Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diblsmopel Structured version   Visualization version   GIF version

Theorem diblsmopel 41170
Description: Membership in subspace sum for partial isomorphism B. (Contributed by NM, 21-Sep-2014.) (Revised by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
diblsmopel.b 𝐵 = (Base‘𝐾)
diblsmopel.l = (le‘𝐾)
diblsmopel.h 𝐻 = (LHyp‘𝐾)
diblsmopel.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
diblsmopel.o 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
diblsmopel.v 𝑉 = ((DVecA‘𝐾)‘𝑊)
diblsmopel.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
diblsmopel.q = (LSSum‘𝑉)
diblsmopel.p = (LSSum‘𝑈)
diblsmopel.j 𝐽 = ((DIsoA‘𝐾)‘𝑊)
diblsmopel.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
diblsmopel.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
diblsmopel.x (𝜑 → (𝑋𝐵𝑋 𝑊))
diblsmopel.y (𝜑 → (𝑌𝐵𝑌 𝑊))
Assertion
Ref Expression
diblsmopel (𝜑 → (⟨𝐹, 𝑆⟩ ∈ ((𝐼𝑋) (𝐼𝑌)) ↔ (𝐹 ∈ ((𝐽𝑋) (𝐽𝑌)) ∧ 𝑆 = 𝑂)))
Distinct variable groups:   𝐵,𝑓   𝑓,𝐻   𝑓,𝐾   𝑇,𝑓   𝑓,𝑊
Allowed substitution hints:   𝜑(𝑓)   (𝑓)   (𝑓)   𝑆(𝑓)   𝑈(𝑓)   𝐹(𝑓)   𝐼(𝑓)   𝐽(𝑓)   (𝑓)   𝑂(𝑓)   𝑉(𝑓)   𝑋(𝑓)   𝑌(𝑓)

Proof of Theorem diblsmopel
Dummy variables 𝑥 𝑤 𝑦 𝑧 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 diblsmopel.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 diblsmopel.x . . . 4 (𝜑 → (𝑋𝐵𝑋 𝑊))
3 diblsmopel.b . . . . 5 𝐵 = (Base‘𝐾)
4 diblsmopel.l . . . . 5 = (le‘𝐾)
5 diblsmopel.h . . . . 5 𝐻 = (LHyp‘𝐾)
6 diblsmopel.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
7 diblsmopel.i . . . . 5 𝐼 = ((DIsoB‘𝐾)‘𝑊)
8 eqid 2729 . . . . 5 (LSubSp‘𝑈) = (LSubSp‘𝑈)
93, 4, 5, 6, 7, 8diblss 41169 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) ∈ (LSubSp‘𝑈))
101, 2, 9syl2anc 584 . . 3 (𝜑 → (𝐼𝑋) ∈ (LSubSp‘𝑈))
11 diblsmopel.y . . . 4 (𝜑 → (𝑌𝐵𝑌 𝑊))
123, 4, 5, 6, 7, 8diblss 41169 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼𝑌) ∈ (LSubSp‘𝑈))
131, 11, 12syl2anc 584 . . 3 (𝜑 → (𝐼𝑌) ∈ (LSubSp‘𝑈))
14 eqid 2729 . . . 4 (+g𝑈) = (+g𝑈)
15 diblsmopel.p . . . 4 = (LSSum‘𝑈)
165, 6, 14, 8, 15dvhopellsm 41116 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐼𝑋) ∈ (LSubSp‘𝑈) ∧ (𝐼𝑌) ∈ (LSubSp‘𝑈)) → (⟨𝐹, 𝑆⟩ ∈ ((𝐼𝑋) (𝐼𝑌)) ↔ ∃𝑥𝑦𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩))))
171, 10, 13, 16syl3anc 1373 . 2 (𝜑 → (⟨𝐹, 𝑆⟩ ∈ ((𝐼𝑋) (𝐼𝑌)) ↔ ∃𝑥𝑦𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩))))
18 excom 2163 . . . 4 (∃𝑦𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩)) ↔ ∃𝑧𝑦𝑤((⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩)))
19 diblsmopel.t . . . . . . . . . . . . 13 𝑇 = ((LTrn‘𝐾)‘𝑊)
20 diblsmopel.o . . . . . . . . . . . . 13 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
21 diblsmopel.j . . . . . . . . . . . . 13 𝐽 = ((DIsoA‘𝐾)‘𝑊)
223, 4, 5, 19, 20, 21, 7dibopelval2 41144 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ↔ (𝑥 ∈ (𝐽𝑋) ∧ 𝑦 = 𝑂)))
231, 2, 22syl2anc 584 . . . . . . . . . . 11 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ↔ (𝑥 ∈ (𝐽𝑋) ∧ 𝑦 = 𝑂)))
243, 4, 5, 19, 20, 21, 7dibopelval2 41144 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐵𝑌 𝑊)) → (⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌) ↔ (𝑧 ∈ (𝐽𝑌) ∧ 𝑤 = 𝑂)))
251, 11, 24syl2anc 584 . . . . . . . . . . 11 (𝜑 → (⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌) ↔ (𝑧 ∈ (𝐽𝑌) ∧ 𝑤 = 𝑂)))
2623, 25anbi12d 632 . . . . . . . . . 10 (𝜑 → ((⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌)) ↔ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑦 = 𝑂) ∧ (𝑧 ∈ (𝐽𝑌) ∧ 𝑤 = 𝑂))))
27 an4 656 . . . . . . . . . . 11 (((𝑥 ∈ (𝐽𝑋) ∧ 𝑦 = 𝑂) ∧ (𝑧 ∈ (𝐽𝑌) ∧ 𝑤 = 𝑂)) ↔ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ (𝑦 = 𝑂𝑤 = 𝑂)))
28 ancom 460 . . . . . . . . . . 11 (((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ (𝑦 = 𝑂𝑤 = 𝑂)) ↔ ((𝑦 = 𝑂𝑤 = 𝑂) ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))))
2927, 28bitri 275 . . . . . . . . . 10 (((𝑥 ∈ (𝐽𝑋) ∧ 𝑦 = 𝑂) ∧ (𝑧 ∈ (𝐽𝑌) ∧ 𝑤 = 𝑂)) ↔ ((𝑦 = 𝑂𝑤 = 𝑂) ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))))
3026, 29bitrdi 287 . . . . . . . . 9 (𝜑 → ((⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌)) ↔ ((𝑦 = 𝑂𝑤 = 𝑂) ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)))))
3130anbi1d 631 . . . . . . . 8 (𝜑 → (((⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩)) ↔ (((𝑦 = 𝑂𝑤 = 𝑂) ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩))))
32 anass 468 . . . . . . . . 9 ((((𝑦 = 𝑂𝑤 = 𝑂) ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩)) ↔ ((𝑦 = 𝑂𝑤 = 𝑂) ∧ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩))))
33 df-3an 1088 . . . . . . . . 9 ((𝑦 = 𝑂𝑤 = 𝑂 ∧ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩))) ↔ ((𝑦 = 𝑂𝑤 = 𝑂) ∧ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩))))
3432, 33bitr4i 278 . . . . . . . 8 ((((𝑦 = 𝑂𝑤 = 𝑂) ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩)) ↔ (𝑦 = 𝑂𝑤 = 𝑂 ∧ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩))))
3531, 34bitrdi 287 . . . . . . 7 (𝜑 → (((⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩)) ↔ (𝑦 = 𝑂𝑤 = 𝑂 ∧ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩)))))
36352exbidv 1924 . . . . . 6 (𝜑 → (∃𝑦𝑤((⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩)) ↔ ∃𝑦𝑤(𝑦 = 𝑂𝑤 = 𝑂 ∧ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩)))))
3719fvexi 6836 . . . . . . . . . 10 𝑇 ∈ V
3837mptex 7159 . . . . . . . . 9 (𝑓𝑇 ↦ ( I ↾ 𝐵)) ∈ V
3920, 38eqeltri 2824 . . . . . . . 8 𝑂 ∈ V
40 opeq2 4825 . . . . . . . . . . 11 (𝑦 = 𝑂 → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑂⟩)
4140oveq1d 7364 . . . . . . . . . 10 (𝑦 = 𝑂 → (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑤⟩))
4241eqeq2d 2740 . . . . . . . . 9 (𝑦 = 𝑂 → (⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩) ↔ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑤⟩)))
4342anbi2d 630 . . . . . . . 8 (𝑦 = 𝑂 → (((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩)) ↔ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑤⟩))))
44 opeq2 4825 . . . . . . . . . . 11 (𝑤 = 𝑂 → ⟨𝑧, 𝑤⟩ = ⟨𝑧, 𝑂⟩)
4544oveq2d 7365 . . . . . . . . . 10 (𝑤 = 𝑂 → (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑂⟩))
4645eqeq2d 2740 . . . . . . . . 9 (𝑤 = 𝑂 → (⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑤⟩) ↔ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑂⟩)))
4746anbi2d 630 . . . . . . . 8 (𝑤 = 𝑂 → (((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑤⟩)) ↔ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑂⟩))))
4839, 39, 43, 47ceqsex2v 3491 . . . . . . 7 (∃𝑦𝑤(𝑦 = 𝑂𝑤 = 𝑂 ∧ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩))) ↔ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑂⟩)))
491adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
502adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (𝑋𝐵𝑋 𝑊))
51 simprl 770 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → 𝑥 ∈ (𝐽𝑋))
523, 4, 5, 19, 21diael 41042 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑥 ∈ (𝐽𝑋)) → 𝑥𝑇)
5349, 50, 51, 52syl3anc 1373 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → 𝑥𝑇)
54 eqid 2729 . . . . . . . . . . . . 13 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
553, 5, 19, 54, 20tendo0cl 40789 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂 ∈ ((TEndo‘𝐾)‘𝑊))
5649, 55syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → 𝑂 ∈ ((TEndo‘𝐾)‘𝑊))
5711adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (𝑌𝐵𝑌 𝑊))
58 simprr 772 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → 𝑧 ∈ (𝐽𝑌))
593, 4, 5, 19, 21diael 41042 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐵𝑌 𝑊) ∧ 𝑧 ∈ (𝐽𝑌)) → 𝑧𝑇)
6049, 57, 58, 59syl3anc 1373 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → 𝑧𝑇)
61 eqid 2729 . . . . . . . . . . . 12 (Scalar‘𝑈) = (Scalar‘𝑈)
62 eqid 2729 . . . . . . . . . . . 12 (+g‘(Scalar‘𝑈)) = (+g‘(Scalar‘𝑈))
635, 19, 54, 6, 61, 14, 62dvhopvadd 41092 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑂 ∈ ((TEndo‘𝐾)‘𝑊)) ∧ (𝑧𝑇𝑂 ∈ ((TEndo‘𝐾)‘𝑊))) → (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑂⟩) = ⟨(𝑥𝑧), (𝑂(+g‘(Scalar‘𝑈))𝑂)⟩)
6449, 53, 56, 60, 56, 63syl122anc 1381 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑂⟩) = ⟨(𝑥𝑧), (𝑂(+g‘(Scalar‘𝑈))𝑂)⟩)
6564eqeq2d 2740 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑂⟩) ↔ ⟨𝐹, 𝑆⟩ = ⟨(𝑥𝑧), (𝑂(+g‘(Scalar‘𝑈))𝑂)⟩))
66 vex 3440 . . . . . . . . . . . 12 𝑥 ∈ V
67 vex 3440 . . . . . . . . . . . 12 𝑧 ∈ V
6866, 67coex 7863 . . . . . . . . . . 11 (𝑥𝑧) ∈ V
69 ovex 7382 . . . . . . . . . . 11 (𝑂(+g‘(Scalar‘𝑈))𝑂) ∈ V
7068, 69opth2 5423 . . . . . . . . . 10 (⟨𝐹, 𝑆⟩ = ⟨(𝑥𝑧), (𝑂(+g‘(Scalar‘𝑈))𝑂)⟩ ↔ (𝐹 = (𝑥𝑧) ∧ 𝑆 = (𝑂(+g‘(Scalar‘𝑈))𝑂)))
71 diblsmopel.v . . . . . . . . . . . . . . 15 𝑉 = ((DVecA‘𝐾)‘𝑊)
72 eqid 2729 . . . . . . . . . . . . . . 15 (+g𝑉) = (+g𝑉)
735, 19, 71, 72dvavadd 41014 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑧𝑇)) → (𝑥(+g𝑉)𝑧) = (𝑥𝑧))
7449, 53, 60, 73syl12anc 836 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (𝑥(+g𝑉)𝑧) = (𝑥𝑧))
7574eqeq2d 2740 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (𝐹 = (𝑥(+g𝑉)𝑧) ↔ 𝐹 = (𝑥𝑧)))
7675bicomd 223 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (𝐹 = (𝑥𝑧) ↔ 𝐹 = (𝑥(+g𝑉)𝑧)))
77 eqid 2729 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓)))) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
785, 19, 54, 6, 61, 77, 62dvhfplusr 41083 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (+g‘(Scalar‘𝑈)) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓)))))
7949, 78syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (+g‘(Scalar‘𝑈)) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓)))))
8079oveqd 7366 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (𝑂(+g‘(Scalar‘𝑈))𝑂) = (𝑂(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))𝑂))
813, 5, 19, 54, 20, 77tendo0pl 40790 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑂 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑂(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))𝑂) = 𝑂)
8249, 56, 81syl2anc 584 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (𝑂(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))𝑂) = 𝑂)
8380, 82eqtrd 2764 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (𝑂(+g‘(Scalar‘𝑈))𝑂) = 𝑂)
8483eqeq2d 2740 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (𝑆 = (𝑂(+g‘(Scalar‘𝑈))𝑂) ↔ 𝑆 = 𝑂))
8576, 84anbi12d 632 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → ((𝐹 = (𝑥𝑧) ∧ 𝑆 = (𝑂(+g‘(Scalar‘𝑈))𝑂)) ↔ (𝐹 = (𝑥(+g𝑉)𝑧) ∧ 𝑆 = 𝑂)))
8670, 85bitrid 283 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (⟨𝐹, 𝑆⟩ = ⟨(𝑥𝑧), (𝑂(+g‘(Scalar‘𝑈))𝑂)⟩ ↔ (𝐹 = (𝑥(+g𝑉)𝑧) ∧ 𝑆 = 𝑂)))
8765, 86bitrd 279 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑂⟩) ↔ (𝐹 = (𝑥(+g𝑉)𝑧) ∧ 𝑆 = 𝑂)))
8887pm5.32da 579 . . . . . . 7 (𝜑 → (((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑂⟩)) ↔ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ (𝐹 = (𝑥(+g𝑉)𝑧) ∧ 𝑆 = 𝑂))))
8948, 88bitrid 283 . . . . . 6 (𝜑 → (∃𝑦𝑤(𝑦 = 𝑂𝑤 = 𝑂 ∧ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩))) ↔ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ (𝐹 = (𝑥(+g𝑉)𝑧) ∧ 𝑆 = 𝑂))))
9036, 89bitrd 279 . . . . 5 (𝜑 → (∃𝑦𝑤((⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩)) ↔ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ (𝐹 = (𝑥(+g𝑉)𝑧) ∧ 𝑆 = 𝑂))))
9190exbidv 1921 . . . 4 (𝜑 → (∃𝑧𝑦𝑤((⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩)) ↔ ∃𝑧((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ (𝐹 = (𝑥(+g𝑉)𝑧) ∧ 𝑆 = 𝑂))))
9218, 91bitrid 283 . . 3 (𝜑 → (∃𝑦𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩)) ↔ ∃𝑧((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ (𝐹 = (𝑥(+g𝑉)𝑧) ∧ 𝑆 = 𝑂))))
9392exbidv 1921 . 2 (𝜑 → (∃𝑥𝑦𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩)) ↔ ∃𝑥𝑧((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ (𝐹 = (𝑥(+g𝑉)𝑧) ∧ 𝑆 = 𝑂))))
94 anass 468 . . . . . 6 ((((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ 𝐹 = (𝑥(+g𝑉)𝑧)) ∧ 𝑆 = 𝑂) ↔ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ (𝐹 = (𝑥(+g𝑉)𝑧) ∧ 𝑆 = 𝑂)))
9594bicomi 224 . . . . 5 (((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ (𝐹 = (𝑥(+g𝑉)𝑧) ∧ 𝑆 = 𝑂)) ↔ (((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ 𝐹 = (𝑥(+g𝑉)𝑧)) ∧ 𝑆 = 𝑂))
96952exbii 1849 . . . 4 (∃𝑥𝑧((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ (𝐹 = (𝑥(+g𝑉)𝑧) ∧ 𝑆 = 𝑂)) ↔ ∃𝑥𝑧(((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ 𝐹 = (𝑥(+g𝑉)𝑧)) ∧ 𝑆 = 𝑂))
97 19.41vv 1950 . . . 4 (∃𝑥𝑧(((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ 𝐹 = (𝑥(+g𝑉)𝑧)) ∧ 𝑆 = 𝑂) ↔ (∃𝑥𝑧((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ 𝐹 = (𝑥(+g𝑉)𝑧)) ∧ 𝑆 = 𝑂))
9896, 97bitri 275 . . 3 (∃𝑥𝑧((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ (𝐹 = (𝑥(+g𝑉)𝑧) ∧ 𝑆 = 𝑂)) ↔ (∃𝑥𝑧((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ 𝐹 = (𝑥(+g𝑉)𝑧)) ∧ 𝑆 = 𝑂))
995, 71dvalvec 41025 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑉 ∈ LVec)
100 lveclmod 21010 . . . . . . . . 9 (𝑉 ∈ LVec → 𝑉 ∈ LMod)
101 eqid 2729 . . . . . . . . . 10 (LSubSp‘𝑉) = (LSubSp‘𝑉)
102101lsssssubg 20861 . . . . . . . . 9 (𝑉 ∈ LMod → (LSubSp‘𝑉) ⊆ (SubGrp‘𝑉))
1031, 99, 100, 1024syl 19 . . . . . . . 8 (𝜑 → (LSubSp‘𝑉) ⊆ (SubGrp‘𝑉))
1043, 4, 5, 71, 21, 101dialss 41045 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐽𝑋) ∈ (LSubSp‘𝑉))
1051, 2, 104syl2anc 584 . . . . . . . 8 (𝜑 → (𝐽𝑋) ∈ (LSubSp‘𝑉))
106103, 105sseldd 3936 . . . . . . 7 (𝜑 → (𝐽𝑋) ∈ (SubGrp‘𝑉))
1073, 4, 5, 71, 21, 101dialss 41045 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐽𝑌) ∈ (LSubSp‘𝑉))
1081, 11, 107syl2anc 584 . . . . . . . 8 (𝜑 → (𝐽𝑌) ∈ (LSubSp‘𝑉))
109103, 108sseldd 3936 . . . . . . 7 (𝜑 → (𝐽𝑌) ∈ (SubGrp‘𝑉))
110 diblsmopel.q . . . . . . . 8 = (LSSum‘𝑉)
11172, 110lsmelval 19528 . . . . . . 7 (((𝐽𝑋) ∈ (SubGrp‘𝑉) ∧ (𝐽𝑌) ∈ (SubGrp‘𝑉)) → (𝐹 ∈ ((𝐽𝑋) (𝐽𝑌)) ↔ ∃𝑥 ∈ (𝐽𝑋)∃𝑧 ∈ (𝐽𝑌)𝐹 = (𝑥(+g𝑉)𝑧)))
112106, 109, 111syl2anc 584 . . . . . 6 (𝜑 → (𝐹 ∈ ((𝐽𝑋) (𝐽𝑌)) ↔ ∃𝑥 ∈ (𝐽𝑋)∃𝑧 ∈ (𝐽𝑌)𝐹 = (𝑥(+g𝑉)𝑧)))
113 r2ex 3166 . . . . . 6 (∃𝑥 ∈ (𝐽𝑋)∃𝑧 ∈ (𝐽𝑌)𝐹 = (𝑥(+g𝑉)𝑧) ↔ ∃𝑥𝑧((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ 𝐹 = (𝑥(+g𝑉)𝑧)))
114112, 113bitrdi 287 . . . . 5 (𝜑 → (𝐹 ∈ ((𝐽𝑋) (𝐽𝑌)) ↔ ∃𝑥𝑧((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ 𝐹 = (𝑥(+g𝑉)𝑧))))
115114anbi1d 631 . . . 4 (𝜑 → ((𝐹 ∈ ((𝐽𝑋) (𝐽𝑌)) ∧ 𝑆 = 𝑂) ↔ (∃𝑥𝑧((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ 𝐹 = (𝑥(+g𝑉)𝑧)) ∧ 𝑆 = 𝑂)))
116115bicomd 223 . . 3 (𝜑 → ((∃𝑥𝑧((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ 𝐹 = (𝑥(+g𝑉)𝑧)) ∧ 𝑆 = 𝑂) ↔ (𝐹 ∈ ((𝐽𝑋) (𝐽𝑌)) ∧ 𝑆 = 𝑂)))
11798, 116bitrid 283 . 2 (𝜑 → (∃𝑥𝑧((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ (𝐹 = (𝑥(+g𝑉)𝑧) ∧ 𝑆 = 𝑂)) ↔ (𝐹 ∈ ((𝐽𝑋) (𝐽𝑌)) ∧ 𝑆 = 𝑂)))
11817, 93, 1173bitrd 305 1 (𝜑 → (⟨𝐹, 𝑆⟩ ∈ ((𝐼𝑋) (𝐼𝑌)) ↔ (𝐹 ∈ ((𝐽𝑋) (𝐽𝑌)) ∧ 𝑆 = 𝑂)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wrex 3053  Vcvv 3436  wss 3903  cop 4583   class class class wbr 5092  cmpt 5173   I cid 5513  cres 5621  ccom 5623  cfv 6482  (class class class)co 7349  cmpo 7351  Basecbs 17120  +gcplusg 17161  Scalarcsca 17164  lecple 17168  SubGrpcsubg 18999  LSSumclsm 19513  LModclmod 20763  LSubSpclss 20834  LVecclvec 21006  HLchlt 39349  LHypclh 39983  LTrncltrn 40100  TEndoctendo 40751  DVecAcdveca 41001  DIsoAcdia 41027  DVecHcdvh 41077  DIsoBcdib 41137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-riotaBAD 38952
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-tpos 8159  df-undef 8206  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-0g 17345  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-minusg 18816  df-sbg 18817  df-subg 19002  df-lsm 19515  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-dvr 20286  df-drng 20616  df-lmod 20765  df-lss 20835  df-lvec 21007  df-oposet 39175  df-ol 39177  df-oml 39178  df-covers 39265  df-ats 39266  df-atl 39297  df-cvlat 39321  df-hlat 39350  df-llines 39497  df-lplanes 39498  df-lvols 39499  df-lines 39500  df-psubsp 39502  df-pmap 39503  df-padd 39795  df-lhyp 39987  df-laut 39988  df-ldil 40103  df-ltrn 40104  df-trl 40158  df-tgrp 40742  df-tendo 40754  df-edring 40756  df-dveca 41002  df-disoa 41028  df-dvech 41078  df-dib 41138
This theorem is referenced by:  dib2dim  41242  dih2dimbALTN  41244
  Copyright terms: Public domain W3C validator