Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfatdmfcoafv2 Structured version   Visualization version   GIF version

Theorem dfatdmfcoafv2 44633
Description: Domain of a function composition, analogous to dmfco 6846. (Contributed by AV, 7-Sep-2022.)
Assertion
Ref Expression
dfatdmfcoafv2 (𝐺 defAt 𝐴 → (𝐴 ∈ dom (𝐹𝐺) ↔ (𝐺''''𝐴) ∈ dom 𝐹))

Proof of Theorem dfatdmfcoafv2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfatafv2ex 44592 . . . . 5 (𝐺 defAt 𝐴 → (𝐺''''𝐴) ∈ V)
2 opeq1 4801 . . . . . . . 8 (𝑥 = (𝐺''''𝐴) → ⟨𝑥, 𝑦⟩ = ⟨(𝐺''''𝐴), 𝑦⟩)
32eleq1d 2823 . . . . . . 7 (𝑥 = (𝐺''''𝐴) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ ⟨(𝐺''''𝐴), 𝑦⟩ ∈ 𝐹))
43ceqsexgv 3576 . . . . . 6 ((𝐺''''𝐴) ∈ V → (∃𝑥(𝑥 = (𝐺''''𝐴) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) ↔ ⟨(𝐺''''𝐴), 𝑦⟩ ∈ 𝐹))
54bicomd 222 . . . . 5 ((𝐺''''𝐴) ∈ V → (⟨(𝐺''''𝐴), 𝑦⟩ ∈ 𝐹 ↔ ∃𝑥(𝑥 = (𝐺''''𝐴) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
61, 5syl 17 . . . 4 (𝐺 defAt 𝐴 → (⟨(𝐺''''𝐴), 𝑦⟩ ∈ 𝐹 ↔ ∃𝑥(𝑥 = (𝐺''''𝐴) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
7 eqcom 2745 . . . . . . 7 (𝑥 = (𝐺''''𝐴) ↔ (𝐺''''𝐴) = 𝑥)
8 dfatopafv2b 44625 . . . . . . . 8 ((𝐺 defAt 𝐴𝑥 ∈ V) → ((𝐺''''𝐴) = 𝑥 ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐺))
98elvd 3429 . . . . . . 7 (𝐺 defAt 𝐴 → ((𝐺''''𝐴) = 𝑥 ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐺))
107, 9syl5bb 282 . . . . . 6 (𝐺 defAt 𝐴 → (𝑥 = (𝐺''''𝐴) ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐺))
1110anbi1d 629 . . . . 5 (𝐺 defAt 𝐴 → ((𝑥 = (𝐺''''𝐴) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) ↔ (⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
1211exbidv 1925 . . . 4 (𝐺 defAt 𝐴 → (∃𝑥(𝑥 = (𝐺''''𝐴) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) ↔ ∃𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
136, 12bitrd 278 . . 3 (𝐺 defAt 𝐴 → (⟨(𝐺''''𝐴), 𝑦⟩ ∈ 𝐹 ↔ ∃𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
1413exbidv 1925 . 2 (𝐺 defAt 𝐴 → (∃𝑦⟨(𝐺''''𝐴), 𝑦⟩ ∈ 𝐹 ↔ ∃𝑦𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
15 eldm2g 5797 . . 3 ((𝐺''''𝐴) ∈ V → ((𝐺''''𝐴) ∈ dom 𝐹 ↔ ∃𝑦⟨(𝐺''''𝐴), 𝑦⟩ ∈ 𝐹))
161, 15syl 17 . 2 (𝐺 defAt 𝐴 → ((𝐺''''𝐴) ∈ dom 𝐹 ↔ ∃𝑦⟨(𝐺''''𝐴), 𝑦⟩ ∈ 𝐹))
17 df-dfat 44498 . . 3 (𝐺 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝐴})))
18 eldm2g 5797 . . . . 5 (𝐴 ∈ dom 𝐺 → (𝐴 ∈ dom (𝐹𝐺) ↔ ∃𝑦𝐴, 𝑦⟩ ∈ (𝐹𝐺)))
19 opelco2g 5765 . . . . . . 7 ((𝐴 ∈ dom 𝐺𝑦 ∈ V) → (⟨𝐴, 𝑦⟩ ∈ (𝐹𝐺) ↔ ∃𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
2019elvd 3429 . . . . . 6 (𝐴 ∈ dom 𝐺 → (⟨𝐴, 𝑦⟩ ∈ (𝐹𝐺) ↔ ∃𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
2120exbidv 1925 . . . . 5 (𝐴 ∈ dom 𝐺 → (∃𝑦𝐴, 𝑦⟩ ∈ (𝐹𝐺) ↔ ∃𝑦𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
2218, 21bitrd 278 . . . 4 (𝐴 ∈ dom 𝐺 → (𝐴 ∈ dom (𝐹𝐺) ↔ ∃𝑦𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
2322adantr 480 . . 3 ((𝐴 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝐴})) → (𝐴 ∈ dom (𝐹𝐺) ↔ ∃𝑦𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
2417, 23sylbi 216 . 2 (𝐺 defAt 𝐴 → (𝐴 ∈ dom (𝐹𝐺) ↔ ∃𝑦𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
2514, 16, 243bitr4rd 311 1 (𝐺 defAt 𝐴 → (𝐴 ∈ dom (𝐹𝐺) ↔ (𝐺''''𝐴) ∈ dom 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  Vcvv 3422  {csn 4558  cop 4564  dom cdm 5580  cres 5582  ccom 5584  Fun wfun 6412   defAt wdfat 44495  ''''cafv2 44587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-res 5592  df-iota 6376  df-fun 6420  df-fn 6421  df-dfat 44498  df-afv2 44588
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator