MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elxp5 Structured version   Visualization version   GIF version

Theorem elxp5 7373
Description: Membership in a Cartesian product requiring no quantifiers or dummy variables. Provides a slightly shorter version of elxp4 7372 when the double intersection does not create class existence problems (caused by int0 4711). (Contributed by NM, 1-Aug-2004.)
Assertion
Ref Expression
elxp5 (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = ⟨ 𝐴, ran {𝐴}⟩ ∧ ( 𝐴𝐵 ran {𝐴} ∈ 𝐶)))

Proof of Theorem elxp5
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxp 5365 . 2 (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)))
2 sneq 4407 . . . . . . . . . . . 12 (𝐴 = ⟨𝑥, 𝑦⟩ → {𝐴} = {⟨𝑥, 𝑦⟩})
32rneqd 5585 . . . . . . . . . . 11 (𝐴 = ⟨𝑥, 𝑦⟩ → ran {𝐴} = ran {⟨𝑥, 𝑦⟩})
43unieqd 4668 . . . . . . . . . 10 (𝐴 = ⟨𝑥, 𝑦⟩ → ran {𝐴} = ran {⟨𝑥, 𝑦⟩})
5 vex 3417 . . . . . . . . . . 11 𝑥 ∈ V
6 vex 3417 . . . . . . . . . . 11 𝑦 ∈ V
75, 6op2nda 5862 . . . . . . . . . 10 ran {⟨𝑥, 𝑦⟩} = 𝑦
84, 7syl6req 2878 . . . . . . . . 9 (𝐴 = ⟨𝑥, 𝑦⟩ → 𝑦 = ran {𝐴})
98pm4.71ri 558 . . . . . . . 8 (𝐴 = ⟨𝑥, 𝑦⟩ ↔ (𝑦 = ran {𝐴} ∧ 𝐴 = ⟨𝑥, 𝑦⟩))
109anbi1i 619 . . . . . . 7 ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ ((𝑦 = ran {𝐴} ∧ 𝐴 = ⟨𝑥, 𝑦⟩) ∧ (𝑥𝐵𝑦𝐶)))
11 anass 462 . . . . . . 7 (((𝑦 = ran {𝐴} ∧ 𝐴 = ⟨𝑥, 𝑦⟩) ∧ (𝑥𝐵𝑦𝐶)) ↔ (𝑦 = ran {𝐴} ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶))))
1210, 11bitri 267 . . . . . 6 ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ (𝑦 = ran {𝐴} ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶))))
1312exbii 1949 . . . . 5 (∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ ∃𝑦(𝑦 = ran {𝐴} ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶))))
14 snex 5129 . . . . . . . 8 {𝐴} ∈ V
1514rnex 7362 . . . . . . 7 ran {𝐴} ∈ V
1615uniex 7213 . . . . . 6 ran {𝐴} ∈ V
17 opeq2 4624 . . . . . . . 8 (𝑦 = ran {𝐴} → ⟨𝑥, 𝑦⟩ = ⟨𝑥, ran {𝐴}⟩)
1817eqeq2d 2835 . . . . . . 7 (𝑦 = ran {𝐴} → (𝐴 = ⟨𝑥, 𝑦⟩ ↔ 𝐴 = ⟨𝑥, ran {𝐴}⟩))
19 eleq1 2894 . . . . . . . 8 (𝑦 = ran {𝐴} → (𝑦𝐶 ran {𝐴} ∈ 𝐶))
2019anbi2d 624 . . . . . . 7 (𝑦 = ran {𝐴} → ((𝑥𝐵𝑦𝐶) ↔ (𝑥𝐵 ran {𝐴} ∈ 𝐶)))
2118, 20anbi12d 626 . . . . . 6 (𝑦 = ran {𝐴} → ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))))
2216, 21ceqsexv 3459 . . . . 5 (∃𝑦(𝑦 = ran {𝐴} ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶))) ↔ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶)))
2313, 22bitri 267 . . . 4 (∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶)))
24 inteq 4700 . . . . . . . 8 (𝐴 = ⟨𝑥, ran {𝐴}⟩ → 𝐴 = 𝑥, ran {𝐴}⟩)
2524inteqd 4702 . . . . . . 7 (𝐴 = ⟨𝑥, ran {𝐴}⟩ → 𝐴 = 𝑥, ran {𝐴}⟩)
265, 16op1stb 5160 . . . . . . 7 𝑥, ran {𝐴}⟩ = 𝑥
2725, 26syl6req 2878 . . . . . 6 (𝐴 = ⟨𝑥, ran {𝐴}⟩ → 𝑥 = 𝐴)
2827pm4.71ri 558 . . . . 5 (𝐴 = ⟨𝑥, ran {𝐴}⟩ ↔ (𝑥 = 𝐴𝐴 = ⟨𝑥, ran {𝐴}⟩))
2928anbi1i 619 . . . 4 ((𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶)) ↔ ((𝑥 = 𝐴𝐴 = ⟨𝑥, ran {𝐴}⟩) ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶)))
30 anass 462 . . . 4 (((𝑥 = 𝐴𝐴 = ⟨𝑥, ran {𝐴}⟩) ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶)) ↔ (𝑥 = 𝐴 ∧ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))))
3123, 29, 303bitri 289 . . 3 (∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ (𝑥 = 𝐴 ∧ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))))
3231exbii 1949 . 2 (∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ ∃𝑥(𝑥 = 𝐴 ∧ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))))
33 eqvisset 3428 . . . . 5 (𝑥 = 𝐴 𝐴 ∈ V)
3433adantr 474 . . . 4 ((𝑥 = 𝐴 ∧ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))) → 𝐴 ∈ V)
3534exlimiv 2031 . . 3 (∃𝑥(𝑥 = 𝐴 ∧ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))) → 𝐴 ∈ V)
36 elex 3429 . . . 4 ( 𝐴𝐵 𝐴 ∈ V)
3736ad2antrl 721 . . 3 ((𝐴 = ⟨ 𝐴, ran {𝐴}⟩ ∧ ( 𝐴𝐵 ran {𝐴} ∈ 𝐶)) → 𝐴 ∈ V)
38 opeq1 4623 . . . . . 6 (𝑥 = 𝐴 → ⟨𝑥, ran {𝐴}⟩ = ⟨ 𝐴, ran {𝐴}⟩)
3938eqeq2d 2835 . . . . 5 (𝑥 = 𝐴 → (𝐴 = ⟨𝑥, ran {𝐴}⟩ ↔ 𝐴 = ⟨ 𝐴, ran {𝐴}⟩))
40 eleq1 2894 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝐵 𝐴𝐵))
4140anbi1d 625 . . . . 5 (𝑥 = 𝐴 → ((𝑥𝐵 ran {𝐴} ∈ 𝐶) ↔ ( 𝐴𝐵 ran {𝐴} ∈ 𝐶)))
4239, 41anbi12d 626 . . . 4 (𝑥 = 𝐴 → ((𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶)) ↔ (𝐴 = ⟨ 𝐴, ran {𝐴}⟩ ∧ ( 𝐴𝐵 ran {𝐴} ∈ 𝐶))))
4342ceqsexgv 3553 . . 3 ( 𝐴 ∈ V → (∃𝑥(𝑥 = 𝐴 ∧ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))) ↔ (𝐴 = ⟨ 𝐴, ran {𝐴}⟩ ∧ ( 𝐴𝐵 ran {𝐴} ∈ 𝐶))))
4435, 37, 43pm5.21nii 370 . 2 (∃𝑥(𝑥 = 𝐴 ∧ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))) ↔ (𝐴 = ⟨ 𝐴, ran {𝐴}⟩ ∧ ( 𝐴𝐵 ran {𝐴} ∈ 𝐶)))
451, 32, 443bitri 289 1 (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = ⟨ 𝐴, ran {𝐴}⟩ ∧ ( 𝐴𝐵 ran {𝐴} ∈ 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 386   = wceq 1658  wex 1880  wcel 2166  Vcvv 3414  {csn 4397  cop 4403   cuni 4658   cint 4697   × cxp 5340  ran crn 5343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pr 5127  ax-un 7209
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-int 4698  df-br 4874  df-opab 4936  df-xp 5348  df-rel 5349  df-cnv 5350  df-dm 5352  df-rn 5353
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator