Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfatdmfcoafv2 Structured version   Visualization version   GIF version

Theorem dfatdmfcoafv2 46693
Description: Domain of a function composition, analogous to dmfco 6987. (Contributed by AV, 7-Sep-2022.)
Assertion
Ref Expression
dfatdmfcoafv2 (𝐺 defAt 𝐴 → (𝐴 ∈ dom (𝐹𝐺) ↔ (𝐺''''𝐴) ∈ dom 𝐹))

Proof of Theorem dfatdmfcoafv2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfatafv2ex 46652 . . . . 5 (𝐺 defAt 𝐴 → (𝐺''''𝐴) ∈ V)
2 opeq1 4870 . . . . . . . 8 (𝑥 = (𝐺''''𝐴) → ⟨𝑥, 𝑦⟩ = ⟨(𝐺''''𝐴), 𝑦⟩)
32eleq1d 2810 . . . . . . 7 (𝑥 = (𝐺''''𝐴) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ ⟨(𝐺''''𝐴), 𝑦⟩ ∈ 𝐹))
43ceqsexgv 3634 . . . . . 6 ((𝐺''''𝐴) ∈ V → (∃𝑥(𝑥 = (𝐺''''𝐴) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) ↔ ⟨(𝐺''''𝐴), 𝑦⟩ ∈ 𝐹))
54bicomd 222 . . . . 5 ((𝐺''''𝐴) ∈ V → (⟨(𝐺''''𝐴), 𝑦⟩ ∈ 𝐹 ↔ ∃𝑥(𝑥 = (𝐺''''𝐴) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
61, 5syl 17 . . . 4 (𝐺 defAt 𝐴 → (⟨(𝐺''''𝐴), 𝑦⟩ ∈ 𝐹 ↔ ∃𝑥(𝑥 = (𝐺''''𝐴) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
7 eqcom 2732 . . . . . . 7 (𝑥 = (𝐺''''𝐴) ↔ (𝐺''''𝐴) = 𝑥)
8 dfatopafv2b 46685 . . . . . . . 8 ((𝐺 defAt 𝐴𝑥 ∈ V) → ((𝐺''''𝐴) = 𝑥 ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐺))
98elvd 3470 . . . . . . 7 (𝐺 defAt 𝐴 → ((𝐺''''𝐴) = 𝑥 ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐺))
107, 9bitrid 282 . . . . . 6 (𝐺 defAt 𝐴 → (𝑥 = (𝐺''''𝐴) ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐺))
1110anbi1d 629 . . . . 5 (𝐺 defAt 𝐴 → ((𝑥 = (𝐺''''𝐴) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) ↔ (⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
1211exbidv 1916 . . . 4 (𝐺 defAt 𝐴 → (∃𝑥(𝑥 = (𝐺''''𝐴) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) ↔ ∃𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
136, 12bitrd 278 . . 3 (𝐺 defAt 𝐴 → (⟨(𝐺''''𝐴), 𝑦⟩ ∈ 𝐹 ↔ ∃𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
1413exbidv 1916 . 2 (𝐺 defAt 𝐴 → (∃𝑦⟨(𝐺''''𝐴), 𝑦⟩ ∈ 𝐹 ↔ ∃𝑦𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
15 eldm2g 5897 . . 3 ((𝐺''''𝐴) ∈ V → ((𝐺''''𝐴) ∈ dom 𝐹 ↔ ∃𝑦⟨(𝐺''''𝐴), 𝑦⟩ ∈ 𝐹))
161, 15syl 17 . 2 (𝐺 defAt 𝐴 → ((𝐺''''𝐴) ∈ dom 𝐹 ↔ ∃𝑦⟨(𝐺''''𝐴), 𝑦⟩ ∈ 𝐹))
17 df-dfat 46558 . . 3 (𝐺 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝐴})))
18 eldm2g 5897 . . . . 5 (𝐴 ∈ dom 𝐺 → (𝐴 ∈ dom (𝐹𝐺) ↔ ∃𝑦𝐴, 𝑦⟩ ∈ (𝐹𝐺)))
19 opelco2g 5865 . . . . . . 7 ((𝐴 ∈ dom 𝐺𝑦 ∈ V) → (⟨𝐴, 𝑦⟩ ∈ (𝐹𝐺) ↔ ∃𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
2019elvd 3470 . . . . . 6 (𝐴 ∈ dom 𝐺 → (⟨𝐴, 𝑦⟩ ∈ (𝐹𝐺) ↔ ∃𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
2120exbidv 1916 . . . . 5 (𝐴 ∈ dom 𝐺 → (∃𝑦𝐴, 𝑦⟩ ∈ (𝐹𝐺) ↔ ∃𝑦𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
2218, 21bitrd 278 . . . 4 (𝐴 ∈ dom 𝐺 → (𝐴 ∈ dom (𝐹𝐺) ↔ ∃𝑦𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
2322adantr 479 . . 3 ((𝐴 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝐴})) → (𝐴 ∈ dom (𝐹𝐺) ↔ ∃𝑦𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
2417, 23sylbi 216 . 2 (𝐺 defAt 𝐴 → (𝐴 ∈ dom (𝐹𝐺) ↔ ∃𝑦𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
2514, 16, 243bitr4rd 311 1 (𝐺 defAt 𝐴 → (𝐴 ∈ dom (𝐹𝐺) ↔ (𝐺''''𝐴) ∈ dom 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wex 1773  wcel 2098  Vcvv 3463  {csn 4625  cop 4631  dom cdm 5673  cres 5675  ccom 5677  Fun wfun 6537   defAt wdfat 46555  ''''cafv2 46647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4320  df-if 4526  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-br 5145  df-opab 5207  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-res 5685  df-iota 6495  df-fun 6545  df-fn 6546  df-dfat 46558  df-afv2 46648
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator