Step | Hyp | Ref
| Expression |
1 | | diblsmopel.k |
. . 3
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
2 | | diblsmopel.x |
. . . 4
⊢ (𝜑 → (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) |
3 | | diblsmopel.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐾) |
4 | | diblsmopel.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
5 | | diblsmopel.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
6 | | diblsmopel.u |
. . . . 5
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
7 | | diblsmopel.i |
. . . . 5
⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
8 | | eqid 2738 |
. . . . 5
⊢
(LSubSp‘𝑈) =
(LSubSp‘𝑈) |
9 | 3, 4, 5, 6, 7, 8 | diblss 38796 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) ∈ (LSubSp‘𝑈)) |
10 | 1, 2, 9 | syl2anc 587 |
. . 3
⊢ (𝜑 → (𝐼‘𝑋) ∈ (LSubSp‘𝑈)) |
11 | | diblsmopel.y |
. . . 4
⊢ (𝜑 → (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) |
12 | 3, 4, 5, 6, 7, 8 | diblss 38796 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → (𝐼‘𝑌) ∈ (LSubSp‘𝑈)) |
13 | 1, 11, 12 | syl2anc 587 |
. . 3
⊢ (𝜑 → (𝐼‘𝑌) ∈ (LSubSp‘𝑈)) |
14 | | eqid 2738 |
. . . 4
⊢
(+g‘𝑈) = (+g‘𝑈) |
15 | | diblsmopel.p |
. . . 4
⊢ ✚ =
(LSSum‘𝑈) |
16 | 5, 6, 14, 8, 15 | dvhopellsm 38743 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐼‘𝑋) ∈ (LSubSp‘𝑈) ∧ (𝐼‘𝑌) ∈ (LSubSp‘𝑈)) → (〈𝐹, 𝑆〉 ∈ ((𝐼‘𝑋) ✚ (𝐼‘𝑌)) ↔ ∃𝑥∃𝑦∃𝑧∃𝑤((〈𝑥, 𝑦〉 ∈ (𝐼‘𝑋) ∧ 〈𝑧, 𝑤〉 ∈ (𝐼‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉(+g‘𝑈)〈𝑧, 𝑤〉)))) |
17 | 1, 10, 13, 16 | syl3anc 1372 |
. 2
⊢ (𝜑 → (〈𝐹, 𝑆〉 ∈ ((𝐼‘𝑋) ✚ (𝐼‘𝑌)) ↔ ∃𝑥∃𝑦∃𝑧∃𝑤((〈𝑥, 𝑦〉 ∈ (𝐼‘𝑋) ∧ 〈𝑧, 𝑤〉 ∈ (𝐼‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉(+g‘𝑈)〈𝑧, 𝑤〉)))) |
18 | | excom 2169 |
. . . 4
⊢
(∃𝑦∃𝑧∃𝑤((〈𝑥, 𝑦〉 ∈ (𝐼‘𝑋) ∧ 〈𝑧, 𝑤〉 ∈ (𝐼‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉(+g‘𝑈)〈𝑧, 𝑤〉)) ↔ ∃𝑧∃𝑦∃𝑤((〈𝑥, 𝑦〉 ∈ (𝐼‘𝑋) ∧ 〈𝑧, 𝑤〉 ∈ (𝐼‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉(+g‘𝑈)〈𝑧, 𝑤〉))) |
19 | | diblsmopel.t |
. . . . . . . . . . . . 13
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
20 | | diblsmopel.o |
. . . . . . . . . . . . 13
⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
21 | | diblsmopel.j |
. . . . . . . . . . . . 13
⊢ 𝐽 = ((DIsoA‘𝐾)‘𝑊) |
22 | 3, 4, 5, 19, 20, 21, 7 | dibopelval2 38771 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (〈𝑥, 𝑦〉 ∈ (𝐼‘𝑋) ↔ (𝑥 ∈ (𝐽‘𝑋) ∧ 𝑦 = 𝑂))) |
23 | 1, 2, 22 | syl2anc 587 |
. . . . . . . . . . 11
⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ (𝐼‘𝑋) ↔ (𝑥 ∈ (𝐽‘𝑋) ∧ 𝑦 = 𝑂))) |
24 | 3, 4, 5, 19, 20, 21, 7 | dibopelval2 38771 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → (〈𝑧, 𝑤〉 ∈ (𝐼‘𝑌) ↔ (𝑧 ∈ (𝐽‘𝑌) ∧ 𝑤 = 𝑂))) |
25 | 1, 11, 24 | syl2anc 587 |
. . . . . . . . . . 11
⊢ (𝜑 → (〈𝑧, 𝑤〉 ∈ (𝐼‘𝑌) ↔ (𝑧 ∈ (𝐽‘𝑌) ∧ 𝑤 = 𝑂))) |
26 | 23, 25 | anbi12d 634 |
. . . . . . . . . 10
⊢ (𝜑 → ((〈𝑥, 𝑦〉 ∈ (𝐼‘𝑋) ∧ 〈𝑧, 𝑤〉 ∈ (𝐼‘𝑌)) ↔ ((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑦 = 𝑂) ∧ (𝑧 ∈ (𝐽‘𝑌) ∧ 𝑤 = 𝑂)))) |
27 | | an4 656 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑦 = 𝑂) ∧ (𝑧 ∈ (𝐽‘𝑌) ∧ 𝑤 = 𝑂)) ↔ ((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ (𝑦 = 𝑂 ∧ 𝑤 = 𝑂))) |
28 | | ancom 464 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ (𝑦 = 𝑂 ∧ 𝑤 = 𝑂)) ↔ ((𝑦 = 𝑂 ∧ 𝑤 = 𝑂) ∧ (𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)))) |
29 | 27, 28 | bitri 278 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑦 = 𝑂) ∧ (𝑧 ∈ (𝐽‘𝑌) ∧ 𝑤 = 𝑂)) ↔ ((𝑦 = 𝑂 ∧ 𝑤 = 𝑂) ∧ (𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)))) |
30 | 26, 29 | bitrdi 290 |
. . . . . . . . 9
⊢ (𝜑 → ((〈𝑥, 𝑦〉 ∈ (𝐼‘𝑋) ∧ 〈𝑧, 𝑤〉 ∈ (𝐼‘𝑌)) ↔ ((𝑦 = 𝑂 ∧ 𝑤 = 𝑂) ∧ (𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌))))) |
31 | 30 | anbi1d 633 |
. . . . . . . 8
⊢ (𝜑 → (((〈𝑥, 𝑦〉 ∈ (𝐼‘𝑋) ∧ 〈𝑧, 𝑤〉 ∈ (𝐼‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉(+g‘𝑈)〈𝑧, 𝑤〉)) ↔ (((𝑦 = 𝑂 ∧ 𝑤 = 𝑂) ∧ (𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌))) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉(+g‘𝑈)〈𝑧, 𝑤〉)))) |
32 | | anass 472 |
. . . . . . . . 9
⊢ ((((𝑦 = 𝑂 ∧ 𝑤 = 𝑂) ∧ (𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌))) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉(+g‘𝑈)〈𝑧, 𝑤〉)) ↔ ((𝑦 = 𝑂 ∧ 𝑤 = 𝑂) ∧ ((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉(+g‘𝑈)〈𝑧, 𝑤〉)))) |
33 | | df-3an 1090 |
. . . . . . . . 9
⊢ ((𝑦 = 𝑂 ∧ 𝑤 = 𝑂 ∧ ((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉(+g‘𝑈)〈𝑧, 𝑤〉))) ↔ ((𝑦 = 𝑂 ∧ 𝑤 = 𝑂) ∧ ((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉(+g‘𝑈)〈𝑧, 𝑤〉)))) |
34 | 32, 33 | bitr4i 281 |
. . . . . . . 8
⊢ ((((𝑦 = 𝑂 ∧ 𝑤 = 𝑂) ∧ (𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌))) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉(+g‘𝑈)〈𝑧, 𝑤〉)) ↔ (𝑦 = 𝑂 ∧ 𝑤 = 𝑂 ∧ ((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉(+g‘𝑈)〈𝑧, 𝑤〉)))) |
35 | 31, 34 | bitrdi 290 |
. . . . . . 7
⊢ (𝜑 → (((〈𝑥, 𝑦〉 ∈ (𝐼‘𝑋) ∧ 〈𝑧, 𝑤〉 ∈ (𝐼‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉(+g‘𝑈)〈𝑧, 𝑤〉)) ↔ (𝑦 = 𝑂 ∧ 𝑤 = 𝑂 ∧ ((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉(+g‘𝑈)〈𝑧, 𝑤〉))))) |
36 | 35 | 2exbidv 1930 |
. . . . . 6
⊢ (𝜑 → (∃𝑦∃𝑤((〈𝑥, 𝑦〉 ∈ (𝐼‘𝑋) ∧ 〈𝑧, 𝑤〉 ∈ (𝐼‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉(+g‘𝑈)〈𝑧, 𝑤〉)) ↔ ∃𝑦∃𝑤(𝑦 = 𝑂 ∧ 𝑤 = 𝑂 ∧ ((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉(+g‘𝑈)〈𝑧, 𝑤〉))))) |
37 | 19 | fvexi 6682 |
. . . . . . . . . 10
⊢ 𝑇 ∈ V |
38 | 37 | mptex 6990 |
. . . . . . . . 9
⊢ (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) ∈ V |
39 | 20, 38 | eqeltri 2829 |
. . . . . . . 8
⊢ 𝑂 ∈ V |
40 | | opeq2 4758 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑂 → 〈𝑥, 𝑦〉 = 〈𝑥, 𝑂〉) |
41 | 40 | oveq1d 7179 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑂 → (〈𝑥, 𝑦〉(+g‘𝑈)〈𝑧, 𝑤〉) = (〈𝑥, 𝑂〉(+g‘𝑈)〈𝑧, 𝑤〉)) |
42 | 41 | eqeq2d 2749 |
. . . . . . . . 9
⊢ (𝑦 = 𝑂 → (〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉(+g‘𝑈)〈𝑧, 𝑤〉) ↔ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑂〉(+g‘𝑈)〈𝑧, 𝑤〉))) |
43 | 42 | anbi2d 632 |
. . . . . . . 8
⊢ (𝑦 = 𝑂 → (((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉(+g‘𝑈)〈𝑧, 𝑤〉)) ↔ ((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑂〉(+g‘𝑈)〈𝑧, 𝑤〉)))) |
44 | | opeq2 4758 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑂 → 〈𝑧, 𝑤〉 = 〈𝑧, 𝑂〉) |
45 | 44 | oveq2d 7180 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑂 → (〈𝑥, 𝑂〉(+g‘𝑈)〈𝑧, 𝑤〉) = (〈𝑥, 𝑂〉(+g‘𝑈)〈𝑧, 𝑂〉)) |
46 | 45 | eqeq2d 2749 |
. . . . . . . . 9
⊢ (𝑤 = 𝑂 → (〈𝐹, 𝑆〉 = (〈𝑥, 𝑂〉(+g‘𝑈)〈𝑧, 𝑤〉) ↔ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑂〉(+g‘𝑈)〈𝑧, 𝑂〉))) |
47 | 46 | anbi2d 632 |
. . . . . . . 8
⊢ (𝑤 = 𝑂 → (((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑂〉(+g‘𝑈)〈𝑧, 𝑤〉)) ↔ ((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑂〉(+g‘𝑈)〈𝑧, 𝑂〉)))) |
48 | 39, 39, 43, 47 | ceqsex2v 3447 |
. . . . . . 7
⊢
(∃𝑦∃𝑤(𝑦 = 𝑂 ∧ 𝑤 = 𝑂 ∧ ((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉(+g‘𝑈)〈𝑧, 𝑤〉))) ↔ ((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑂〉(+g‘𝑈)〈𝑧, 𝑂〉))) |
49 | 1 | adantr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
50 | 2 | adantr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌))) → (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) |
51 | | simprl 771 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌))) → 𝑥 ∈ (𝐽‘𝑋)) |
52 | 3, 4, 5, 19, 21 | diael 38669 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ 𝑥 ∈ (𝐽‘𝑋)) → 𝑥 ∈ 𝑇) |
53 | 49, 50, 51, 52 | syl3anc 1372 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌))) → 𝑥 ∈ 𝑇) |
54 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊) |
55 | 3, 5, 19, 54, 20 | tendo0cl 38416 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑂 ∈ ((TEndo‘𝐾)‘𝑊)) |
56 | 49, 55 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌))) → 𝑂 ∈ ((TEndo‘𝐾)‘𝑊)) |
57 | 11 | adantr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌))) → (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) |
58 | | simprr 773 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌))) → 𝑧 ∈ (𝐽‘𝑌)) |
59 | 3, 4, 5, 19, 21 | diael 38669 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊) ∧ 𝑧 ∈ (𝐽‘𝑌)) → 𝑧 ∈ 𝑇) |
60 | 49, 57, 58, 59 | syl3anc 1372 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌))) → 𝑧 ∈ 𝑇) |
61 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(Scalar‘𝑈) =
(Scalar‘𝑈) |
62 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(+g‘(Scalar‘𝑈)) =
(+g‘(Scalar‘𝑈)) |
63 | 5, 19, 54, 6, 61, 14, 62 | dvhopvadd 38719 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ 𝑇 ∧ 𝑂 ∈ ((TEndo‘𝐾)‘𝑊)) ∧ (𝑧 ∈ 𝑇 ∧ 𝑂 ∈ ((TEndo‘𝐾)‘𝑊))) → (〈𝑥, 𝑂〉(+g‘𝑈)〈𝑧, 𝑂〉) = 〈(𝑥 ∘ 𝑧), (𝑂(+g‘(Scalar‘𝑈))𝑂)〉) |
64 | 49, 53, 56, 60, 56, 63 | syl122anc 1380 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌))) → (〈𝑥, 𝑂〉(+g‘𝑈)〈𝑧, 𝑂〉) = 〈(𝑥 ∘ 𝑧), (𝑂(+g‘(Scalar‘𝑈))𝑂)〉) |
65 | 64 | eqeq2d 2749 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌))) → (〈𝐹, 𝑆〉 = (〈𝑥, 𝑂〉(+g‘𝑈)〈𝑧, 𝑂〉) ↔ 〈𝐹, 𝑆〉 = 〈(𝑥 ∘ 𝑧), (𝑂(+g‘(Scalar‘𝑈))𝑂)〉)) |
66 | | vex 3401 |
. . . . . . . . . . . 12
⊢ 𝑥 ∈ V |
67 | | vex 3401 |
. . . . . . . . . . . 12
⊢ 𝑧 ∈ V |
68 | 66, 67 | coex 7654 |
. . . . . . . . . . 11
⊢ (𝑥 ∘ 𝑧) ∈ V |
69 | | ovex 7197 |
. . . . . . . . . . 11
⊢ (𝑂(+g‘(Scalar‘𝑈))𝑂) ∈ V |
70 | 68, 69 | opth2 5335 |
. . . . . . . . . 10
⊢
(〈𝐹, 𝑆〉 = 〈(𝑥 ∘ 𝑧), (𝑂(+g‘(Scalar‘𝑈))𝑂)〉 ↔ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = (𝑂(+g‘(Scalar‘𝑈))𝑂))) |
71 | | diblsmopel.v |
. . . . . . . . . . . . . . 15
⊢ 𝑉 = ((DVecA‘𝐾)‘𝑊) |
72 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢
(+g‘𝑉) = (+g‘𝑉) |
73 | 5, 19, 71, 72 | dvavadd 38641 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) → (𝑥(+g‘𝑉)𝑧) = (𝑥 ∘ 𝑧)) |
74 | 49, 53, 60, 73 | syl12anc 836 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌))) → (𝑥(+g‘𝑉)𝑧) = (𝑥 ∘ 𝑧)) |
75 | 74 | eqeq2d 2749 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌))) → (𝐹 = (𝑥(+g‘𝑉)𝑧) ↔ 𝐹 = (𝑥 ∘ 𝑧))) |
76 | 75 | bicomd 226 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌))) → (𝐹 = (𝑥 ∘ 𝑧) ↔ 𝐹 = (𝑥(+g‘𝑉)𝑧))) |
77 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) |
78 | 5, 19, 54, 6, 61, 77, 62 | dvhfplusr 38710 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) →
(+g‘(Scalar‘𝑈)) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))) |
79 | 49, 78 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌))) →
(+g‘(Scalar‘𝑈)) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))) |
80 | 79 | oveqd 7181 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌))) → (𝑂(+g‘(Scalar‘𝑈))𝑂) = (𝑂(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))𝑂)) |
81 | 3, 5, 19, 54, 20, 77 | tendo0pl 38417 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑂 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑂(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))𝑂) = 𝑂) |
82 | 49, 56, 81 | syl2anc 587 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌))) → (𝑂(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))𝑂) = 𝑂) |
83 | 80, 82 | eqtrd 2773 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌))) → (𝑂(+g‘(Scalar‘𝑈))𝑂) = 𝑂) |
84 | 83 | eqeq2d 2749 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌))) → (𝑆 = (𝑂(+g‘(Scalar‘𝑈))𝑂) ↔ 𝑆 = 𝑂)) |
85 | 76, 84 | anbi12d 634 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌))) → ((𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = (𝑂(+g‘(Scalar‘𝑈))𝑂)) ↔ (𝐹 = (𝑥(+g‘𝑉)𝑧) ∧ 𝑆 = 𝑂))) |
86 | 70, 85 | syl5bb 286 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌))) → (〈𝐹, 𝑆〉 = 〈(𝑥 ∘ 𝑧), (𝑂(+g‘(Scalar‘𝑈))𝑂)〉 ↔ (𝐹 = (𝑥(+g‘𝑉)𝑧) ∧ 𝑆 = 𝑂))) |
87 | 65, 86 | bitrd 282 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌))) → (〈𝐹, 𝑆〉 = (〈𝑥, 𝑂〉(+g‘𝑈)〈𝑧, 𝑂〉) ↔ (𝐹 = (𝑥(+g‘𝑉)𝑧) ∧ 𝑆 = 𝑂))) |
88 | 87 | pm5.32da 582 |
. . . . . . 7
⊢ (𝜑 → (((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑂〉(+g‘𝑈)〈𝑧, 𝑂〉)) ↔ ((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ (𝐹 = (𝑥(+g‘𝑉)𝑧) ∧ 𝑆 = 𝑂)))) |
89 | 48, 88 | syl5bb 286 |
. . . . . 6
⊢ (𝜑 → (∃𝑦∃𝑤(𝑦 = 𝑂 ∧ 𝑤 = 𝑂 ∧ ((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉(+g‘𝑈)〈𝑧, 𝑤〉))) ↔ ((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ (𝐹 = (𝑥(+g‘𝑉)𝑧) ∧ 𝑆 = 𝑂)))) |
90 | 36, 89 | bitrd 282 |
. . . . 5
⊢ (𝜑 → (∃𝑦∃𝑤((〈𝑥, 𝑦〉 ∈ (𝐼‘𝑋) ∧ 〈𝑧, 𝑤〉 ∈ (𝐼‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉(+g‘𝑈)〈𝑧, 𝑤〉)) ↔ ((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ (𝐹 = (𝑥(+g‘𝑉)𝑧) ∧ 𝑆 = 𝑂)))) |
91 | 90 | exbidv 1927 |
. . . 4
⊢ (𝜑 → (∃𝑧∃𝑦∃𝑤((〈𝑥, 𝑦〉 ∈ (𝐼‘𝑋) ∧ 〈𝑧, 𝑤〉 ∈ (𝐼‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉(+g‘𝑈)〈𝑧, 𝑤〉)) ↔ ∃𝑧((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ (𝐹 = (𝑥(+g‘𝑉)𝑧) ∧ 𝑆 = 𝑂)))) |
92 | 18, 91 | syl5bb 286 |
. . 3
⊢ (𝜑 → (∃𝑦∃𝑧∃𝑤((〈𝑥, 𝑦〉 ∈ (𝐼‘𝑋) ∧ 〈𝑧, 𝑤〉 ∈ (𝐼‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉(+g‘𝑈)〈𝑧, 𝑤〉)) ↔ ∃𝑧((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ (𝐹 = (𝑥(+g‘𝑉)𝑧) ∧ 𝑆 = 𝑂)))) |
93 | 92 | exbidv 1927 |
. 2
⊢ (𝜑 → (∃𝑥∃𝑦∃𝑧∃𝑤((〈𝑥, 𝑦〉 ∈ (𝐼‘𝑋) ∧ 〈𝑧, 𝑤〉 ∈ (𝐼‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉(+g‘𝑈)〈𝑧, 𝑤〉)) ↔ ∃𝑥∃𝑧((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ (𝐹 = (𝑥(+g‘𝑉)𝑧) ∧ 𝑆 = 𝑂)))) |
94 | | anass 472 |
. . . . . 6
⊢ ((((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ 𝐹 = (𝑥(+g‘𝑉)𝑧)) ∧ 𝑆 = 𝑂) ↔ ((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ (𝐹 = (𝑥(+g‘𝑉)𝑧) ∧ 𝑆 = 𝑂))) |
95 | 94 | bicomi 227 |
. . . . 5
⊢ (((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ (𝐹 = (𝑥(+g‘𝑉)𝑧) ∧ 𝑆 = 𝑂)) ↔ (((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ 𝐹 = (𝑥(+g‘𝑉)𝑧)) ∧ 𝑆 = 𝑂)) |
96 | 95 | 2exbii 1855 |
. . . 4
⊢
(∃𝑥∃𝑧((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ (𝐹 = (𝑥(+g‘𝑉)𝑧) ∧ 𝑆 = 𝑂)) ↔ ∃𝑥∃𝑧(((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ 𝐹 = (𝑥(+g‘𝑉)𝑧)) ∧ 𝑆 = 𝑂)) |
97 | | 19.41vv 1957 |
. . . 4
⊢
(∃𝑥∃𝑧(((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ 𝐹 = (𝑥(+g‘𝑉)𝑧)) ∧ 𝑆 = 𝑂) ↔ (∃𝑥∃𝑧((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ 𝐹 = (𝑥(+g‘𝑉)𝑧)) ∧ 𝑆 = 𝑂)) |
98 | 96, 97 | bitri 278 |
. . 3
⊢
(∃𝑥∃𝑧((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ (𝐹 = (𝑥(+g‘𝑉)𝑧) ∧ 𝑆 = 𝑂)) ↔ (∃𝑥∃𝑧((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ 𝐹 = (𝑥(+g‘𝑉)𝑧)) ∧ 𝑆 = 𝑂)) |
99 | 5, 71 | dvalvec 38652 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑉 ∈ LVec) |
100 | | lveclmod 19990 |
. . . . . . . . 9
⊢ (𝑉 ∈ LVec → 𝑉 ∈ LMod) |
101 | | eqid 2738 |
. . . . . . . . . 10
⊢
(LSubSp‘𝑉) =
(LSubSp‘𝑉) |
102 | 101 | lsssssubg 19842 |
. . . . . . . . 9
⊢ (𝑉 ∈ LMod →
(LSubSp‘𝑉) ⊆
(SubGrp‘𝑉)) |
103 | 1, 99, 100, 102 | 4syl 19 |
. . . . . . . 8
⊢ (𝜑 → (LSubSp‘𝑉) ⊆ (SubGrp‘𝑉)) |
104 | 3, 4, 5, 71, 21, 101 | dialss 38672 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐽‘𝑋) ∈ (LSubSp‘𝑉)) |
105 | 1, 2, 104 | syl2anc 587 |
. . . . . . . 8
⊢ (𝜑 → (𝐽‘𝑋) ∈ (LSubSp‘𝑉)) |
106 | 103, 105 | sseldd 3876 |
. . . . . . 7
⊢ (𝜑 → (𝐽‘𝑋) ∈ (SubGrp‘𝑉)) |
107 | 3, 4, 5, 71, 21, 101 | dialss 38672 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → (𝐽‘𝑌) ∈ (LSubSp‘𝑉)) |
108 | 1, 11, 107 | syl2anc 587 |
. . . . . . . 8
⊢ (𝜑 → (𝐽‘𝑌) ∈ (LSubSp‘𝑉)) |
109 | 103, 108 | sseldd 3876 |
. . . . . . 7
⊢ (𝜑 → (𝐽‘𝑌) ∈ (SubGrp‘𝑉)) |
110 | | diblsmopel.q |
. . . . . . . 8
⊢ ⊕ =
(LSSum‘𝑉) |
111 | 72, 110 | lsmelval 18885 |
. . . . . . 7
⊢ (((𝐽‘𝑋) ∈ (SubGrp‘𝑉) ∧ (𝐽‘𝑌) ∈ (SubGrp‘𝑉)) → (𝐹 ∈ ((𝐽‘𝑋) ⊕ (𝐽‘𝑌)) ↔ ∃𝑥 ∈ (𝐽‘𝑋)∃𝑧 ∈ (𝐽‘𝑌)𝐹 = (𝑥(+g‘𝑉)𝑧))) |
112 | 106, 109,
111 | syl2anc 587 |
. . . . . 6
⊢ (𝜑 → (𝐹 ∈ ((𝐽‘𝑋) ⊕ (𝐽‘𝑌)) ↔ ∃𝑥 ∈ (𝐽‘𝑋)∃𝑧 ∈ (𝐽‘𝑌)𝐹 = (𝑥(+g‘𝑉)𝑧))) |
113 | | r2ex 3212 |
. . . . . 6
⊢
(∃𝑥 ∈
(𝐽‘𝑋)∃𝑧 ∈ (𝐽‘𝑌)𝐹 = (𝑥(+g‘𝑉)𝑧) ↔ ∃𝑥∃𝑧((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ 𝐹 = (𝑥(+g‘𝑉)𝑧))) |
114 | 112, 113 | bitrdi 290 |
. . . . 5
⊢ (𝜑 → (𝐹 ∈ ((𝐽‘𝑋) ⊕ (𝐽‘𝑌)) ↔ ∃𝑥∃𝑧((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ 𝐹 = (𝑥(+g‘𝑉)𝑧)))) |
115 | 114 | anbi1d 633 |
. . . 4
⊢ (𝜑 → ((𝐹 ∈ ((𝐽‘𝑋) ⊕ (𝐽‘𝑌)) ∧ 𝑆 = 𝑂) ↔ (∃𝑥∃𝑧((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ 𝐹 = (𝑥(+g‘𝑉)𝑧)) ∧ 𝑆 = 𝑂))) |
116 | 115 | bicomd 226 |
. . 3
⊢ (𝜑 → ((∃𝑥∃𝑧((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ 𝐹 = (𝑥(+g‘𝑉)𝑧)) ∧ 𝑆 = 𝑂) ↔ (𝐹 ∈ ((𝐽‘𝑋) ⊕ (𝐽‘𝑌)) ∧ 𝑆 = 𝑂))) |
117 | 98, 116 | syl5bb 286 |
. 2
⊢ (𝜑 → (∃𝑥∃𝑧((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ (𝐹 = (𝑥(+g‘𝑉)𝑧) ∧ 𝑆 = 𝑂)) ↔ (𝐹 ∈ ((𝐽‘𝑋) ⊕ (𝐽‘𝑌)) ∧ 𝑆 = 𝑂))) |
118 | 17, 93, 117 | 3bitrd 308 |
1
⊢ (𝜑 → (〈𝐹, 𝑆〉 ∈ ((𝐼‘𝑋) ✚ (𝐼‘𝑌)) ↔ (𝐹 ∈ ((𝐽‘𝑋) ⊕ (𝐽‘𝑌)) ∧ 𝑆 = 𝑂))) |