Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diblsmopel Structured version   Visualization version   GIF version

Theorem diblsmopel 39634
Description: Membership in subspace sum for partial isomorphism B. (Contributed by NM, 21-Sep-2014.) (Revised by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
diblsmopel.b 𝐵 = (Base‘𝐾)
diblsmopel.l = (le‘𝐾)
diblsmopel.h 𝐻 = (LHyp‘𝐾)
diblsmopel.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
diblsmopel.o 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
diblsmopel.v 𝑉 = ((DVecA‘𝐾)‘𝑊)
diblsmopel.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
diblsmopel.q = (LSSum‘𝑉)
diblsmopel.p = (LSSum‘𝑈)
diblsmopel.j 𝐽 = ((DIsoA‘𝐾)‘𝑊)
diblsmopel.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
diblsmopel.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
diblsmopel.x (𝜑 → (𝑋𝐵𝑋 𝑊))
diblsmopel.y (𝜑 → (𝑌𝐵𝑌 𝑊))
Assertion
Ref Expression
diblsmopel (𝜑 → (⟨𝐹, 𝑆⟩ ∈ ((𝐼𝑋) (𝐼𝑌)) ↔ (𝐹 ∈ ((𝐽𝑋) (𝐽𝑌)) ∧ 𝑆 = 𝑂)))
Distinct variable groups:   𝐵,𝑓   𝑓,𝐻   𝑓,𝐾   𝑇,𝑓   𝑓,𝑊
Allowed substitution hints:   𝜑(𝑓)   (𝑓)   (𝑓)   𝑆(𝑓)   𝑈(𝑓)   𝐹(𝑓)   𝐼(𝑓)   𝐽(𝑓)   (𝑓)   𝑂(𝑓)   𝑉(𝑓)   𝑋(𝑓)   𝑌(𝑓)

Proof of Theorem diblsmopel
Dummy variables 𝑥 𝑤 𝑦 𝑧 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 diblsmopel.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 diblsmopel.x . . . 4 (𝜑 → (𝑋𝐵𝑋 𝑊))
3 diblsmopel.b . . . . 5 𝐵 = (Base‘𝐾)
4 diblsmopel.l . . . . 5 = (le‘𝐾)
5 diblsmopel.h . . . . 5 𝐻 = (LHyp‘𝐾)
6 diblsmopel.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
7 diblsmopel.i . . . . 5 𝐼 = ((DIsoB‘𝐾)‘𝑊)
8 eqid 2736 . . . . 5 (LSubSp‘𝑈) = (LSubSp‘𝑈)
93, 4, 5, 6, 7, 8diblss 39633 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) ∈ (LSubSp‘𝑈))
101, 2, 9syl2anc 584 . . 3 (𝜑 → (𝐼𝑋) ∈ (LSubSp‘𝑈))
11 diblsmopel.y . . . 4 (𝜑 → (𝑌𝐵𝑌 𝑊))
123, 4, 5, 6, 7, 8diblss 39633 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼𝑌) ∈ (LSubSp‘𝑈))
131, 11, 12syl2anc 584 . . 3 (𝜑 → (𝐼𝑌) ∈ (LSubSp‘𝑈))
14 eqid 2736 . . . 4 (+g𝑈) = (+g𝑈)
15 diblsmopel.p . . . 4 = (LSSum‘𝑈)
165, 6, 14, 8, 15dvhopellsm 39580 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐼𝑋) ∈ (LSubSp‘𝑈) ∧ (𝐼𝑌) ∈ (LSubSp‘𝑈)) → (⟨𝐹, 𝑆⟩ ∈ ((𝐼𝑋) (𝐼𝑌)) ↔ ∃𝑥𝑦𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩))))
171, 10, 13, 16syl3anc 1371 . 2 (𝜑 → (⟨𝐹, 𝑆⟩ ∈ ((𝐼𝑋) (𝐼𝑌)) ↔ ∃𝑥𝑦𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩))))
18 excom 2162 . . . 4 (∃𝑦𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩)) ↔ ∃𝑧𝑦𝑤((⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩)))
19 diblsmopel.t . . . . . . . . . . . . 13 𝑇 = ((LTrn‘𝐾)‘𝑊)
20 diblsmopel.o . . . . . . . . . . . . 13 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
21 diblsmopel.j . . . . . . . . . . . . 13 𝐽 = ((DIsoA‘𝐾)‘𝑊)
223, 4, 5, 19, 20, 21, 7dibopelval2 39608 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ↔ (𝑥 ∈ (𝐽𝑋) ∧ 𝑦 = 𝑂)))
231, 2, 22syl2anc 584 . . . . . . . . . . 11 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ↔ (𝑥 ∈ (𝐽𝑋) ∧ 𝑦 = 𝑂)))
243, 4, 5, 19, 20, 21, 7dibopelval2 39608 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐵𝑌 𝑊)) → (⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌) ↔ (𝑧 ∈ (𝐽𝑌) ∧ 𝑤 = 𝑂)))
251, 11, 24syl2anc 584 . . . . . . . . . . 11 (𝜑 → (⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌) ↔ (𝑧 ∈ (𝐽𝑌) ∧ 𝑤 = 𝑂)))
2623, 25anbi12d 631 . . . . . . . . . 10 (𝜑 → ((⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌)) ↔ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑦 = 𝑂) ∧ (𝑧 ∈ (𝐽𝑌) ∧ 𝑤 = 𝑂))))
27 an4 654 . . . . . . . . . . 11 (((𝑥 ∈ (𝐽𝑋) ∧ 𝑦 = 𝑂) ∧ (𝑧 ∈ (𝐽𝑌) ∧ 𝑤 = 𝑂)) ↔ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ (𝑦 = 𝑂𝑤 = 𝑂)))
28 ancom 461 . . . . . . . . . . 11 (((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ (𝑦 = 𝑂𝑤 = 𝑂)) ↔ ((𝑦 = 𝑂𝑤 = 𝑂) ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))))
2927, 28bitri 274 . . . . . . . . . 10 (((𝑥 ∈ (𝐽𝑋) ∧ 𝑦 = 𝑂) ∧ (𝑧 ∈ (𝐽𝑌) ∧ 𝑤 = 𝑂)) ↔ ((𝑦 = 𝑂𝑤 = 𝑂) ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))))
3026, 29bitrdi 286 . . . . . . . . 9 (𝜑 → ((⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌)) ↔ ((𝑦 = 𝑂𝑤 = 𝑂) ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)))))
3130anbi1d 630 . . . . . . . 8 (𝜑 → (((⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩)) ↔ (((𝑦 = 𝑂𝑤 = 𝑂) ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩))))
32 anass 469 . . . . . . . . 9 ((((𝑦 = 𝑂𝑤 = 𝑂) ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩)) ↔ ((𝑦 = 𝑂𝑤 = 𝑂) ∧ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩))))
33 df-3an 1089 . . . . . . . . 9 ((𝑦 = 𝑂𝑤 = 𝑂 ∧ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩))) ↔ ((𝑦 = 𝑂𝑤 = 𝑂) ∧ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩))))
3432, 33bitr4i 277 . . . . . . . 8 ((((𝑦 = 𝑂𝑤 = 𝑂) ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩)) ↔ (𝑦 = 𝑂𝑤 = 𝑂 ∧ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩))))
3531, 34bitrdi 286 . . . . . . 7 (𝜑 → (((⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩)) ↔ (𝑦 = 𝑂𝑤 = 𝑂 ∧ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩)))))
36352exbidv 1927 . . . . . 6 (𝜑 → (∃𝑦𝑤((⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩)) ↔ ∃𝑦𝑤(𝑦 = 𝑂𝑤 = 𝑂 ∧ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩)))))
3719fvexi 6856 . . . . . . . . . 10 𝑇 ∈ V
3837mptex 7173 . . . . . . . . 9 (𝑓𝑇 ↦ ( I ↾ 𝐵)) ∈ V
3920, 38eqeltri 2834 . . . . . . . 8 𝑂 ∈ V
40 opeq2 4831 . . . . . . . . . . 11 (𝑦 = 𝑂 → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑂⟩)
4140oveq1d 7372 . . . . . . . . . 10 (𝑦 = 𝑂 → (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑤⟩))
4241eqeq2d 2747 . . . . . . . . 9 (𝑦 = 𝑂 → (⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩) ↔ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑤⟩)))
4342anbi2d 629 . . . . . . . 8 (𝑦 = 𝑂 → (((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩)) ↔ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑤⟩))))
44 opeq2 4831 . . . . . . . . . . 11 (𝑤 = 𝑂 → ⟨𝑧, 𝑤⟩ = ⟨𝑧, 𝑂⟩)
4544oveq2d 7373 . . . . . . . . . 10 (𝑤 = 𝑂 → (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑂⟩))
4645eqeq2d 2747 . . . . . . . . 9 (𝑤 = 𝑂 → (⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑤⟩) ↔ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑂⟩)))
4746anbi2d 629 . . . . . . . 8 (𝑤 = 𝑂 → (((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑤⟩)) ↔ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑂⟩))))
4839, 39, 43, 47ceqsex2v 3499 . . . . . . 7 (∃𝑦𝑤(𝑦 = 𝑂𝑤 = 𝑂 ∧ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩))) ↔ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑂⟩)))
491adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
502adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (𝑋𝐵𝑋 𝑊))
51 simprl 769 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → 𝑥 ∈ (𝐽𝑋))
523, 4, 5, 19, 21diael 39506 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑥 ∈ (𝐽𝑋)) → 𝑥𝑇)
5349, 50, 51, 52syl3anc 1371 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → 𝑥𝑇)
54 eqid 2736 . . . . . . . . . . . . 13 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
553, 5, 19, 54, 20tendo0cl 39253 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂 ∈ ((TEndo‘𝐾)‘𝑊))
5649, 55syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → 𝑂 ∈ ((TEndo‘𝐾)‘𝑊))
5711adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (𝑌𝐵𝑌 𝑊))
58 simprr 771 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → 𝑧 ∈ (𝐽𝑌))
593, 4, 5, 19, 21diael 39506 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐵𝑌 𝑊) ∧ 𝑧 ∈ (𝐽𝑌)) → 𝑧𝑇)
6049, 57, 58, 59syl3anc 1371 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → 𝑧𝑇)
61 eqid 2736 . . . . . . . . . . . 12 (Scalar‘𝑈) = (Scalar‘𝑈)
62 eqid 2736 . . . . . . . . . . . 12 (+g‘(Scalar‘𝑈)) = (+g‘(Scalar‘𝑈))
635, 19, 54, 6, 61, 14, 62dvhopvadd 39556 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑂 ∈ ((TEndo‘𝐾)‘𝑊)) ∧ (𝑧𝑇𝑂 ∈ ((TEndo‘𝐾)‘𝑊))) → (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑂⟩) = ⟨(𝑥𝑧), (𝑂(+g‘(Scalar‘𝑈))𝑂)⟩)
6449, 53, 56, 60, 56, 63syl122anc 1379 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑂⟩) = ⟨(𝑥𝑧), (𝑂(+g‘(Scalar‘𝑈))𝑂)⟩)
6564eqeq2d 2747 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑂⟩) ↔ ⟨𝐹, 𝑆⟩ = ⟨(𝑥𝑧), (𝑂(+g‘(Scalar‘𝑈))𝑂)⟩))
66 vex 3449 . . . . . . . . . . . 12 𝑥 ∈ V
67 vex 3449 . . . . . . . . . . . 12 𝑧 ∈ V
6866, 67coex 7867 . . . . . . . . . . 11 (𝑥𝑧) ∈ V
69 ovex 7390 . . . . . . . . . . 11 (𝑂(+g‘(Scalar‘𝑈))𝑂) ∈ V
7068, 69opth2 5437 . . . . . . . . . 10 (⟨𝐹, 𝑆⟩ = ⟨(𝑥𝑧), (𝑂(+g‘(Scalar‘𝑈))𝑂)⟩ ↔ (𝐹 = (𝑥𝑧) ∧ 𝑆 = (𝑂(+g‘(Scalar‘𝑈))𝑂)))
71 diblsmopel.v . . . . . . . . . . . . . . 15 𝑉 = ((DVecA‘𝐾)‘𝑊)
72 eqid 2736 . . . . . . . . . . . . . . 15 (+g𝑉) = (+g𝑉)
735, 19, 71, 72dvavadd 39478 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑧𝑇)) → (𝑥(+g𝑉)𝑧) = (𝑥𝑧))
7449, 53, 60, 73syl12anc 835 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (𝑥(+g𝑉)𝑧) = (𝑥𝑧))
7574eqeq2d 2747 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (𝐹 = (𝑥(+g𝑉)𝑧) ↔ 𝐹 = (𝑥𝑧)))
7675bicomd 222 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (𝐹 = (𝑥𝑧) ↔ 𝐹 = (𝑥(+g𝑉)𝑧)))
77 eqid 2736 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓)))) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
785, 19, 54, 6, 61, 77, 62dvhfplusr 39547 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (+g‘(Scalar‘𝑈)) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓)))))
7949, 78syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (+g‘(Scalar‘𝑈)) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓)))))
8079oveqd 7374 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (𝑂(+g‘(Scalar‘𝑈))𝑂) = (𝑂(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))𝑂))
813, 5, 19, 54, 20, 77tendo0pl 39254 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑂 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑂(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))𝑂) = 𝑂)
8249, 56, 81syl2anc 584 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (𝑂(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))𝑂) = 𝑂)
8380, 82eqtrd 2776 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (𝑂(+g‘(Scalar‘𝑈))𝑂) = 𝑂)
8483eqeq2d 2747 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (𝑆 = (𝑂(+g‘(Scalar‘𝑈))𝑂) ↔ 𝑆 = 𝑂))
8576, 84anbi12d 631 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → ((𝐹 = (𝑥𝑧) ∧ 𝑆 = (𝑂(+g‘(Scalar‘𝑈))𝑂)) ↔ (𝐹 = (𝑥(+g𝑉)𝑧) ∧ 𝑆 = 𝑂)))
8670, 85bitrid 282 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (⟨𝐹, 𝑆⟩ = ⟨(𝑥𝑧), (𝑂(+g‘(Scalar‘𝑈))𝑂)⟩ ↔ (𝐹 = (𝑥(+g𝑉)𝑧) ∧ 𝑆 = 𝑂)))
8765, 86bitrd 278 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑂⟩) ↔ (𝐹 = (𝑥(+g𝑉)𝑧) ∧ 𝑆 = 𝑂)))
8887pm5.32da 579 . . . . . . 7 (𝜑 → (((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑂⟩)) ↔ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ (𝐹 = (𝑥(+g𝑉)𝑧) ∧ 𝑆 = 𝑂))))
8948, 88bitrid 282 . . . . . 6 (𝜑 → (∃𝑦𝑤(𝑦 = 𝑂𝑤 = 𝑂 ∧ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩))) ↔ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ (𝐹 = (𝑥(+g𝑉)𝑧) ∧ 𝑆 = 𝑂))))
9036, 89bitrd 278 . . . . 5 (𝜑 → (∃𝑦𝑤((⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩)) ↔ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ (𝐹 = (𝑥(+g𝑉)𝑧) ∧ 𝑆 = 𝑂))))
9190exbidv 1924 . . . 4 (𝜑 → (∃𝑧𝑦𝑤((⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩)) ↔ ∃𝑧((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ (𝐹 = (𝑥(+g𝑉)𝑧) ∧ 𝑆 = 𝑂))))
9218, 91bitrid 282 . . 3 (𝜑 → (∃𝑦𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩)) ↔ ∃𝑧((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ (𝐹 = (𝑥(+g𝑉)𝑧) ∧ 𝑆 = 𝑂))))
9392exbidv 1924 . 2 (𝜑 → (∃𝑥𝑦𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩)) ↔ ∃𝑥𝑧((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ (𝐹 = (𝑥(+g𝑉)𝑧) ∧ 𝑆 = 𝑂))))
94 anass 469 . . . . . 6 ((((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ 𝐹 = (𝑥(+g𝑉)𝑧)) ∧ 𝑆 = 𝑂) ↔ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ (𝐹 = (𝑥(+g𝑉)𝑧) ∧ 𝑆 = 𝑂)))
9594bicomi 223 . . . . 5 (((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ (𝐹 = (𝑥(+g𝑉)𝑧) ∧ 𝑆 = 𝑂)) ↔ (((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ 𝐹 = (𝑥(+g𝑉)𝑧)) ∧ 𝑆 = 𝑂))
96952exbii 1851 . . . 4 (∃𝑥𝑧((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ (𝐹 = (𝑥(+g𝑉)𝑧) ∧ 𝑆 = 𝑂)) ↔ ∃𝑥𝑧(((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ 𝐹 = (𝑥(+g𝑉)𝑧)) ∧ 𝑆 = 𝑂))
97 19.41vv 1954 . . . 4 (∃𝑥𝑧(((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ 𝐹 = (𝑥(+g𝑉)𝑧)) ∧ 𝑆 = 𝑂) ↔ (∃𝑥𝑧((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ 𝐹 = (𝑥(+g𝑉)𝑧)) ∧ 𝑆 = 𝑂))
9896, 97bitri 274 . . 3 (∃𝑥𝑧((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ (𝐹 = (𝑥(+g𝑉)𝑧) ∧ 𝑆 = 𝑂)) ↔ (∃𝑥𝑧((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ 𝐹 = (𝑥(+g𝑉)𝑧)) ∧ 𝑆 = 𝑂))
995, 71dvalvec 39489 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑉 ∈ LVec)
100 lveclmod 20567 . . . . . . . . 9 (𝑉 ∈ LVec → 𝑉 ∈ LMod)
101 eqid 2736 . . . . . . . . . 10 (LSubSp‘𝑉) = (LSubSp‘𝑉)
102101lsssssubg 20419 . . . . . . . . 9 (𝑉 ∈ LMod → (LSubSp‘𝑉) ⊆ (SubGrp‘𝑉))
1031, 99, 100, 1024syl 19 . . . . . . . 8 (𝜑 → (LSubSp‘𝑉) ⊆ (SubGrp‘𝑉))
1043, 4, 5, 71, 21, 101dialss 39509 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐽𝑋) ∈ (LSubSp‘𝑉))
1051, 2, 104syl2anc 584 . . . . . . . 8 (𝜑 → (𝐽𝑋) ∈ (LSubSp‘𝑉))
106103, 105sseldd 3945 . . . . . . 7 (𝜑 → (𝐽𝑋) ∈ (SubGrp‘𝑉))
1073, 4, 5, 71, 21, 101dialss 39509 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐽𝑌) ∈ (LSubSp‘𝑉))
1081, 11, 107syl2anc 584 . . . . . . . 8 (𝜑 → (𝐽𝑌) ∈ (LSubSp‘𝑉))
109103, 108sseldd 3945 . . . . . . 7 (𝜑 → (𝐽𝑌) ∈ (SubGrp‘𝑉))
110 diblsmopel.q . . . . . . . 8 = (LSSum‘𝑉)
11172, 110lsmelval 19431 . . . . . . 7 (((𝐽𝑋) ∈ (SubGrp‘𝑉) ∧ (𝐽𝑌) ∈ (SubGrp‘𝑉)) → (𝐹 ∈ ((𝐽𝑋) (𝐽𝑌)) ↔ ∃𝑥 ∈ (𝐽𝑋)∃𝑧 ∈ (𝐽𝑌)𝐹 = (𝑥(+g𝑉)𝑧)))
112106, 109, 111syl2anc 584 . . . . . 6 (𝜑 → (𝐹 ∈ ((𝐽𝑋) (𝐽𝑌)) ↔ ∃𝑥 ∈ (𝐽𝑋)∃𝑧 ∈ (𝐽𝑌)𝐹 = (𝑥(+g𝑉)𝑧)))
113 r2ex 3192 . . . . . 6 (∃𝑥 ∈ (𝐽𝑋)∃𝑧 ∈ (𝐽𝑌)𝐹 = (𝑥(+g𝑉)𝑧) ↔ ∃𝑥𝑧((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ 𝐹 = (𝑥(+g𝑉)𝑧)))
114112, 113bitrdi 286 . . . . 5 (𝜑 → (𝐹 ∈ ((𝐽𝑋) (𝐽𝑌)) ↔ ∃𝑥𝑧((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ 𝐹 = (𝑥(+g𝑉)𝑧))))
115114anbi1d 630 . . . 4 (𝜑 → ((𝐹 ∈ ((𝐽𝑋) (𝐽𝑌)) ∧ 𝑆 = 𝑂) ↔ (∃𝑥𝑧((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ 𝐹 = (𝑥(+g𝑉)𝑧)) ∧ 𝑆 = 𝑂)))
116115bicomd 222 . . 3 (𝜑 → ((∃𝑥𝑧((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ 𝐹 = (𝑥(+g𝑉)𝑧)) ∧ 𝑆 = 𝑂) ↔ (𝐹 ∈ ((𝐽𝑋) (𝐽𝑌)) ∧ 𝑆 = 𝑂)))
11798, 116bitrid 282 . 2 (𝜑 → (∃𝑥𝑧((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ (𝐹 = (𝑥(+g𝑉)𝑧) ∧ 𝑆 = 𝑂)) ↔ (𝐹 ∈ ((𝐽𝑋) (𝐽𝑌)) ∧ 𝑆 = 𝑂)))
11817, 93, 1173bitrd 304 1 (𝜑 → (⟨𝐹, 𝑆⟩ ∈ ((𝐼𝑋) (𝐼𝑌)) ↔ (𝐹 ∈ ((𝐽𝑋) (𝐽𝑌)) ∧ 𝑆 = 𝑂)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  wrex 3073  Vcvv 3445  wss 3910  cop 4592   class class class wbr 5105  cmpt 5188   I cid 5530  cres 5635  ccom 5637  cfv 6496  (class class class)co 7357  cmpo 7359  Basecbs 17083  +gcplusg 17133  Scalarcsca 17136  lecple 17140  SubGrpcsubg 18922  LSSumclsm 19416  LModclmod 20322  LSubSpclss 20392  LVecclvec 20563  HLchlt 37812  LHypclh 38447  LTrncltrn 38564  TEndoctendo 39215  DVecAcdveca 39465  DIsoAcdia 39491  DVecHcdvh 39541  DIsoBcdib 39601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-riotaBAD 37415
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-tpos 8157  df-undef 8204  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-0g 17323  df-proset 18184  df-poset 18202  df-plt 18219  df-lub 18235  df-glb 18236  df-join 18237  df-meet 18238  df-p0 18314  df-p1 18315  df-lat 18321  df-clat 18388  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-grp 18751  df-minusg 18752  df-sbg 18753  df-subg 18925  df-lsm 19418  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-dvr 20112  df-drng 20187  df-lmod 20324  df-lss 20393  df-lvec 20564  df-oposet 37638  df-ol 37640  df-oml 37641  df-covers 37728  df-ats 37729  df-atl 37760  df-cvlat 37784  df-hlat 37813  df-llines 37961  df-lplanes 37962  df-lvols 37963  df-lines 37964  df-psubsp 37966  df-pmap 37967  df-padd 38259  df-lhyp 38451  df-laut 38452  df-ldil 38567  df-ltrn 38568  df-trl 38622  df-tgrp 39206  df-tendo 39218  df-edring 39220  df-dveca 39466  df-disoa 39492  df-dvech 39542  df-dib 39602
This theorem is referenced by:  dib2dim  39706  dih2dimbALTN  39708
  Copyright terms: Public domain W3C validator