MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elxp5 Structured version   Visualization version   GIF version

Theorem elxp5 7617
Description: Membership in a Cartesian product requiring no quantifiers or dummy variables. Provides a slightly shorter version of elxp4 7616 when the double intersection does not create class existence problems (caused by int0 4881). (Contributed by NM, 1-Aug-2004.)
Assertion
Ref Expression
elxp5 (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = ⟨ 𝐴, ran {𝐴}⟩ ∧ ( 𝐴𝐵 ran {𝐴} ∈ 𝐶)))

Proof of Theorem elxp5
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxp 5571 . 2 (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)))
2 sneq 4567 . . . . . . . . . . . 12 (𝐴 = ⟨𝑥, 𝑦⟩ → {𝐴} = {⟨𝑥, 𝑦⟩})
32rneqd 5801 . . . . . . . . . . 11 (𝐴 = ⟨𝑥, 𝑦⟩ → ran {𝐴} = ran {⟨𝑥, 𝑦⟩})
43unieqd 4840 . . . . . . . . . 10 (𝐴 = ⟨𝑥, 𝑦⟩ → ran {𝐴} = ran {⟨𝑥, 𝑦⟩})
5 vex 3495 . . . . . . . . . . 11 𝑥 ∈ V
6 vex 3495 . . . . . . . . . . 11 𝑦 ∈ V
75, 6op2nda 6078 . . . . . . . . . 10 ran {⟨𝑥, 𝑦⟩} = 𝑦
84, 7syl6req 2870 . . . . . . . . 9 (𝐴 = ⟨𝑥, 𝑦⟩ → 𝑦 = ran {𝐴})
98pm4.71ri 561 . . . . . . . 8 (𝐴 = ⟨𝑥, 𝑦⟩ ↔ (𝑦 = ran {𝐴} ∧ 𝐴 = ⟨𝑥, 𝑦⟩))
109anbi1i 623 . . . . . . 7 ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ ((𝑦 = ran {𝐴} ∧ 𝐴 = ⟨𝑥, 𝑦⟩) ∧ (𝑥𝐵𝑦𝐶)))
11 anass 469 . . . . . . 7 (((𝑦 = ran {𝐴} ∧ 𝐴 = ⟨𝑥, 𝑦⟩) ∧ (𝑥𝐵𝑦𝐶)) ↔ (𝑦 = ran {𝐴} ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶))))
1210, 11bitri 276 . . . . . 6 ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ (𝑦 = ran {𝐴} ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶))))
1312exbii 1839 . . . . 5 (∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ ∃𝑦(𝑦 = ran {𝐴} ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶))))
14 snex 5322 . . . . . . . 8 {𝐴} ∈ V
1514rnex 7606 . . . . . . 7 ran {𝐴} ∈ V
1615uniex 7454 . . . . . 6 ran {𝐴} ∈ V
17 opeq2 4796 . . . . . . . 8 (𝑦 = ran {𝐴} → ⟨𝑥, 𝑦⟩ = ⟨𝑥, ran {𝐴}⟩)
1817eqeq2d 2829 . . . . . . 7 (𝑦 = ran {𝐴} → (𝐴 = ⟨𝑥, 𝑦⟩ ↔ 𝐴 = ⟨𝑥, ran {𝐴}⟩))
19 eleq1 2897 . . . . . . . 8 (𝑦 = ran {𝐴} → (𝑦𝐶 ran {𝐴} ∈ 𝐶))
2019anbi2d 628 . . . . . . 7 (𝑦 = ran {𝐴} → ((𝑥𝐵𝑦𝐶) ↔ (𝑥𝐵 ran {𝐴} ∈ 𝐶)))
2118, 20anbi12d 630 . . . . . 6 (𝑦 = ran {𝐴} → ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))))
2216, 21ceqsexv 3539 . . . . 5 (∃𝑦(𝑦 = ran {𝐴} ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶))) ↔ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶)))
2313, 22bitri 276 . . . 4 (∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶)))
24 inteq 4870 . . . . . . . 8 (𝐴 = ⟨𝑥, ran {𝐴}⟩ → 𝐴 = 𝑥, ran {𝐴}⟩)
2524inteqd 4872 . . . . . . 7 (𝐴 = ⟨𝑥, ran {𝐴}⟩ → 𝐴 = 𝑥, ran {𝐴}⟩)
265, 16op1stb 5354 . . . . . . 7 𝑥, ran {𝐴}⟩ = 𝑥
2725, 26syl6req 2870 . . . . . 6 (𝐴 = ⟨𝑥, ran {𝐴}⟩ → 𝑥 = 𝐴)
2827pm4.71ri 561 . . . . 5 (𝐴 = ⟨𝑥, ran {𝐴}⟩ ↔ (𝑥 = 𝐴𝐴 = ⟨𝑥, ran {𝐴}⟩))
2928anbi1i 623 . . . 4 ((𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶)) ↔ ((𝑥 = 𝐴𝐴 = ⟨𝑥, ran {𝐴}⟩) ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶)))
30 anass 469 . . . 4 (((𝑥 = 𝐴𝐴 = ⟨𝑥, ran {𝐴}⟩) ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶)) ↔ (𝑥 = 𝐴 ∧ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))))
3123, 29, 303bitri 298 . . 3 (∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ (𝑥 = 𝐴 ∧ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))))
3231exbii 1839 . 2 (∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ ∃𝑥(𝑥 = 𝐴 ∧ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))))
33 eqvisset 3509 . . . . 5 (𝑥 = 𝐴 𝐴 ∈ V)
3433adantr 481 . . . 4 ((𝑥 = 𝐴 ∧ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))) → 𝐴 ∈ V)
3534exlimiv 1922 . . 3 (∃𝑥(𝑥 = 𝐴 ∧ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))) → 𝐴 ∈ V)
36 elex 3510 . . . 4 ( 𝐴𝐵 𝐴 ∈ V)
3736ad2antrl 724 . . 3 ((𝐴 = ⟨ 𝐴, ran {𝐴}⟩ ∧ ( 𝐴𝐵 ran {𝐴} ∈ 𝐶)) → 𝐴 ∈ V)
38 opeq1 4795 . . . . . 6 (𝑥 = 𝐴 → ⟨𝑥, ran {𝐴}⟩ = ⟨ 𝐴, ran {𝐴}⟩)
3938eqeq2d 2829 . . . . 5 (𝑥 = 𝐴 → (𝐴 = ⟨𝑥, ran {𝐴}⟩ ↔ 𝐴 = ⟨ 𝐴, ran {𝐴}⟩))
40 eleq1 2897 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝐵 𝐴𝐵))
4140anbi1d 629 . . . . 5 (𝑥 = 𝐴 → ((𝑥𝐵 ran {𝐴} ∈ 𝐶) ↔ ( 𝐴𝐵 ran {𝐴} ∈ 𝐶)))
4239, 41anbi12d 630 . . . 4 (𝑥 = 𝐴 → ((𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶)) ↔ (𝐴 = ⟨ 𝐴, ran {𝐴}⟩ ∧ ( 𝐴𝐵 ran {𝐴} ∈ 𝐶))))
4342ceqsexgv 3644 . . 3 ( 𝐴 ∈ V → (∃𝑥(𝑥 = 𝐴 ∧ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))) ↔ (𝐴 = ⟨ 𝐴, ran {𝐴}⟩ ∧ ( 𝐴𝐵 ran {𝐴} ∈ 𝐶))))
4435, 37, 43pm5.21nii 380 . 2 (∃𝑥(𝑥 = 𝐴 ∧ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))) ↔ (𝐴 = ⟨ 𝐴, ran {𝐴}⟩ ∧ ( 𝐴𝐵 ran {𝐴} ∈ 𝐶)))
451, 32, 443bitri 298 1 (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = ⟨ 𝐴, ran {𝐴}⟩ ∧ ( 𝐴𝐵 ran {𝐴} ∈ 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wb 207  wa 396   = wceq 1528  wex 1771  wcel 2105  Vcvv 3492  {csn 4557  cop 4563   cuni 4830   cint 4867   × cxp 5546  ran crn 5549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-int 4868  df-br 5058  df-opab 5120  df-xp 5554  df-rel 5555  df-cnv 5556  df-dm 5558  df-rn 5559
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator