MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elxp5 Structured version   Visualization version   GIF version

Theorem elxp5 7853
Description: Membership in a Cartesian product requiring no quantifiers or dummy variables. Provides a slightly shorter version of elxp4 7852 when the double intersection does not create class existence problems (caused by int0 4912). (Contributed by NM, 1-Aug-2004.)
Assertion
Ref Expression
elxp5 (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = ⟨ 𝐴, ran {𝐴}⟩ ∧ ( 𝐴𝐵 ran {𝐴} ∈ 𝐶)))

Proof of Theorem elxp5
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxp 5639 . 2 (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)))
2 sneq 4586 . . . . . . . . . . . 12 (𝐴 = ⟨𝑥, 𝑦⟩ → {𝐴} = {⟨𝑥, 𝑦⟩})
32rneqd 5878 . . . . . . . . . . 11 (𝐴 = ⟨𝑥, 𝑦⟩ → ran {𝐴} = ran {⟨𝑥, 𝑦⟩})
43unieqd 4872 . . . . . . . . . 10 (𝐴 = ⟨𝑥, 𝑦⟩ → ran {𝐴} = ran {⟨𝑥, 𝑦⟩})
5 vex 3440 . . . . . . . . . . 11 𝑥 ∈ V
6 vex 3440 . . . . . . . . . . 11 𝑦 ∈ V
75, 6op2nda 6175 . . . . . . . . . 10 ran {⟨𝑥, 𝑦⟩} = 𝑦
84, 7eqtr2di 2783 . . . . . . . . 9 (𝐴 = ⟨𝑥, 𝑦⟩ → 𝑦 = ran {𝐴})
98pm4.71ri 560 . . . . . . . 8 (𝐴 = ⟨𝑥, 𝑦⟩ ↔ (𝑦 = ran {𝐴} ∧ 𝐴 = ⟨𝑥, 𝑦⟩))
109anbi1i 624 . . . . . . 7 ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ ((𝑦 = ran {𝐴} ∧ 𝐴 = ⟨𝑥, 𝑦⟩) ∧ (𝑥𝐵𝑦𝐶)))
11 anass 468 . . . . . . 7 (((𝑦 = ran {𝐴} ∧ 𝐴 = ⟨𝑥, 𝑦⟩) ∧ (𝑥𝐵𝑦𝐶)) ↔ (𝑦 = ran {𝐴} ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶))))
1210, 11bitri 275 . . . . . 6 ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ (𝑦 = ran {𝐴} ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶))))
1312exbii 1849 . . . . 5 (∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ ∃𝑦(𝑦 = ran {𝐴} ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶))))
14 snex 5374 . . . . . . . 8 {𝐴} ∈ V
1514rnex 7840 . . . . . . 7 ran {𝐴} ∈ V
1615uniex 7674 . . . . . 6 ran {𝐴} ∈ V
17 opeq2 4826 . . . . . . . 8 (𝑦 = ran {𝐴} → ⟨𝑥, 𝑦⟩ = ⟨𝑥, ran {𝐴}⟩)
1817eqeq2d 2742 . . . . . . 7 (𝑦 = ran {𝐴} → (𝐴 = ⟨𝑥, 𝑦⟩ ↔ 𝐴 = ⟨𝑥, ran {𝐴}⟩))
19 eleq1 2819 . . . . . . . 8 (𝑦 = ran {𝐴} → (𝑦𝐶 ran {𝐴} ∈ 𝐶))
2019anbi2d 630 . . . . . . 7 (𝑦 = ran {𝐴} → ((𝑥𝐵𝑦𝐶) ↔ (𝑥𝐵 ran {𝐴} ∈ 𝐶)))
2118, 20anbi12d 632 . . . . . 6 (𝑦 = ran {𝐴} → ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))))
2216, 21ceqsexv 3487 . . . . 5 (∃𝑦(𝑦 = ran {𝐴} ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶))) ↔ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶)))
2313, 22bitri 275 . . . 4 (∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶)))
24 inteq 4900 . . . . . . . 8 (𝐴 = ⟨𝑥, ran {𝐴}⟩ → 𝐴 = 𝑥, ran {𝐴}⟩)
2524inteqd 4902 . . . . . . 7 (𝐴 = ⟨𝑥, ran {𝐴}⟩ → 𝐴 = 𝑥, ran {𝐴}⟩)
265, 16op1stb 5411 . . . . . . 7 𝑥, ran {𝐴}⟩ = 𝑥
2725, 26eqtr2di 2783 . . . . . 6 (𝐴 = ⟨𝑥, ran {𝐴}⟩ → 𝑥 = 𝐴)
2827pm4.71ri 560 . . . . 5 (𝐴 = ⟨𝑥, ran {𝐴}⟩ ↔ (𝑥 = 𝐴𝐴 = ⟨𝑥, ran {𝐴}⟩))
2928anbi1i 624 . . . 4 ((𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶)) ↔ ((𝑥 = 𝐴𝐴 = ⟨𝑥, ran {𝐴}⟩) ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶)))
30 anass 468 . . . 4 (((𝑥 = 𝐴𝐴 = ⟨𝑥, ran {𝐴}⟩) ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶)) ↔ (𝑥 = 𝐴 ∧ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))))
3123, 29, 303bitri 297 . . 3 (∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ (𝑥 = 𝐴 ∧ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))))
3231exbii 1849 . 2 (∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ ∃𝑥(𝑥 = 𝐴 ∧ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))))
33 eqvisset 3456 . . . . 5 (𝑥 = 𝐴 𝐴 ∈ V)
3433adantr 480 . . . 4 ((𝑥 = 𝐴 ∧ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))) → 𝐴 ∈ V)
3534exlimiv 1931 . . 3 (∃𝑥(𝑥 = 𝐴 ∧ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))) → 𝐴 ∈ V)
36 elex 3457 . . . 4 ( 𝐴𝐵 𝐴 ∈ V)
3736ad2antrl 728 . . 3 ((𝐴 = ⟨ 𝐴, ran {𝐴}⟩ ∧ ( 𝐴𝐵 ran {𝐴} ∈ 𝐶)) → 𝐴 ∈ V)
38 opeq1 4825 . . . . . 6 (𝑥 = 𝐴 → ⟨𝑥, ran {𝐴}⟩ = ⟨ 𝐴, ran {𝐴}⟩)
3938eqeq2d 2742 . . . . 5 (𝑥 = 𝐴 → (𝐴 = ⟨𝑥, ran {𝐴}⟩ ↔ 𝐴 = ⟨ 𝐴, ran {𝐴}⟩))
40 eleq1 2819 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝐵 𝐴𝐵))
4140anbi1d 631 . . . . 5 (𝑥 = 𝐴 → ((𝑥𝐵 ran {𝐴} ∈ 𝐶) ↔ ( 𝐴𝐵 ran {𝐴} ∈ 𝐶)))
4239, 41anbi12d 632 . . . 4 (𝑥 = 𝐴 → ((𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶)) ↔ (𝐴 = ⟨ 𝐴, ran {𝐴}⟩ ∧ ( 𝐴𝐵 ran {𝐴} ∈ 𝐶))))
4342ceqsexgv 3609 . . 3 ( 𝐴 ∈ V → (∃𝑥(𝑥 = 𝐴 ∧ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))) ↔ (𝐴 = ⟨ 𝐴, ran {𝐴}⟩ ∧ ( 𝐴𝐵 ran {𝐴} ∈ 𝐶))))
4435, 37, 43pm5.21nii 378 . 2 (∃𝑥(𝑥 = 𝐴 ∧ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))) ↔ (𝐴 = ⟨ 𝐴, ran {𝐴}⟩ ∧ ( 𝐴𝐵 ran {𝐴} ∈ 𝐶)))
451, 32, 443bitri 297 1 (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = ⟨ 𝐴, ran {𝐴}⟩ ∧ ( 𝐴𝐵 ran {𝐴} ∈ 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  Vcvv 3436  {csn 4576  cop 4582   cuni 4859   cint 4897   × cxp 5614  ran crn 5617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-br 5092  df-opab 5154  df-xp 5622  df-rel 5623  df-cnv 5624  df-dm 5626  df-rn 5627
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator