Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diblsmopel Structured version   Visualization version   GIF version

Theorem diblsmopel 41190
Description: Membership in subspace sum for partial isomorphism B. (Contributed by NM, 21-Sep-2014.) (Revised by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
diblsmopel.b 𝐵 = (Base‘𝐾)
diblsmopel.l = (le‘𝐾)
diblsmopel.h 𝐻 = (LHyp‘𝐾)
diblsmopel.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
diblsmopel.o 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
diblsmopel.v 𝑉 = ((DVecA‘𝐾)‘𝑊)
diblsmopel.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
diblsmopel.q = (LSSum‘𝑉)
diblsmopel.p = (LSSum‘𝑈)
diblsmopel.j 𝐽 = ((DIsoA‘𝐾)‘𝑊)
diblsmopel.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
diblsmopel.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
diblsmopel.x (𝜑 → (𝑋𝐵𝑋 𝑊))
diblsmopel.y (𝜑 → (𝑌𝐵𝑌 𝑊))
Assertion
Ref Expression
diblsmopel (𝜑 → (⟨𝐹, 𝑆⟩ ∈ ((𝐼𝑋) (𝐼𝑌)) ↔ (𝐹 ∈ ((𝐽𝑋) (𝐽𝑌)) ∧ 𝑆 = 𝑂)))
Distinct variable groups:   𝐵,𝑓   𝑓,𝐻   𝑓,𝐾   𝑇,𝑓   𝑓,𝑊
Allowed substitution hints:   𝜑(𝑓)   (𝑓)   (𝑓)   𝑆(𝑓)   𝑈(𝑓)   𝐹(𝑓)   𝐼(𝑓)   𝐽(𝑓)   (𝑓)   𝑂(𝑓)   𝑉(𝑓)   𝑋(𝑓)   𝑌(𝑓)

Proof of Theorem diblsmopel
Dummy variables 𝑥 𝑤 𝑦 𝑧 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 diblsmopel.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 diblsmopel.x . . . 4 (𝜑 → (𝑋𝐵𝑋 𝑊))
3 diblsmopel.b . . . . 5 𝐵 = (Base‘𝐾)
4 diblsmopel.l . . . . 5 = (le‘𝐾)
5 diblsmopel.h . . . . 5 𝐻 = (LHyp‘𝐾)
6 diblsmopel.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
7 diblsmopel.i . . . . 5 𝐼 = ((DIsoB‘𝐾)‘𝑊)
8 eqid 2735 . . . . 5 (LSubSp‘𝑈) = (LSubSp‘𝑈)
93, 4, 5, 6, 7, 8diblss 41189 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) ∈ (LSubSp‘𝑈))
101, 2, 9syl2anc 584 . . 3 (𝜑 → (𝐼𝑋) ∈ (LSubSp‘𝑈))
11 diblsmopel.y . . . 4 (𝜑 → (𝑌𝐵𝑌 𝑊))
123, 4, 5, 6, 7, 8diblss 41189 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼𝑌) ∈ (LSubSp‘𝑈))
131, 11, 12syl2anc 584 . . 3 (𝜑 → (𝐼𝑌) ∈ (LSubSp‘𝑈))
14 eqid 2735 . . . 4 (+g𝑈) = (+g𝑈)
15 diblsmopel.p . . . 4 = (LSSum‘𝑈)
165, 6, 14, 8, 15dvhopellsm 41136 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐼𝑋) ∈ (LSubSp‘𝑈) ∧ (𝐼𝑌) ∈ (LSubSp‘𝑈)) → (⟨𝐹, 𝑆⟩ ∈ ((𝐼𝑋) (𝐼𝑌)) ↔ ∃𝑥𝑦𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩))))
171, 10, 13, 16syl3anc 1373 . 2 (𝜑 → (⟨𝐹, 𝑆⟩ ∈ ((𝐼𝑋) (𝐼𝑌)) ↔ ∃𝑥𝑦𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩))))
18 excom 2162 . . . 4 (∃𝑦𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩)) ↔ ∃𝑧𝑦𝑤((⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩)))
19 diblsmopel.t . . . . . . . . . . . . 13 𝑇 = ((LTrn‘𝐾)‘𝑊)
20 diblsmopel.o . . . . . . . . . . . . 13 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
21 diblsmopel.j . . . . . . . . . . . . 13 𝐽 = ((DIsoA‘𝐾)‘𝑊)
223, 4, 5, 19, 20, 21, 7dibopelval2 41164 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ↔ (𝑥 ∈ (𝐽𝑋) ∧ 𝑦 = 𝑂)))
231, 2, 22syl2anc 584 . . . . . . . . . . 11 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ↔ (𝑥 ∈ (𝐽𝑋) ∧ 𝑦 = 𝑂)))
243, 4, 5, 19, 20, 21, 7dibopelval2 41164 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐵𝑌 𝑊)) → (⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌) ↔ (𝑧 ∈ (𝐽𝑌) ∧ 𝑤 = 𝑂)))
251, 11, 24syl2anc 584 . . . . . . . . . . 11 (𝜑 → (⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌) ↔ (𝑧 ∈ (𝐽𝑌) ∧ 𝑤 = 𝑂)))
2623, 25anbi12d 632 . . . . . . . . . 10 (𝜑 → ((⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌)) ↔ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑦 = 𝑂) ∧ (𝑧 ∈ (𝐽𝑌) ∧ 𝑤 = 𝑂))))
27 an4 656 . . . . . . . . . . 11 (((𝑥 ∈ (𝐽𝑋) ∧ 𝑦 = 𝑂) ∧ (𝑧 ∈ (𝐽𝑌) ∧ 𝑤 = 𝑂)) ↔ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ (𝑦 = 𝑂𝑤 = 𝑂)))
28 ancom 460 . . . . . . . . . . 11 (((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ (𝑦 = 𝑂𝑤 = 𝑂)) ↔ ((𝑦 = 𝑂𝑤 = 𝑂) ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))))
2927, 28bitri 275 . . . . . . . . . 10 (((𝑥 ∈ (𝐽𝑋) ∧ 𝑦 = 𝑂) ∧ (𝑧 ∈ (𝐽𝑌) ∧ 𝑤 = 𝑂)) ↔ ((𝑦 = 𝑂𝑤 = 𝑂) ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))))
3026, 29bitrdi 287 . . . . . . . . 9 (𝜑 → ((⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌)) ↔ ((𝑦 = 𝑂𝑤 = 𝑂) ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)))))
3130anbi1d 631 . . . . . . . 8 (𝜑 → (((⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩)) ↔ (((𝑦 = 𝑂𝑤 = 𝑂) ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩))))
32 anass 468 . . . . . . . . 9 ((((𝑦 = 𝑂𝑤 = 𝑂) ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩)) ↔ ((𝑦 = 𝑂𝑤 = 𝑂) ∧ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩))))
33 df-3an 1088 . . . . . . . . 9 ((𝑦 = 𝑂𝑤 = 𝑂 ∧ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩))) ↔ ((𝑦 = 𝑂𝑤 = 𝑂) ∧ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩))))
3432, 33bitr4i 278 . . . . . . . 8 ((((𝑦 = 𝑂𝑤 = 𝑂) ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩)) ↔ (𝑦 = 𝑂𝑤 = 𝑂 ∧ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩))))
3531, 34bitrdi 287 . . . . . . 7 (𝜑 → (((⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩)) ↔ (𝑦 = 𝑂𝑤 = 𝑂 ∧ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩)))))
36352exbidv 1924 . . . . . 6 (𝜑 → (∃𝑦𝑤((⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩)) ↔ ∃𝑦𝑤(𝑦 = 𝑂𝑤 = 𝑂 ∧ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩)))))
3719fvexi 6890 . . . . . . . . . 10 𝑇 ∈ V
3837mptex 7215 . . . . . . . . 9 (𝑓𝑇 ↦ ( I ↾ 𝐵)) ∈ V
3920, 38eqeltri 2830 . . . . . . . 8 𝑂 ∈ V
40 opeq2 4850 . . . . . . . . . . 11 (𝑦 = 𝑂 → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑂⟩)
4140oveq1d 7420 . . . . . . . . . 10 (𝑦 = 𝑂 → (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑤⟩))
4241eqeq2d 2746 . . . . . . . . 9 (𝑦 = 𝑂 → (⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩) ↔ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑤⟩)))
4342anbi2d 630 . . . . . . . 8 (𝑦 = 𝑂 → (((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩)) ↔ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑤⟩))))
44 opeq2 4850 . . . . . . . . . . 11 (𝑤 = 𝑂 → ⟨𝑧, 𝑤⟩ = ⟨𝑧, 𝑂⟩)
4544oveq2d 7421 . . . . . . . . . 10 (𝑤 = 𝑂 → (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑂⟩))
4645eqeq2d 2746 . . . . . . . . 9 (𝑤 = 𝑂 → (⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑤⟩) ↔ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑂⟩)))
4746anbi2d 630 . . . . . . . 8 (𝑤 = 𝑂 → (((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑤⟩)) ↔ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑂⟩))))
4839, 39, 43, 47ceqsex2v 3515 . . . . . . 7 (∃𝑦𝑤(𝑦 = 𝑂𝑤 = 𝑂 ∧ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩))) ↔ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑂⟩)))
491adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
502adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (𝑋𝐵𝑋 𝑊))
51 simprl 770 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → 𝑥 ∈ (𝐽𝑋))
523, 4, 5, 19, 21diael 41062 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑥 ∈ (𝐽𝑋)) → 𝑥𝑇)
5349, 50, 51, 52syl3anc 1373 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → 𝑥𝑇)
54 eqid 2735 . . . . . . . . . . . . 13 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
553, 5, 19, 54, 20tendo0cl 40809 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂 ∈ ((TEndo‘𝐾)‘𝑊))
5649, 55syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → 𝑂 ∈ ((TEndo‘𝐾)‘𝑊))
5711adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (𝑌𝐵𝑌 𝑊))
58 simprr 772 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → 𝑧 ∈ (𝐽𝑌))
593, 4, 5, 19, 21diael 41062 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐵𝑌 𝑊) ∧ 𝑧 ∈ (𝐽𝑌)) → 𝑧𝑇)
6049, 57, 58, 59syl3anc 1373 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → 𝑧𝑇)
61 eqid 2735 . . . . . . . . . . . 12 (Scalar‘𝑈) = (Scalar‘𝑈)
62 eqid 2735 . . . . . . . . . . . 12 (+g‘(Scalar‘𝑈)) = (+g‘(Scalar‘𝑈))
635, 19, 54, 6, 61, 14, 62dvhopvadd 41112 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑂 ∈ ((TEndo‘𝐾)‘𝑊)) ∧ (𝑧𝑇𝑂 ∈ ((TEndo‘𝐾)‘𝑊))) → (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑂⟩) = ⟨(𝑥𝑧), (𝑂(+g‘(Scalar‘𝑈))𝑂)⟩)
6449, 53, 56, 60, 56, 63syl122anc 1381 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑂⟩) = ⟨(𝑥𝑧), (𝑂(+g‘(Scalar‘𝑈))𝑂)⟩)
6564eqeq2d 2746 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑂⟩) ↔ ⟨𝐹, 𝑆⟩ = ⟨(𝑥𝑧), (𝑂(+g‘(Scalar‘𝑈))𝑂)⟩))
66 vex 3463 . . . . . . . . . . . 12 𝑥 ∈ V
67 vex 3463 . . . . . . . . . . . 12 𝑧 ∈ V
6866, 67coex 7926 . . . . . . . . . . 11 (𝑥𝑧) ∈ V
69 ovex 7438 . . . . . . . . . . 11 (𝑂(+g‘(Scalar‘𝑈))𝑂) ∈ V
7068, 69opth2 5455 . . . . . . . . . 10 (⟨𝐹, 𝑆⟩ = ⟨(𝑥𝑧), (𝑂(+g‘(Scalar‘𝑈))𝑂)⟩ ↔ (𝐹 = (𝑥𝑧) ∧ 𝑆 = (𝑂(+g‘(Scalar‘𝑈))𝑂)))
71 diblsmopel.v . . . . . . . . . . . . . . 15 𝑉 = ((DVecA‘𝐾)‘𝑊)
72 eqid 2735 . . . . . . . . . . . . . . 15 (+g𝑉) = (+g𝑉)
735, 19, 71, 72dvavadd 41034 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑧𝑇)) → (𝑥(+g𝑉)𝑧) = (𝑥𝑧))
7449, 53, 60, 73syl12anc 836 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (𝑥(+g𝑉)𝑧) = (𝑥𝑧))
7574eqeq2d 2746 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (𝐹 = (𝑥(+g𝑉)𝑧) ↔ 𝐹 = (𝑥𝑧)))
7675bicomd 223 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (𝐹 = (𝑥𝑧) ↔ 𝐹 = (𝑥(+g𝑉)𝑧)))
77 eqid 2735 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓)))) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
785, 19, 54, 6, 61, 77, 62dvhfplusr 41103 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (+g‘(Scalar‘𝑈)) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓)))))
7949, 78syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (+g‘(Scalar‘𝑈)) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓)))))
8079oveqd 7422 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (𝑂(+g‘(Scalar‘𝑈))𝑂) = (𝑂(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))𝑂))
813, 5, 19, 54, 20, 77tendo0pl 40810 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑂 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑂(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))𝑂) = 𝑂)
8249, 56, 81syl2anc 584 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (𝑂(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))𝑂) = 𝑂)
8380, 82eqtrd 2770 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (𝑂(+g‘(Scalar‘𝑈))𝑂) = 𝑂)
8483eqeq2d 2746 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (𝑆 = (𝑂(+g‘(Scalar‘𝑈))𝑂) ↔ 𝑆 = 𝑂))
8576, 84anbi12d 632 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → ((𝐹 = (𝑥𝑧) ∧ 𝑆 = (𝑂(+g‘(Scalar‘𝑈))𝑂)) ↔ (𝐹 = (𝑥(+g𝑉)𝑧) ∧ 𝑆 = 𝑂)))
8670, 85bitrid 283 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (⟨𝐹, 𝑆⟩ = ⟨(𝑥𝑧), (𝑂(+g‘(Scalar‘𝑈))𝑂)⟩ ↔ (𝐹 = (𝑥(+g𝑉)𝑧) ∧ 𝑆 = 𝑂)))
8765, 86bitrd 279 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑂⟩) ↔ (𝐹 = (𝑥(+g𝑉)𝑧) ∧ 𝑆 = 𝑂)))
8887pm5.32da 579 . . . . . . 7 (𝜑 → (((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑂⟩)) ↔ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ (𝐹 = (𝑥(+g𝑉)𝑧) ∧ 𝑆 = 𝑂))))
8948, 88bitrid 283 . . . . . 6 (𝜑 → (∃𝑦𝑤(𝑦 = 𝑂𝑤 = 𝑂 ∧ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩))) ↔ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ (𝐹 = (𝑥(+g𝑉)𝑧) ∧ 𝑆 = 𝑂))))
9036, 89bitrd 279 . . . . 5 (𝜑 → (∃𝑦𝑤((⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩)) ↔ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ (𝐹 = (𝑥(+g𝑉)𝑧) ∧ 𝑆 = 𝑂))))
9190exbidv 1921 . . . 4 (𝜑 → (∃𝑧𝑦𝑤((⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩)) ↔ ∃𝑧((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ (𝐹 = (𝑥(+g𝑉)𝑧) ∧ 𝑆 = 𝑂))))
9218, 91bitrid 283 . . 3 (𝜑 → (∃𝑦𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩)) ↔ ∃𝑧((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ (𝐹 = (𝑥(+g𝑉)𝑧) ∧ 𝑆 = 𝑂))))
9392exbidv 1921 . 2 (𝜑 → (∃𝑥𝑦𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩)) ↔ ∃𝑥𝑧((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ (𝐹 = (𝑥(+g𝑉)𝑧) ∧ 𝑆 = 𝑂))))
94 anass 468 . . . . . 6 ((((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ 𝐹 = (𝑥(+g𝑉)𝑧)) ∧ 𝑆 = 𝑂) ↔ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ (𝐹 = (𝑥(+g𝑉)𝑧) ∧ 𝑆 = 𝑂)))
9594bicomi 224 . . . . 5 (((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ (𝐹 = (𝑥(+g𝑉)𝑧) ∧ 𝑆 = 𝑂)) ↔ (((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ 𝐹 = (𝑥(+g𝑉)𝑧)) ∧ 𝑆 = 𝑂))
96952exbii 1849 . . . 4 (∃𝑥𝑧((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ (𝐹 = (𝑥(+g𝑉)𝑧) ∧ 𝑆 = 𝑂)) ↔ ∃𝑥𝑧(((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ 𝐹 = (𝑥(+g𝑉)𝑧)) ∧ 𝑆 = 𝑂))
97 19.41vv 1950 . . . 4 (∃𝑥𝑧(((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ 𝐹 = (𝑥(+g𝑉)𝑧)) ∧ 𝑆 = 𝑂) ↔ (∃𝑥𝑧((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ 𝐹 = (𝑥(+g𝑉)𝑧)) ∧ 𝑆 = 𝑂))
9896, 97bitri 275 . . 3 (∃𝑥𝑧((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ (𝐹 = (𝑥(+g𝑉)𝑧) ∧ 𝑆 = 𝑂)) ↔ (∃𝑥𝑧((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ 𝐹 = (𝑥(+g𝑉)𝑧)) ∧ 𝑆 = 𝑂))
995, 71dvalvec 41045 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑉 ∈ LVec)
100 lveclmod 21064 . . . . . . . . 9 (𝑉 ∈ LVec → 𝑉 ∈ LMod)
101 eqid 2735 . . . . . . . . . 10 (LSubSp‘𝑉) = (LSubSp‘𝑉)
102101lsssssubg 20915 . . . . . . . . 9 (𝑉 ∈ LMod → (LSubSp‘𝑉) ⊆ (SubGrp‘𝑉))
1031, 99, 100, 1024syl 19 . . . . . . . 8 (𝜑 → (LSubSp‘𝑉) ⊆ (SubGrp‘𝑉))
1043, 4, 5, 71, 21, 101dialss 41065 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐽𝑋) ∈ (LSubSp‘𝑉))
1051, 2, 104syl2anc 584 . . . . . . . 8 (𝜑 → (𝐽𝑋) ∈ (LSubSp‘𝑉))
106103, 105sseldd 3959 . . . . . . 7 (𝜑 → (𝐽𝑋) ∈ (SubGrp‘𝑉))
1073, 4, 5, 71, 21, 101dialss 41065 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐽𝑌) ∈ (LSubSp‘𝑉))
1081, 11, 107syl2anc 584 . . . . . . . 8 (𝜑 → (𝐽𝑌) ∈ (LSubSp‘𝑉))
109103, 108sseldd 3959 . . . . . . 7 (𝜑 → (𝐽𝑌) ∈ (SubGrp‘𝑉))
110 diblsmopel.q . . . . . . . 8 = (LSSum‘𝑉)
11172, 110lsmelval 19630 . . . . . . 7 (((𝐽𝑋) ∈ (SubGrp‘𝑉) ∧ (𝐽𝑌) ∈ (SubGrp‘𝑉)) → (𝐹 ∈ ((𝐽𝑋) (𝐽𝑌)) ↔ ∃𝑥 ∈ (𝐽𝑋)∃𝑧 ∈ (𝐽𝑌)𝐹 = (𝑥(+g𝑉)𝑧)))
112106, 109, 111syl2anc 584 . . . . . 6 (𝜑 → (𝐹 ∈ ((𝐽𝑋) (𝐽𝑌)) ↔ ∃𝑥 ∈ (𝐽𝑋)∃𝑧 ∈ (𝐽𝑌)𝐹 = (𝑥(+g𝑉)𝑧)))
113 r2ex 3181 . . . . . 6 (∃𝑥 ∈ (𝐽𝑋)∃𝑧 ∈ (𝐽𝑌)𝐹 = (𝑥(+g𝑉)𝑧) ↔ ∃𝑥𝑧((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ 𝐹 = (𝑥(+g𝑉)𝑧)))
114112, 113bitrdi 287 . . . . 5 (𝜑 → (𝐹 ∈ ((𝐽𝑋) (𝐽𝑌)) ↔ ∃𝑥𝑧((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ 𝐹 = (𝑥(+g𝑉)𝑧))))
115114anbi1d 631 . . . 4 (𝜑 → ((𝐹 ∈ ((𝐽𝑋) (𝐽𝑌)) ∧ 𝑆 = 𝑂) ↔ (∃𝑥𝑧((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ 𝐹 = (𝑥(+g𝑉)𝑧)) ∧ 𝑆 = 𝑂)))
116115bicomd 223 . . 3 (𝜑 → ((∃𝑥𝑧((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ 𝐹 = (𝑥(+g𝑉)𝑧)) ∧ 𝑆 = 𝑂) ↔ (𝐹 ∈ ((𝐽𝑋) (𝐽𝑌)) ∧ 𝑆 = 𝑂)))
11798, 116bitrid 283 . 2 (𝜑 → (∃𝑥𝑧((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ (𝐹 = (𝑥(+g𝑉)𝑧) ∧ 𝑆 = 𝑂)) ↔ (𝐹 ∈ ((𝐽𝑋) (𝐽𝑌)) ∧ 𝑆 = 𝑂)))
11817, 93, 1173bitrd 305 1 (𝜑 → (⟨𝐹, 𝑆⟩ ∈ ((𝐼𝑋) (𝐼𝑌)) ↔ (𝐹 ∈ ((𝐽𝑋) (𝐽𝑌)) ∧ 𝑆 = 𝑂)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2108  wrex 3060  Vcvv 3459  wss 3926  cop 4607   class class class wbr 5119  cmpt 5201   I cid 5547  cres 5656  ccom 5658  cfv 6531  (class class class)co 7405  cmpo 7407  Basecbs 17228  +gcplusg 17271  Scalarcsca 17274  lecple 17278  SubGrpcsubg 19103  LSSumclsm 19615  LModclmod 20817  LSubSpclss 20888  LVecclvec 21060  HLchlt 39368  LHypclh 40003  LTrncltrn 40120  TEndoctendo 40771  DVecAcdveca 41021  DIsoAcdia 41047  DVecHcdvh 41097  DIsoBcdib 41157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-riotaBAD 38971
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-tpos 8225  df-undef 8272  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-0g 17455  df-proset 18306  df-poset 18325  df-plt 18340  df-lub 18356  df-glb 18357  df-join 18358  df-meet 18359  df-p0 18435  df-p1 18436  df-lat 18442  df-clat 18509  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-minusg 18920  df-sbg 18921  df-subg 19106  df-lsm 19617  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-invr 20348  df-dvr 20361  df-drng 20691  df-lmod 20819  df-lss 20889  df-lvec 21061  df-oposet 39194  df-ol 39196  df-oml 39197  df-covers 39284  df-ats 39285  df-atl 39316  df-cvlat 39340  df-hlat 39369  df-llines 39517  df-lplanes 39518  df-lvols 39519  df-lines 39520  df-psubsp 39522  df-pmap 39523  df-padd 39815  df-lhyp 40007  df-laut 40008  df-ldil 40123  df-ltrn 40124  df-trl 40178  df-tgrp 40762  df-tendo 40774  df-edring 40776  df-dveca 41022  df-disoa 41048  df-dvech 41098  df-dib 41158
This theorem is referenced by:  dib2dim  41262  dih2dimbALTN  41264
  Copyright terms: Public domain W3C validator