^𝐾) ¬ (𝐹𝑧) = (𝐹𝑌) → (𝑋 ∈ (1..^𝐾) → (𝑋 ∈ (0...𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))))))
2726com24 95 . . . . . . . . . . . . . . . . . . . . . . 23 (∀𝑧 ∈ (1..^𝐾) ¬ (𝐹𝑧) = (𝐹𝑌) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))))))
2818, 27sylbir 235 . . . . . . . . . . . . . . . . . . . . . 22 (¬ ∃𝑧 ∈ (1..^𝐾)(𝐹𝑧) = (𝐹𝑌) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))))))
2928com12 32 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (¬ ∃𝑧 ∈ (1..^𝐾)(𝐹𝑧) = (𝐹𝑌) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))))))
3017, 29sylbid 240 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (¬ (𝐹𝑌) ∈ (𝐹 “ (1..^𝐾)) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))))))
3130com12 32 . . . . . . . . . . . . . . . . . . 19 (¬ (𝐹𝑌) ∈ (𝐹 “ (1..^𝐾)) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))))))
328, 31syl6com 37 . . . . . . . . . . . . . . . . . 18 (¬ (𝐹‘0) ∈ (𝐹 “ (1..^𝐾)) → (𝑌 = 0 → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))))
333, 32sylbi 217 . . . . . . . . . . . . . . . . 17 ((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) → (𝑌 = 0 → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))))
3433adantr 480 . . . . . . . . . . . . . . . 16 (((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹𝐾) ∉ (𝐹 “ (1..^𝐾))) → (𝑌 = 0 → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))))
3534com12 32 . . . . . . . . . . . . . . 15 (𝑌 = 0 → (((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹𝐾) ∉ (𝐹 “ (1..^𝐾))) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))))
36 df-nel 3030 . . . . . . . . . . . . . . . . . 18 ((𝐹𝐾) ∉ (𝐹 “ (1..^𝐾)) ↔ ¬ (𝐹𝐾) ∈ (𝐹 “ (1..^𝐾)))
37 fveq2 6858 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐾 = 𝑌 → (𝐹𝐾) = (𝐹𝑌))
3837eqcoms 2737 . . . . . . . . . . . . . . . . . . . . . 22 (𝑌 = 𝐾 → (𝐹𝐾) = (𝐹𝑌))
3938eleq1d 2813 . . . . . . . . . . . . . . . . . . . . 21 (𝑌 = 𝐾 → ((𝐹𝐾) ∈ (𝐹 “ (1..^𝐾)) ↔ (𝐹𝑌) ∈ (𝐹 “ (1..^𝐾))))
4039notbid 318 . . . . . . . . . . . . . . . . . . . 20 (𝑌 = 𝐾 → (¬ (𝐹𝐾) ∈ (𝐹 “ (1..^𝐾)) ↔ ¬ (𝐹𝑌) ∈ (𝐹 “ (1..^𝐾))))
4140biimpd 229 . . . . . . . . . . . . . . . . . . 19 (𝑌 = 𝐾 → (¬ (𝐹𝐾) ∈ (𝐹 “ (1..^𝐾)) → ¬ (𝐹𝑌) ∈ (𝐹 “ (1..^𝐾))))
4241, 31syl6com 37 . . . . . . . . . . . . . . . . . 18 (¬ (𝐹𝐾) ∈ (𝐹 “ (1..^𝐾)) → (𝑌 = 𝐾 → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))))
4336, 42sylbi 217 . . . . . . . . . . . . . . . . 17 ((𝐹𝐾) ∉ (𝐹 “ (1..^𝐾)) → (𝑌 = 𝐾 → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))))
4443adantl 481 . . . . . . . . . . . . . . . 16 (((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹𝐾) ∉ (𝐹 “ (1..^𝐾))) → (𝑌 = 𝐾 → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))))
4544com12 32 . . . . . . . . . . . . . . 15 (𝑌 = 𝐾 → (((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹𝐾) ∉ (𝐹 “ (1..^𝐾))) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))))
4635, 45jaoi 857 . . . . . . . . . . . . . 14 ((𝑌 = 0 ∨ 𝑌 = 𝐾) → (((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹𝐾) ∉ (𝐹 “ (1..^𝐾))) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))))
4746com13 88 . . . . . . . . . . . . 13 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹𝐾) ∉ (𝐹 “ (1..^𝐾))) → ((𝑌 = 0 ∨ 𝑌 = 𝐾) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))))
482, 47sylbid 240 . . . . . . . . . . . 12 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑌 = 0 ∨ 𝑌 = 𝐾) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))))
4948com14 96 . . . . . . . . . . 11 (𝑋 ∈ (0...𝐾) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑌 = 0 ∨ 𝑌 = 𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))))
5049com12 32 . . . . . . . . . 10 (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → (𝑋 ∈ (0...𝐾) → ((𝑌 = 0 ∨ 𝑌 = 𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))))
5150com15 101 . . . . . . . . 9 (𝑋 ∈ (1..^𝐾) → (𝑋 ∈ (0...𝐾) → ((𝑌 = 0 ∨ 𝑌 = 𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))))
52 elfznelfzo 13733 . . . . . . . . . . 11 ((𝑋 ∈ (0...𝐾) ∧ ¬ 𝑋 ∈ (1..^𝐾)) → (𝑋 = 0 ∨ 𝑋 = 𝐾))
53 eqtr3 2751 . . . . . . . . . . . . . 14 ((𝑋 = 0 ∧ 𝑌 = 0) → 𝑋 = 𝑌)
54 2a1 28 . . . . . . . . . . . . . . 15 (𝑋 = 𝑌 → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))
55542a1d 26 . . . . . . . . . . . . . 14 (𝑋 = 𝑌 → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))
5653, 55syl 17 . . . . . . . . . . . . 13 ((𝑋 = 0 ∧ 𝑌 = 0) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))
575adantl 481 . . . . . . . . . . . . . . . 16 ((𝑋 = 𝐾𝑌 = 0) → (𝐹‘0) = (𝐹𝑌))
58 fveq2 6858 . . . . . . . . . . . . . . . . . 18 (𝐾 = 𝑋 → (𝐹𝐾) = (𝐹𝑋))
5958eqcoms 2737 . . . . . . . . . . . . . . . . 17 (𝑋 = 𝐾 → (𝐹𝐾) = (𝐹𝑋))
6059adantr 480 . . . . . . . . . . . . . . . 16 ((𝑋 = 𝐾𝑌 = 0) → (𝐹𝐾) = (𝐹𝑋))
6157, 60neeq12d 2986 . . . . . . . . . . . . . . 15 ((𝑋 = 𝐾𝑌 = 0) → ((𝐹‘0) ≠ (𝐹𝐾) ↔ (𝐹𝑌) ≠ (𝐹𝑋)))
62 df-ne 2926 . . . . . . . . . . . . . . . 16 ((𝐹𝑌) ≠ (𝐹𝑋) ↔ ¬ (𝐹𝑌) = (𝐹𝑋))
63 pm2.24 124 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑌) = (𝐹𝑋) → (¬ (𝐹𝑌) = (𝐹𝑋) → 𝑋 = 𝑌))
6463eqcoms 2737 . . . . . . . . . . . . . . . . 17 ((𝐹𝑋) = (𝐹𝑌) → (¬ (𝐹𝑌) = (𝐹𝑋) → 𝑋 = 𝑌))
6564com12 32 . . . . . . . . . . . . . . . 16 (¬ (𝐹𝑌) = (𝐹𝑋) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))
6662, 65sylbi 217 . . . . . . . . . . . . . . 15 ((𝐹𝑌) ≠ (𝐹𝑋) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))
6761, 66biimtrdi 253 . . . . . . . . . . . . . 14 ((𝑋 = 𝐾𝑌 = 0) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))
68672a1d 26 . . . . . . . . . . . . 13 ((𝑋 = 𝐾𝑌 = 0) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))
69 fveq2 6858 . . . . . . . . . . . . . . . . . 18 (0 = 𝑋 → (𝐹‘0) = (𝐹𝑋))
7069eqcoms 2737 . . . . . . . . . . . . . . . . 17 (𝑋 = 0 → (𝐹‘0) = (𝐹𝑋))
7170adantr 480 . . . . . . . . . . . . . . . 16 ((𝑋 = 0 ∧ 𝑌 = 𝐾) → (𝐹‘0) = (𝐹𝑋))
7238adantl 481 . . . . . . . . . . . . . . . 16 ((𝑋 = 0 ∧ 𝑌 = 𝐾) → (𝐹𝐾) = (𝐹𝑌))
7371, 72neeq12d 2986 . . . . . . . . . . . . . . 15 ((𝑋 = 0 ∧ 𝑌 = 𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) ↔ (𝐹𝑋) ≠ (𝐹𝑌)))
74 df-ne 2926 . . . . . . . . . . . . . . . 16 ((𝐹𝑋) ≠ (𝐹𝑌) ↔ ¬ (𝐹𝑋) = (𝐹𝑌))
7574, 22sylbi 217 . . . . . . . . . . . . . . 15 ((𝐹𝑋) ≠ (𝐹𝑌) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))
7673, 75biimtrdi 253 . . . . . . . . . . . . . 14 ((𝑋 = 0 ∧ 𝑌 = 𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))
77762a1d 26 . . . . . . . . . . . . 13 ((𝑋 = 0 ∧ 𝑌 = 𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))
78 eqtr3 2751 . . . . . . . . . . . . . 14 ((𝑋 = 𝐾𝑌 = 𝐾) → 𝑋 = 𝑌)
7978, 55syl 17 . . . . . . . . . . . . 13 ((𝑋 = 𝐾𝑌 = 𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))
8056, 68, 77, 79ccase 1037 . . . . . . . . . . . 12 (((𝑋 = 0 ∨ 𝑋 = 𝐾) ∧ (𝑌 = 0 ∨ 𝑌 = 𝐾)) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))
8180ex 412 . . . . . . . . . . 11 ((𝑋 = 0 ∨ 𝑋 = 𝐾) → ((𝑌 = 0 ∨ 𝑌 = 𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))))))
8252, 81syl 17 . . . . . . . . . 10 ((𝑋 ∈ (0...𝐾) ∧ ¬ 𝑋 ∈ (1..^𝐾)) → ((𝑌 = 0 ∨ 𝑌 = 𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))))))
8382expcom 413 . . . . . . . . 9 𝑋 ∈ (1..^𝐾) → (𝑋 ∈ (0...𝐾) → ((𝑌 = 0 ∨ 𝑌 = 𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))))
8451, 83pm2.61i 182 . . . . . . . 8 (𝑋 ∈ (0...𝐾) → ((𝑌 = 0 ∨ 𝑌 = 𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))))))
8584com12 32 . . . . . . 7 ((𝑌 = 0 ∨ 𝑌 = 𝐾) → (𝑋 ∈ (0...𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))))))
861, 85syl 17 . . . . . 6 ((𝑌 ∈ (0...𝐾) ∧ ¬ 𝑌 ∈ (1..^𝐾)) → (𝑋 ∈ (0...𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))))))
8786ex 412 . . . . 5 (𝑌 ∈ (0...𝐾) → (¬ 𝑌 ∈ (1..^𝐾) → (𝑋 ∈ (0...𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))))
8887com23 86 . . . 4 (𝑌 ∈ (0...𝐾) → (𝑋 ∈ (0...𝐾) → (¬ 𝑌 ∈ (1..^𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))))
8988impcom 407 . . 3 ((𝑋 ∈ (0...𝐾) ∧ 𝑌 ∈ (0...𝐾)) → (¬ 𝑌 ∈ (1..^𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))))))
9089com12 32 . 2 𝑌 ∈ (1..^𝐾) → ((𝑋 ∈ (0...𝐾) ∧ 𝑌 ∈ (0...𝐾)) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))))))
9190com25 99 1 𝑌 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑋 ∈ (0...𝐾) ∧ 𝑌 ∈ (0...𝐾)) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wnel 3029  wral 3044  wrex 3053  cin 3913  wss 3914  c0 4296  {cpr 4591  cima 5641   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  0cc0 11068  1c1 11069  0cn0 12442  cuz 12793  ...cfz 13468  ..^cfzo 13615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616
This theorem is referenced by:  injresinj  13749
  Copyright terms: Public domain W3C validator