Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diblsmopel Structured version   Visualization version   GIF version

Theorem diblsmopel 41269
Description: Membership in subspace sum for partial isomorphism B. (Contributed by NM, 21-Sep-2014.) (Revised by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
diblsmopel.b 𝐵 = (Base‘𝐾)
diblsmopel.l = (le‘𝐾)
diblsmopel.h 𝐻 = (LHyp‘𝐾)
diblsmopel.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
diblsmopel.o 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
diblsmopel.v 𝑉 = ((DVecA‘𝐾)‘𝑊)
diblsmopel.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
diblsmopel.q = (LSSum‘𝑉)
diblsmopel.p = (LSSum‘𝑈)
diblsmopel.j 𝐽 = ((DIsoA‘𝐾)‘𝑊)
diblsmopel.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
diblsmopel.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
diblsmopel.x (𝜑 → (𝑋𝐵𝑋 𝑊))
diblsmopel.y (𝜑 → (𝑌𝐵𝑌 𝑊))
Assertion
Ref Expression
diblsmopel (𝜑 → (⟨𝐹, 𝑆⟩ ∈ ((𝐼𝑋) (𝐼𝑌)) ↔ (𝐹 ∈ ((𝐽𝑋) (𝐽𝑌)) ∧ 𝑆 = 𝑂)))
Distinct variable groups:   𝐵,𝑓   𝑓,𝐻   𝑓,𝐾   𝑇,𝑓   𝑓,𝑊
Allowed substitution hints:   𝜑(𝑓)   (𝑓)   (𝑓)   𝑆(𝑓)   𝑈(𝑓)   𝐹(𝑓)   𝐼(𝑓)   𝐽(𝑓)   (𝑓)   𝑂(𝑓)   𝑉(𝑓)   𝑋(𝑓)   𝑌(𝑓)

Proof of Theorem diblsmopel
Dummy variables 𝑥 𝑤 𝑦 𝑧 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 diblsmopel.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 diblsmopel.x . . . 4 (𝜑 → (𝑋𝐵𝑋 𝑊))
3 diblsmopel.b . . . . 5 𝐵 = (Base‘𝐾)
4 diblsmopel.l . . . . 5 = (le‘𝐾)
5 diblsmopel.h . . . . 5 𝐻 = (LHyp‘𝐾)
6 diblsmopel.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
7 diblsmopel.i . . . . 5 𝐼 = ((DIsoB‘𝐾)‘𝑊)
8 eqid 2731 . . . . 5 (LSubSp‘𝑈) = (LSubSp‘𝑈)
93, 4, 5, 6, 7, 8diblss 41268 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) ∈ (LSubSp‘𝑈))
101, 2, 9syl2anc 584 . . 3 (𝜑 → (𝐼𝑋) ∈ (LSubSp‘𝑈))
11 diblsmopel.y . . . 4 (𝜑 → (𝑌𝐵𝑌 𝑊))
123, 4, 5, 6, 7, 8diblss 41268 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼𝑌) ∈ (LSubSp‘𝑈))
131, 11, 12syl2anc 584 . . 3 (𝜑 → (𝐼𝑌) ∈ (LSubSp‘𝑈))
14 eqid 2731 . . . 4 (+g𝑈) = (+g𝑈)
15 diblsmopel.p . . . 4 = (LSSum‘𝑈)
165, 6, 14, 8, 15dvhopellsm 41215 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐼𝑋) ∈ (LSubSp‘𝑈) ∧ (𝐼𝑌) ∈ (LSubSp‘𝑈)) → (⟨𝐹, 𝑆⟩ ∈ ((𝐼𝑋) (𝐼𝑌)) ↔ ∃𝑥𝑦𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩))))
171, 10, 13, 16syl3anc 1373 . 2 (𝜑 → (⟨𝐹, 𝑆⟩ ∈ ((𝐼𝑋) (𝐼𝑌)) ↔ ∃𝑥𝑦𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩))))
18 excom 2165 . . . 4 (∃𝑦𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩)) ↔ ∃𝑧𝑦𝑤((⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩)))
19 diblsmopel.t . . . . . . . . . . . . 13 𝑇 = ((LTrn‘𝐾)‘𝑊)
20 diblsmopel.o . . . . . . . . . . . . 13 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
21 diblsmopel.j . . . . . . . . . . . . 13 𝐽 = ((DIsoA‘𝐾)‘𝑊)
223, 4, 5, 19, 20, 21, 7dibopelval2 41243 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ↔ (𝑥 ∈ (𝐽𝑋) ∧ 𝑦 = 𝑂)))
231, 2, 22syl2anc 584 . . . . . . . . . . 11 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ↔ (𝑥 ∈ (𝐽𝑋) ∧ 𝑦 = 𝑂)))
243, 4, 5, 19, 20, 21, 7dibopelval2 41243 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐵𝑌 𝑊)) → (⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌) ↔ (𝑧 ∈ (𝐽𝑌) ∧ 𝑤 = 𝑂)))
251, 11, 24syl2anc 584 . . . . . . . . . . 11 (𝜑 → (⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌) ↔ (𝑧 ∈ (𝐽𝑌) ∧ 𝑤 = 𝑂)))
2623, 25anbi12d 632 . . . . . . . . . 10 (𝜑 → ((⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌)) ↔ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑦 = 𝑂) ∧ (𝑧 ∈ (𝐽𝑌) ∧ 𝑤 = 𝑂))))
27 an4 656 . . . . . . . . . . 11 (((𝑥 ∈ (𝐽𝑋) ∧ 𝑦 = 𝑂) ∧ (𝑧 ∈ (𝐽𝑌) ∧ 𝑤 = 𝑂)) ↔ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ (𝑦 = 𝑂𝑤 = 𝑂)))
28 ancom 460 . . . . . . . . . . 11 (((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ (𝑦 = 𝑂𝑤 = 𝑂)) ↔ ((𝑦 = 𝑂𝑤 = 𝑂) ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))))
2927, 28bitri 275 . . . . . . . . . 10 (((𝑥 ∈ (𝐽𝑋) ∧ 𝑦 = 𝑂) ∧ (𝑧 ∈ (𝐽𝑌) ∧ 𝑤 = 𝑂)) ↔ ((𝑦 = 𝑂𝑤 = 𝑂) ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))))
3026, 29bitrdi 287 . . . . . . . . 9 (𝜑 → ((⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌)) ↔ ((𝑦 = 𝑂𝑤 = 𝑂) ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)))))
3130anbi1d 631 . . . . . . . 8 (𝜑 → (((⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩)) ↔ (((𝑦 = 𝑂𝑤 = 𝑂) ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩))))
32 anass 468 . . . . . . . . 9 ((((𝑦 = 𝑂𝑤 = 𝑂) ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩)) ↔ ((𝑦 = 𝑂𝑤 = 𝑂) ∧ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩))))
33 df-3an 1088 . . . . . . . . 9 ((𝑦 = 𝑂𝑤 = 𝑂 ∧ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩))) ↔ ((𝑦 = 𝑂𝑤 = 𝑂) ∧ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩))))
3432, 33bitr4i 278 . . . . . . . 8 ((((𝑦 = 𝑂𝑤 = 𝑂) ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩)) ↔ (𝑦 = 𝑂𝑤 = 𝑂 ∧ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩))))
3531, 34bitrdi 287 . . . . . . 7 (𝜑 → (((⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩)) ↔ (𝑦 = 𝑂𝑤 = 𝑂 ∧ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩)))))
36352exbidv 1925 . . . . . 6 (𝜑 → (∃𝑦𝑤((⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩)) ↔ ∃𝑦𝑤(𝑦 = 𝑂𝑤 = 𝑂 ∧ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩)))))
3719fvexi 6836 . . . . . . . . . 10 𝑇 ∈ V
3837mptex 7157 . . . . . . . . 9 (𝑓𝑇 ↦ ( I ↾ 𝐵)) ∈ V
3920, 38eqeltri 2827 . . . . . . . 8 𝑂 ∈ V
40 opeq2 4823 . . . . . . . . . . 11 (𝑦 = 𝑂 → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑂⟩)
4140oveq1d 7361 . . . . . . . . . 10 (𝑦 = 𝑂 → (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑤⟩))
4241eqeq2d 2742 . . . . . . . . 9 (𝑦 = 𝑂 → (⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩) ↔ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑤⟩)))
4342anbi2d 630 . . . . . . . 8 (𝑦 = 𝑂 → (((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩)) ↔ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑤⟩))))
44 opeq2 4823 . . . . . . . . . . 11 (𝑤 = 𝑂 → ⟨𝑧, 𝑤⟩ = ⟨𝑧, 𝑂⟩)
4544oveq2d 7362 . . . . . . . . . 10 (𝑤 = 𝑂 → (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑤⟩) = (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑂⟩))
4645eqeq2d 2742 . . . . . . . . 9 (𝑤 = 𝑂 → (⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑤⟩) ↔ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑂⟩)))
4746anbi2d 630 . . . . . . . 8 (𝑤 = 𝑂 → (((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑤⟩)) ↔ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑂⟩))))
4839, 39, 43, 47ceqsex2v 3490 . . . . . . 7 (∃𝑦𝑤(𝑦 = 𝑂𝑤 = 𝑂 ∧ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩))) ↔ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑂⟩)))
491adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
502adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (𝑋𝐵𝑋 𝑊))
51 simprl 770 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → 𝑥 ∈ (𝐽𝑋))
523, 4, 5, 19, 21diael 41141 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑥 ∈ (𝐽𝑋)) → 𝑥𝑇)
5349, 50, 51, 52syl3anc 1373 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → 𝑥𝑇)
54 eqid 2731 . . . . . . . . . . . . 13 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
553, 5, 19, 54, 20tendo0cl 40888 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂 ∈ ((TEndo‘𝐾)‘𝑊))
5649, 55syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → 𝑂 ∈ ((TEndo‘𝐾)‘𝑊))
5711adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (𝑌𝐵𝑌 𝑊))
58 simprr 772 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → 𝑧 ∈ (𝐽𝑌))
593, 4, 5, 19, 21diael 41141 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐵𝑌 𝑊) ∧ 𝑧 ∈ (𝐽𝑌)) → 𝑧𝑇)
6049, 57, 58, 59syl3anc 1373 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → 𝑧𝑇)
61 eqid 2731 . . . . . . . . . . . 12 (Scalar‘𝑈) = (Scalar‘𝑈)
62 eqid 2731 . . . . . . . . . . . 12 (+g‘(Scalar‘𝑈)) = (+g‘(Scalar‘𝑈))
635, 19, 54, 6, 61, 14, 62dvhopvadd 41191 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑂 ∈ ((TEndo‘𝐾)‘𝑊)) ∧ (𝑧𝑇𝑂 ∈ ((TEndo‘𝐾)‘𝑊))) → (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑂⟩) = ⟨(𝑥𝑧), (𝑂(+g‘(Scalar‘𝑈))𝑂)⟩)
6449, 53, 56, 60, 56, 63syl122anc 1381 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑂⟩) = ⟨(𝑥𝑧), (𝑂(+g‘(Scalar‘𝑈))𝑂)⟩)
6564eqeq2d 2742 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑂⟩) ↔ ⟨𝐹, 𝑆⟩ = ⟨(𝑥𝑧), (𝑂(+g‘(Scalar‘𝑈))𝑂)⟩))
66 vex 3440 . . . . . . . . . . . 12 𝑥 ∈ V
67 vex 3440 . . . . . . . . . . . 12 𝑧 ∈ V
6866, 67coex 7860 . . . . . . . . . . 11 (𝑥𝑧) ∈ V
69 ovex 7379 . . . . . . . . . . 11 (𝑂(+g‘(Scalar‘𝑈))𝑂) ∈ V
7068, 69opth2 5418 . . . . . . . . . 10 (⟨𝐹, 𝑆⟩ = ⟨(𝑥𝑧), (𝑂(+g‘(Scalar‘𝑈))𝑂)⟩ ↔ (𝐹 = (𝑥𝑧) ∧ 𝑆 = (𝑂(+g‘(Scalar‘𝑈))𝑂)))
71 diblsmopel.v . . . . . . . . . . . . . . 15 𝑉 = ((DVecA‘𝐾)‘𝑊)
72 eqid 2731 . . . . . . . . . . . . . . 15 (+g𝑉) = (+g𝑉)
735, 19, 71, 72dvavadd 41113 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑧𝑇)) → (𝑥(+g𝑉)𝑧) = (𝑥𝑧))
7449, 53, 60, 73syl12anc 836 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (𝑥(+g𝑉)𝑧) = (𝑥𝑧))
7574eqeq2d 2742 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (𝐹 = (𝑥(+g𝑉)𝑧) ↔ 𝐹 = (𝑥𝑧)))
7675bicomd 223 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (𝐹 = (𝑥𝑧) ↔ 𝐹 = (𝑥(+g𝑉)𝑧)))
77 eqid 2731 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓)))) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
785, 19, 54, 6, 61, 77, 62dvhfplusr 41182 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (+g‘(Scalar‘𝑈)) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓)))))
7949, 78syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (+g‘(Scalar‘𝑈)) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓)))))
8079oveqd 7363 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (𝑂(+g‘(Scalar‘𝑈))𝑂) = (𝑂(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))𝑂))
813, 5, 19, 54, 20, 77tendo0pl 40889 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑂 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑂(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))𝑂) = 𝑂)
8249, 56, 81syl2anc 584 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (𝑂(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))𝑂) = 𝑂)
8380, 82eqtrd 2766 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (𝑂(+g‘(Scalar‘𝑈))𝑂) = 𝑂)
8483eqeq2d 2742 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (𝑆 = (𝑂(+g‘(Scalar‘𝑈))𝑂) ↔ 𝑆 = 𝑂))
8576, 84anbi12d 632 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → ((𝐹 = (𝑥𝑧) ∧ 𝑆 = (𝑂(+g‘(Scalar‘𝑈))𝑂)) ↔ (𝐹 = (𝑥(+g𝑉)𝑧) ∧ 𝑆 = 𝑂)))
8670, 85bitrid 283 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (⟨𝐹, 𝑆⟩ = ⟨(𝑥𝑧), (𝑂(+g‘(Scalar‘𝑈))𝑂)⟩ ↔ (𝐹 = (𝑥(+g𝑉)𝑧) ∧ 𝑆 = 𝑂)))
8765, 86bitrd 279 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌))) → (⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑂⟩) ↔ (𝐹 = (𝑥(+g𝑉)𝑧) ∧ 𝑆 = 𝑂)))
8887pm5.32da 579 . . . . . . 7 (𝜑 → (((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑂⟩(+g𝑈)⟨𝑧, 𝑂⟩)) ↔ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ (𝐹 = (𝑥(+g𝑉)𝑧) ∧ 𝑆 = 𝑂))))
8948, 88bitrid 283 . . . . . 6 (𝜑 → (∃𝑦𝑤(𝑦 = 𝑂𝑤 = 𝑂 ∧ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩))) ↔ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ (𝐹 = (𝑥(+g𝑉)𝑧) ∧ 𝑆 = 𝑂))))
9036, 89bitrd 279 . . . . 5 (𝜑 → (∃𝑦𝑤((⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩)) ↔ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ (𝐹 = (𝑥(+g𝑉)𝑧) ∧ 𝑆 = 𝑂))))
9190exbidv 1922 . . . 4 (𝜑 → (∃𝑧𝑦𝑤((⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩)) ↔ ∃𝑧((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ (𝐹 = (𝑥(+g𝑉)𝑧) ∧ 𝑆 = 𝑂))))
9218, 91bitrid 283 . . 3 (𝜑 → (∃𝑦𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩)) ↔ ∃𝑧((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ (𝐹 = (𝑥(+g𝑉)𝑧) ∧ 𝑆 = 𝑂))))
9392exbidv 1922 . 2 (𝜑 → (∃𝑥𝑦𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ (𝐼𝑋) ∧ ⟨𝑧, 𝑤⟩ ∈ (𝐼𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑥, 𝑦⟩(+g𝑈)⟨𝑧, 𝑤⟩)) ↔ ∃𝑥𝑧((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ (𝐹 = (𝑥(+g𝑉)𝑧) ∧ 𝑆 = 𝑂))))
94 anass 468 . . . . . 6 ((((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ 𝐹 = (𝑥(+g𝑉)𝑧)) ∧ 𝑆 = 𝑂) ↔ ((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ (𝐹 = (𝑥(+g𝑉)𝑧) ∧ 𝑆 = 𝑂)))
9594bicomi 224 . . . . 5 (((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ (𝐹 = (𝑥(+g𝑉)𝑧) ∧ 𝑆 = 𝑂)) ↔ (((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ 𝐹 = (𝑥(+g𝑉)𝑧)) ∧ 𝑆 = 𝑂))
96952exbii 1850 . . . 4 (∃𝑥𝑧((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ (𝐹 = (𝑥(+g𝑉)𝑧) ∧ 𝑆 = 𝑂)) ↔ ∃𝑥𝑧(((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ 𝐹 = (𝑥(+g𝑉)𝑧)) ∧ 𝑆 = 𝑂))
97 19.41vv 1951 . . . 4 (∃𝑥𝑧(((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ 𝐹 = (𝑥(+g𝑉)𝑧)) ∧ 𝑆 = 𝑂) ↔ (∃𝑥𝑧((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ 𝐹 = (𝑥(+g𝑉)𝑧)) ∧ 𝑆 = 𝑂))
9896, 97bitri 275 . . 3 (∃𝑥𝑧((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ (𝐹 = (𝑥(+g𝑉)𝑧) ∧ 𝑆 = 𝑂)) ↔ (∃𝑥𝑧((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ 𝐹 = (𝑥(+g𝑉)𝑧)) ∧ 𝑆 = 𝑂))
995, 71dvalvec 41124 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑉 ∈ LVec)
100 lveclmod 21040 . . . . . . . . 9 (𝑉 ∈ LVec → 𝑉 ∈ LMod)
101 eqid 2731 . . . . . . . . . 10 (LSubSp‘𝑉) = (LSubSp‘𝑉)
102101lsssssubg 20891 . . . . . . . . 9 (𝑉 ∈ LMod → (LSubSp‘𝑉) ⊆ (SubGrp‘𝑉))
1031, 99, 100, 1024syl 19 . . . . . . . 8 (𝜑 → (LSubSp‘𝑉) ⊆ (SubGrp‘𝑉))
1043, 4, 5, 71, 21, 101dialss 41144 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐽𝑋) ∈ (LSubSp‘𝑉))
1051, 2, 104syl2anc 584 . . . . . . . 8 (𝜑 → (𝐽𝑋) ∈ (LSubSp‘𝑉))
106103, 105sseldd 3930 . . . . . . 7 (𝜑 → (𝐽𝑋) ∈ (SubGrp‘𝑉))
1073, 4, 5, 71, 21, 101dialss 41144 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐽𝑌) ∈ (LSubSp‘𝑉))
1081, 11, 107syl2anc 584 . . . . . . . 8 (𝜑 → (𝐽𝑌) ∈ (LSubSp‘𝑉))
109103, 108sseldd 3930 . . . . . . 7 (𝜑 → (𝐽𝑌) ∈ (SubGrp‘𝑉))
110 diblsmopel.q . . . . . . . 8 = (LSSum‘𝑉)
11172, 110lsmelval 19561 . . . . . . 7 (((𝐽𝑋) ∈ (SubGrp‘𝑉) ∧ (𝐽𝑌) ∈ (SubGrp‘𝑉)) → (𝐹 ∈ ((𝐽𝑋) (𝐽𝑌)) ↔ ∃𝑥 ∈ (𝐽𝑋)∃𝑧 ∈ (𝐽𝑌)𝐹 = (𝑥(+g𝑉)𝑧)))
112106, 109, 111syl2anc 584 . . . . . 6 (𝜑 → (𝐹 ∈ ((𝐽𝑋) (𝐽𝑌)) ↔ ∃𝑥 ∈ (𝐽𝑋)∃𝑧 ∈ (𝐽𝑌)𝐹 = (𝑥(+g𝑉)𝑧)))
113 r2ex 3169 . . . . . 6 (∃𝑥 ∈ (𝐽𝑋)∃𝑧 ∈ (𝐽𝑌)𝐹 = (𝑥(+g𝑉)𝑧) ↔ ∃𝑥𝑧((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ 𝐹 = (𝑥(+g𝑉)𝑧)))
114112, 113bitrdi 287 . . . . 5 (𝜑 → (𝐹 ∈ ((𝐽𝑋) (𝐽𝑌)) ↔ ∃𝑥𝑧((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ 𝐹 = (𝑥(+g𝑉)𝑧))))
115114anbi1d 631 . . . 4 (𝜑 → ((𝐹 ∈ ((𝐽𝑋) (𝐽𝑌)) ∧ 𝑆 = 𝑂) ↔ (∃𝑥𝑧((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ 𝐹 = (𝑥(+g𝑉)𝑧)) ∧ 𝑆 = 𝑂)))
116115bicomd 223 . . 3 (𝜑 → ((∃𝑥𝑧((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ 𝐹 = (𝑥(+g𝑉)𝑧)) ∧ 𝑆 = 𝑂) ↔ (𝐹 ∈ ((𝐽𝑋) (𝐽𝑌)) ∧ 𝑆 = 𝑂)))
11798, 116bitrid 283 . 2 (𝜑 → (∃𝑥𝑧((𝑥 ∈ (𝐽𝑋) ∧ 𝑧 ∈ (𝐽𝑌)) ∧ (𝐹 = (𝑥(+g𝑉)𝑧) ∧ 𝑆 = 𝑂)) ↔ (𝐹 ∈ ((𝐽𝑋) (𝐽𝑌)) ∧ 𝑆 = 𝑂)))
11817, 93, 1173bitrd 305 1 (𝜑 → (⟨𝐹, 𝑆⟩ ∈ ((𝐼𝑋) (𝐼𝑌)) ↔ (𝐹 ∈ ((𝐽𝑋) (𝐽𝑌)) ∧ 𝑆 = 𝑂)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wrex 3056  Vcvv 3436  wss 3897  cop 4579   class class class wbr 5089  cmpt 5170   I cid 5508  cres 5616  ccom 5618  cfv 6481  (class class class)co 7346  cmpo 7348  Basecbs 17120  +gcplusg 17161  Scalarcsca 17164  lecple 17168  SubGrpcsubg 19033  LSSumclsm 19546  LModclmod 20793  LSubSpclss 20864  LVecclvec 21036  HLchlt 39448  LHypclh 40082  LTrncltrn 40199  TEndoctendo 40850  DVecAcdveca 41100  DIsoAcdia 41126  DVecHcdvh 41176  DIsoBcdib 41236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-riotaBAD 39051
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-undef 8203  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-0g 17345  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-lsm 19548  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-oppr 20255  df-dvdsr 20275  df-unit 20276  df-invr 20306  df-dvr 20319  df-drng 20646  df-lmod 20795  df-lss 20865  df-lvec 21037  df-oposet 39274  df-ol 39276  df-oml 39277  df-covers 39364  df-ats 39365  df-atl 39396  df-cvlat 39420  df-hlat 39449  df-llines 39596  df-lplanes 39597  df-lvols 39598  df-lines 39599  df-psubsp 39601  df-pmap 39602  df-padd 39894  df-lhyp 40086  df-laut 40087  df-ldil 40202  df-ltrn 40203  df-trl 40257  df-tgrp 40841  df-tendo 40853  df-edring 40855  df-dveca 41101  df-disoa 41127  df-dvech 41177  df-dib 41237
This theorem is referenced by:  dib2dim  41341  dih2dimbALTN  41343
  Copyright terms: Public domain W3C validator