Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfatdmfcoafv2 Structured version   Visualization version   GIF version

Theorem dfatdmfcoafv2 47250
Description: Domain of a function composition, analogous to dmfco 6980. (Contributed by AV, 7-Sep-2022.)
Assertion
Ref Expression
dfatdmfcoafv2 (𝐺 defAt 𝐴 → (𝐴 ∈ dom (𝐹𝐺) ↔ (𝐺''''𝐴) ∈ dom 𝐹))

Proof of Theorem dfatdmfcoafv2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfatafv2ex 47209 . . . . 5 (𝐺 defAt 𝐴 → (𝐺''''𝐴) ∈ V)
2 opeq1 4854 . . . . . . . 8 (𝑥 = (𝐺''''𝐴) → ⟨𝑥, 𝑦⟩ = ⟨(𝐺''''𝐴), 𝑦⟩)
32eleq1d 2820 . . . . . . 7 (𝑥 = (𝐺''''𝐴) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ ⟨(𝐺''''𝐴), 𝑦⟩ ∈ 𝐹))
43ceqsexgv 3638 . . . . . 6 ((𝐺''''𝐴) ∈ V → (∃𝑥(𝑥 = (𝐺''''𝐴) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) ↔ ⟨(𝐺''''𝐴), 𝑦⟩ ∈ 𝐹))
54bicomd 223 . . . . 5 ((𝐺''''𝐴) ∈ V → (⟨(𝐺''''𝐴), 𝑦⟩ ∈ 𝐹 ↔ ∃𝑥(𝑥 = (𝐺''''𝐴) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
61, 5syl 17 . . . 4 (𝐺 defAt 𝐴 → (⟨(𝐺''''𝐴), 𝑦⟩ ∈ 𝐹 ↔ ∃𝑥(𝑥 = (𝐺''''𝐴) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
7 eqcom 2743 . . . . . . 7 (𝑥 = (𝐺''''𝐴) ↔ (𝐺''''𝐴) = 𝑥)
8 dfatopafv2b 47242 . . . . . . . 8 ((𝐺 defAt 𝐴𝑥 ∈ V) → ((𝐺''''𝐴) = 𝑥 ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐺))
98elvd 3470 . . . . . . 7 (𝐺 defAt 𝐴 → ((𝐺''''𝐴) = 𝑥 ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐺))
107, 9bitrid 283 . . . . . 6 (𝐺 defAt 𝐴 → (𝑥 = (𝐺''''𝐴) ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐺))
1110anbi1d 631 . . . . 5 (𝐺 defAt 𝐴 → ((𝑥 = (𝐺''''𝐴) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) ↔ (⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
1211exbidv 1921 . . . 4 (𝐺 defAt 𝐴 → (∃𝑥(𝑥 = (𝐺''''𝐴) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) ↔ ∃𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
136, 12bitrd 279 . . 3 (𝐺 defAt 𝐴 → (⟨(𝐺''''𝐴), 𝑦⟩ ∈ 𝐹 ↔ ∃𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
1413exbidv 1921 . 2 (𝐺 defAt 𝐴 → (∃𝑦⟨(𝐺''''𝐴), 𝑦⟩ ∈ 𝐹 ↔ ∃𝑦𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
15 eldm2g 5884 . . 3 ((𝐺''''𝐴) ∈ V → ((𝐺''''𝐴) ∈ dom 𝐹 ↔ ∃𝑦⟨(𝐺''''𝐴), 𝑦⟩ ∈ 𝐹))
161, 15syl 17 . 2 (𝐺 defAt 𝐴 → ((𝐺''''𝐴) ∈ dom 𝐹 ↔ ∃𝑦⟨(𝐺''''𝐴), 𝑦⟩ ∈ 𝐹))
17 df-dfat 47115 . . 3 (𝐺 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝐴})))
18 eldm2g 5884 . . . . 5 (𝐴 ∈ dom 𝐺 → (𝐴 ∈ dom (𝐹𝐺) ↔ ∃𝑦𝐴, 𝑦⟩ ∈ (𝐹𝐺)))
19 opelco2g 5852 . . . . . . 7 ((𝐴 ∈ dom 𝐺𝑦 ∈ V) → (⟨𝐴, 𝑦⟩ ∈ (𝐹𝐺) ↔ ∃𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
2019elvd 3470 . . . . . 6 (𝐴 ∈ dom 𝐺 → (⟨𝐴, 𝑦⟩ ∈ (𝐹𝐺) ↔ ∃𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
2120exbidv 1921 . . . . 5 (𝐴 ∈ dom 𝐺 → (∃𝑦𝐴, 𝑦⟩ ∈ (𝐹𝐺) ↔ ∃𝑦𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
2218, 21bitrd 279 . . . 4 (𝐴 ∈ dom 𝐺 → (𝐴 ∈ dom (𝐹𝐺) ↔ ∃𝑦𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
2322adantr 480 . . 3 ((𝐴 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝐴})) → (𝐴 ∈ dom (𝐹𝐺) ↔ ∃𝑦𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
2417, 23sylbi 217 . 2 (𝐺 defAt 𝐴 → (𝐴 ∈ dom (𝐹𝐺) ↔ ∃𝑦𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
2514, 16, 243bitr4rd 312 1 (𝐺 defAt 𝐴 → (𝐴 ∈ dom (𝐹𝐺) ↔ (𝐺''''𝐴) ∈ dom 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  Vcvv 3464  {csn 4606  cop 4612  dom cdm 5659  cres 5661  ccom 5663  Fun wfun 6530   defAt wdfat 47112  ''''cafv2 47204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-res 5671  df-iota 6489  df-fun 6538  df-fn 6539  df-dfat 47115  df-afv2 47205
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator