Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brrestrict Structured version   Visualization version   GIF version

Theorem brrestrict 35982
Description: Binary relation form of the Restrict function. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypotheses
Ref Expression
brrestrict.1 𝐴 ∈ V
brrestrict.2 𝐵 ∈ V
brrestrict.3 𝐶 ∈ V
Assertion
Ref Expression
brrestrict (⟨𝐴, 𝐵⟩Restrict𝐶𝐶 = (𝐴𝐵))

Proof of Theorem brrestrict
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 5404 . . . . 5 𝐴, 𝐵⟩ ∈ V
2 brrestrict.3 . . . . 5 𝐶 ∈ V
31, 2brco 5810 . . . 4 (⟨𝐴, 𝐵⟩(Cap ∘ (1st ⊗ (Cart ∘ (2nd ⊗ (Range ∘ 1st )))))𝐶 ↔ ∃𝑥(⟨𝐴, 𝐵⟩(1st ⊗ (Cart ∘ (2nd ⊗ (Range ∘ 1st ))))𝑥𝑥Cap𝐶))
41brtxp2 35914 . . . . . . 7 (⟨𝐴, 𝐵⟩(1st ⊗ (Cart ∘ (2nd ⊗ (Range ∘ 1st ))))𝑥 ↔ ∃𝑎𝑏(𝑥 = ⟨𝑎, 𝑏⟩ ∧ ⟨𝐴, 𝐵⟩1st 𝑎 ∧ ⟨𝐴, 𝐵⟩(Cart ∘ (2nd ⊗ (Range ∘ 1st )))𝑏))
5 3anrot 1099 . . . . . . . . 9 ((𝑥 = ⟨𝑎, 𝑏⟩ ∧ ⟨𝐴, 𝐵⟩1st 𝑎 ∧ ⟨𝐴, 𝐵⟩(Cart ∘ (2nd ⊗ (Range ∘ 1st )))𝑏) ↔ (⟨𝐴, 𝐵⟩1st 𝑎 ∧ ⟨𝐴, 𝐵⟩(Cart ∘ (2nd ⊗ (Range ∘ 1st )))𝑏𝑥 = ⟨𝑎, 𝑏⟩))
6 brrestrict.1 . . . . . . . . . . 11 𝐴 ∈ V
7 brrestrict.2 . . . . . . . . . . 11 𝐵 ∈ V
86, 7br1steq 35803 . . . . . . . . . 10 (⟨𝐴, 𝐵⟩1st 𝑎𝑎 = 𝐴)
9 vex 3440 . . . . . . . . . . . 12 𝑏 ∈ V
101, 9brco 5810 . . . . . . . . . . 11 (⟨𝐴, 𝐵⟩(Cart ∘ (2nd ⊗ (Range ∘ 1st )))𝑏 ↔ ∃𝑥(⟨𝐴, 𝐵⟩(2nd ⊗ (Range ∘ 1st ))𝑥𝑥Cart𝑏))
111brtxp2 35914 . . . . . . . . . . . . . . 15 (⟨𝐴, 𝐵⟩(2nd ⊗ (Range ∘ 1st ))𝑥 ↔ ∃𝑎𝑏(𝑥 = ⟨𝑎, 𝑏⟩ ∧ ⟨𝐴, 𝐵⟩2nd 𝑎 ∧ ⟨𝐴, 𝐵⟩(Range ∘ 1st )𝑏))
12 3anrot 1099 . . . . . . . . . . . . . . . . 17 ((𝑥 = ⟨𝑎, 𝑏⟩ ∧ ⟨𝐴, 𝐵⟩2nd 𝑎 ∧ ⟨𝐴, 𝐵⟩(Range ∘ 1st )𝑏) ↔ (⟨𝐴, 𝐵⟩2nd 𝑎 ∧ ⟨𝐴, 𝐵⟩(Range ∘ 1st )𝑏𝑥 = ⟨𝑎, 𝑏⟩))
136, 7br2ndeq 35804 . . . . . . . . . . . . . . . . . 18 (⟨𝐴, 𝐵⟩2nd 𝑎𝑎 = 𝐵)
141, 9brco 5810 . . . . . . . . . . . . . . . . . . 19 (⟨𝐴, 𝐵⟩(Range ∘ 1st )𝑏 ↔ ∃𝑥(⟨𝐴, 𝐵⟩1st 𝑥𝑥Range𝑏))
156, 7br1steq 35803 . . . . . . . . . . . . . . . . . . . . . 22 (⟨𝐴, 𝐵⟩1st 𝑥𝑥 = 𝐴)
1615anbi1i 624 . . . . . . . . . . . . . . . . . . . . 21 ((⟨𝐴, 𝐵⟩1st 𝑥𝑥Range𝑏) ↔ (𝑥 = 𝐴𝑥Range𝑏))
1716exbii 1849 . . . . . . . . . . . . . . . . . . . 20 (∃𝑥(⟨𝐴, 𝐵⟩1st 𝑥𝑥Range𝑏) ↔ ∃𝑥(𝑥 = 𝐴𝑥Range𝑏))
18 breq1 5094 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝐴 → (𝑥Range𝑏𝐴Range𝑏))
196, 18ceqsexv 3487 . . . . . . . . . . . . . . . . . . . 20 (∃𝑥(𝑥 = 𝐴𝑥Range𝑏) ↔ 𝐴Range𝑏)
2017, 19bitri 275 . . . . . . . . . . . . . . . . . . 19 (∃𝑥(⟨𝐴, 𝐵⟩1st 𝑥𝑥Range𝑏) ↔ 𝐴Range𝑏)
216, 9brrange 35967 . . . . . . . . . . . . . . . . . . 19 (𝐴Range𝑏𝑏 = ran 𝐴)
2214, 20, 213bitri 297 . . . . . . . . . . . . . . . . . 18 (⟨𝐴, 𝐵⟩(Range ∘ 1st )𝑏𝑏 = ran 𝐴)
23 biid 261 . . . . . . . . . . . . . . . . . 18 (𝑥 = ⟨𝑎, 𝑏⟩ ↔ 𝑥 = ⟨𝑎, 𝑏⟩)
2413, 22, 233anbi123i 1155 . . . . . . . . . . . . . . . . 17 ((⟨𝐴, 𝐵⟩2nd 𝑎 ∧ ⟨𝐴, 𝐵⟩(Range ∘ 1st )𝑏𝑥 = ⟨𝑎, 𝑏⟩) ↔ (𝑎 = 𝐵𝑏 = ran 𝐴𝑥 = ⟨𝑎, 𝑏⟩))
2512, 24bitri 275 . . . . . . . . . . . . . . . 16 ((𝑥 = ⟨𝑎, 𝑏⟩ ∧ ⟨𝐴, 𝐵⟩2nd 𝑎 ∧ ⟨𝐴, 𝐵⟩(Range ∘ 1st )𝑏) ↔ (𝑎 = 𝐵𝑏 = ran 𝐴𝑥 = ⟨𝑎, 𝑏⟩))
26252exbii 1850 . . . . . . . . . . . . . . 15 (∃𝑎𝑏(𝑥 = ⟨𝑎, 𝑏⟩ ∧ ⟨𝐴, 𝐵⟩2nd 𝑎 ∧ ⟨𝐴, 𝐵⟩(Range ∘ 1st )𝑏) ↔ ∃𝑎𝑏(𝑎 = 𝐵𝑏 = ran 𝐴𝑥 = ⟨𝑎, 𝑏⟩))
276rnex 7840 . . . . . . . . . . . . . . . 16 ran 𝐴 ∈ V
28 opeq1 4825 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝐵 → ⟨𝑎, 𝑏⟩ = ⟨𝐵, 𝑏⟩)
2928eqeq2d 2742 . . . . . . . . . . . . . . . 16 (𝑎 = 𝐵 → (𝑥 = ⟨𝑎, 𝑏⟩ ↔ 𝑥 = ⟨𝐵, 𝑏⟩))
30 opeq2 4826 . . . . . . . . . . . . . . . . 17 (𝑏 = ran 𝐴 → ⟨𝐵, 𝑏⟩ = ⟨𝐵, ran 𝐴⟩)
3130eqeq2d 2742 . . . . . . . . . . . . . . . 16 (𝑏 = ran 𝐴 → (𝑥 = ⟨𝐵, 𝑏⟩ ↔ 𝑥 = ⟨𝐵, ran 𝐴⟩))
327, 27, 29, 31ceqsex2v 3491 . . . . . . . . . . . . . . 15 (∃𝑎𝑏(𝑎 = 𝐵𝑏 = ran 𝐴𝑥 = ⟨𝑎, 𝑏⟩) ↔ 𝑥 = ⟨𝐵, ran 𝐴⟩)
3311, 26, 323bitri 297 . . . . . . . . . . . . . 14 (⟨𝐴, 𝐵⟩(2nd ⊗ (Range ∘ 1st ))𝑥𝑥 = ⟨𝐵, ran 𝐴⟩)
3433anbi1i 624 . . . . . . . . . . . . 13 ((⟨𝐴, 𝐵⟩(2nd ⊗ (Range ∘ 1st ))𝑥𝑥Cart𝑏) ↔ (𝑥 = ⟨𝐵, ran 𝐴⟩ ∧ 𝑥Cart𝑏))
3534exbii 1849 . . . . . . . . . . . 12 (∃𝑥(⟨𝐴, 𝐵⟩(2nd ⊗ (Range ∘ 1st ))𝑥𝑥Cart𝑏) ↔ ∃𝑥(𝑥 = ⟨𝐵, ran 𝐴⟩ ∧ 𝑥Cart𝑏))
36 opex 5404 . . . . . . . . . . . . 13 𝐵, ran 𝐴⟩ ∈ V
37 breq1 5094 . . . . . . . . . . . . 13 (𝑥 = ⟨𝐵, ran 𝐴⟩ → (𝑥Cart𝑏 ↔ ⟨𝐵, ran 𝐴⟩Cart𝑏))
3836, 37ceqsexv 3487 . . . . . . . . . . . 12 (∃𝑥(𝑥 = ⟨𝐵, ran 𝐴⟩ ∧ 𝑥Cart𝑏) ↔ ⟨𝐵, ran 𝐴⟩Cart𝑏)
3935, 38bitri 275 . . . . . . . . . . 11 (∃𝑥(⟨𝐴, 𝐵⟩(2nd ⊗ (Range ∘ 1st ))𝑥𝑥Cart𝑏) ↔ ⟨𝐵, ran 𝐴⟩Cart𝑏)
407, 27, 9brcart 35965 . . . . . . . . . . 11 (⟨𝐵, ran 𝐴⟩Cart𝑏𝑏 = (𝐵 × ran 𝐴))
4110, 39, 403bitri 297 . . . . . . . . . 10 (⟨𝐴, 𝐵⟩(Cart ∘ (2nd ⊗ (Range ∘ 1st )))𝑏𝑏 = (𝐵 × ran 𝐴))
428, 41, 233anbi123i 1155 . . . . . . . . 9 ((⟨𝐴, 𝐵⟩1st 𝑎 ∧ ⟨𝐴, 𝐵⟩(Cart ∘ (2nd ⊗ (Range ∘ 1st )))𝑏𝑥 = ⟨𝑎, 𝑏⟩) ↔ (𝑎 = 𝐴𝑏 = (𝐵 × ran 𝐴) ∧ 𝑥 = ⟨𝑎, 𝑏⟩))
435, 42bitri 275 . . . . . . . 8 ((𝑥 = ⟨𝑎, 𝑏⟩ ∧ ⟨𝐴, 𝐵⟩1st 𝑎 ∧ ⟨𝐴, 𝐵⟩(Cart ∘ (2nd ⊗ (Range ∘ 1st )))𝑏) ↔ (𝑎 = 𝐴𝑏 = (𝐵 × ran 𝐴) ∧ 𝑥 = ⟨𝑎, 𝑏⟩))
44432exbii 1850 . . . . . . 7 (∃𝑎𝑏(𝑥 = ⟨𝑎, 𝑏⟩ ∧ ⟨𝐴, 𝐵⟩1st 𝑎 ∧ ⟨𝐴, 𝐵⟩(Cart ∘ (2nd ⊗ (Range ∘ 1st )))𝑏) ↔ ∃𝑎𝑏(𝑎 = 𝐴𝑏 = (𝐵 × ran 𝐴) ∧ 𝑥 = ⟨𝑎, 𝑏⟩))
457, 27xpex 7686 . . . . . . . 8 (𝐵 × ran 𝐴) ∈ V
46 opeq1 4825 . . . . . . . . 9 (𝑎 = 𝐴 → ⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝑏⟩)
4746eqeq2d 2742 . . . . . . . 8 (𝑎 = 𝐴 → (𝑥 = ⟨𝑎, 𝑏⟩ ↔ 𝑥 = ⟨𝐴, 𝑏⟩))
48 opeq2 4826 . . . . . . . . 9 (𝑏 = (𝐵 × ran 𝐴) → ⟨𝐴, 𝑏⟩ = ⟨𝐴, (𝐵 × ran 𝐴)⟩)
4948eqeq2d 2742 . . . . . . . 8 (𝑏 = (𝐵 × ran 𝐴) → (𝑥 = ⟨𝐴, 𝑏⟩ ↔ 𝑥 = ⟨𝐴, (𝐵 × ran 𝐴)⟩))
506, 45, 47, 49ceqsex2v 3491 . . . . . . 7 (∃𝑎𝑏(𝑎 = 𝐴𝑏 = (𝐵 × ran 𝐴) ∧ 𝑥 = ⟨𝑎, 𝑏⟩) ↔ 𝑥 = ⟨𝐴, (𝐵 × ran 𝐴)⟩)
514, 44, 503bitri 297 . . . . . 6 (⟨𝐴, 𝐵⟩(1st ⊗ (Cart ∘ (2nd ⊗ (Range ∘ 1st ))))𝑥𝑥 = ⟨𝐴, (𝐵 × ran 𝐴)⟩)
5251anbi1i 624 . . . . 5 ((⟨𝐴, 𝐵⟩(1st ⊗ (Cart ∘ (2nd ⊗ (Range ∘ 1st ))))𝑥𝑥Cap𝐶) ↔ (𝑥 = ⟨𝐴, (𝐵 × ran 𝐴)⟩ ∧ 𝑥Cap𝐶))
5352exbii 1849 . . . 4 (∃𝑥(⟨𝐴, 𝐵⟩(1st ⊗ (Cart ∘ (2nd ⊗ (Range ∘ 1st ))))𝑥𝑥Cap𝐶) ↔ ∃𝑥(𝑥 = ⟨𝐴, (𝐵 × ran 𝐴)⟩ ∧ 𝑥Cap𝐶))
543, 53bitri 275 . . 3 (⟨𝐴, 𝐵⟩(Cap ∘ (1st ⊗ (Cart ∘ (2nd ⊗ (Range ∘ 1st )))))𝐶 ↔ ∃𝑥(𝑥 = ⟨𝐴, (𝐵 × ran 𝐴)⟩ ∧ 𝑥Cap𝐶))
55 opex 5404 . . . 4 𝐴, (𝐵 × ran 𝐴)⟩ ∈ V
56 breq1 5094 . . . 4 (𝑥 = ⟨𝐴, (𝐵 × ran 𝐴)⟩ → (𝑥Cap𝐶 ↔ ⟨𝐴, (𝐵 × ran 𝐴)⟩Cap𝐶))
5755, 56ceqsexv 3487 . . 3 (∃𝑥(𝑥 = ⟨𝐴, (𝐵 × ran 𝐴)⟩ ∧ 𝑥Cap𝐶) ↔ ⟨𝐴, (𝐵 × ran 𝐴)⟩Cap𝐶)
586, 45, 2brcap 35973 . . 3 (⟨𝐴, (𝐵 × ran 𝐴)⟩Cap𝐶𝐶 = (𝐴 ∩ (𝐵 × ran 𝐴)))
5954, 57, 583bitri 297 . 2 (⟨𝐴, 𝐵⟩(Cap ∘ (1st ⊗ (Cart ∘ (2nd ⊗ (Range ∘ 1st )))))𝐶𝐶 = (𝐴 ∩ (𝐵 × ran 𝐴)))
60 df-restrict 35904 . . 3 Restrict = (Cap ∘ (1st ⊗ (Cart ∘ (2nd ⊗ (Range ∘ 1st )))))
6160breqi 5097 . 2 (⟨𝐴, 𝐵⟩Restrict𝐶 ↔ ⟨𝐴, 𝐵⟩(Cap ∘ (1st ⊗ (Cart ∘ (2nd ⊗ (Range ∘ 1st )))))𝐶)
62 dfres3 5933 . . 3 (𝐴𝐵) = (𝐴 ∩ (𝐵 × ran 𝐴))
6362eqeq2i 2744 . 2 (𝐶 = (𝐴𝐵) ↔ 𝐶 = (𝐴 ∩ (𝐵 × ran 𝐴)))
6459, 61, 633bitr4i 303 1 (⟨𝐴, 𝐵⟩Restrict𝐶𝐶 = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  Vcvv 3436  cin 3901  cop 4582   class class class wbr 5091   × cxp 5614  ran crn 5617  cres 5618  ccom 5620  1st c1st 7919  2nd c2nd 7920  ctxp 35863  Cartccart 35874  Rangecrange 35877  Capccap 35880  Restrictcrestrict 35884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-symdif 4203  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-eprel 5516  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fo 6487  df-fv 6489  df-1st 7921  df-2nd 7922  df-txp 35887  df-pprod 35888  df-image 35897  df-cart 35898  df-range 35901  df-cap 35903  df-restrict 35904
This theorem is referenced by:  dfrecs2  35983
  Copyright terms: Public domain W3C validator