Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapjat1 Structured version   Visualization version   GIF version

Theorem pmapjat1 37029
Description: The projective map of the join of a lattice element and an atom. (Contributed by NM, 28-Jan-2012.)
Hypotheses
Ref Expression
pmapjat.b 𝐵 = (Base‘𝐾)
pmapjat.j = (join‘𝐾)
pmapjat.a 𝐴 = (Atoms‘𝐾)
pmapjat.m 𝑀 = (pmap‘𝐾)
pmapjat.p + = (+𝑃𝐾)
Assertion
Ref Expression
pmapjat1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑀‘(𝑋 𝑄)) = ((𝑀𝑋) + (𝑀𝑄)))

Proof of Theorem pmapjat1
Dummy variables 𝑞 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1133 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → 𝐾 ∈ HL)
2 pmapjat.b . . . . . . . 8 𝐵 = (Base‘𝐾)
3 pmapjat.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
42, 3atbase 36465 . . . . . . 7 (𝑄𝐴𝑄𝐵)
543ad2ant3 1132 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → 𝑄𝐵)
6 pmapjat.m . . . . . . 7 𝑀 = (pmap‘𝐾)
72, 3, 6pmapssat 36935 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑄𝐵) → (𝑀𝑄) ⊆ 𝐴)
81, 5, 7syl2anc 587 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑀𝑄) ⊆ 𝐴)
9 pmapjat.p . . . . . 6 + = (+𝑃𝐾)
103, 9padd02 36988 . . . . 5 ((𝐾 ∈ HL ∧ (𝑀𝑄) ⊆ 𝐴) → (∅ + (𝑀𝑄)) = (𝑀𝑄))
111, 8, 10syl2anc 587 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (∅ + (𝑀𝑄)) = (𝑀𝑄))
1211adantr 484 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 = (0.‘𝐾)) → (∅ + (𝑀𝑄)) = (𝑀𝑄))
13 fveq2 6643 . . . . 5 (𝑋 = (0.‘𝐾) → (𝑀𝑋) = (𝑀‘(0.‘𝐾)))
14 hlatl 36536 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
15143ad2ant1 1130 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → 𝐾 ∈ AtLat)
16 eqid 2821 . . . . . . 7 (0.‘𝐾) = (0.‘𝐾)
1716, 6pmap0 36941 . . . . . 6 (𝐾 ∈ AtLat → (𝑀‘(0.‘𝐾)) = ∅)
1815, 17syl 17 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑀‘(0.‘𝐾)) = ∅)
1913, 18sylan9eqr 2878 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 = (0.‘𝐾)) → (𝑀𝑋) = ∅)
2019oveq1d 7145 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 = (0.‘𝐾)) → ((𝑀𝑋) + (𝑀𝑄)) = (∅ + (𝑀𝑄)))
21 oveq1 7137 . . . . 5 (𝑋 = (0.‘𝐾) → (𝑋 𝑄) = ((0.‘𝐾) 𝑄))
22 hlol 36537 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OL)
23223ad2ant1 1130 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → 𝐾 ∈ OL)
24 pmapjat.j . . . . . . 7 = (join‘𝐾)
252, 24, 16olj02 36402 . . . . . 6 ((𝐾 ∈ OL ∧ 𝑄𝐵) → ((0.‘𝐾) 𝑄) = 𝑄)
2623, 5, 25syl2anc 587 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → ((0.‘𝐾) 𝑄) = 𝑄)
2721, 26sylan9eqr 2878 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 = (0.‘𝐾)) → (𝑋 𝑄) = 𝑄)
2827fveq2d 6647 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 = (0.‘𝐾)) → (𝑀‘(𝑋 𝑄)) = (𝑀𝑄))
2912, 20, 283eqtr4rd 2867 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 = (0.‘𝐾)) → (𝑀‘(𝑋 𝑄)) = ((𝑀𝑋) + (𝑀𝑄)))
30 simpll1 1209 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) → 𝐾 ∈ HL)
3130adantr 484 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) ∧ 𝑝(le‘𝐾)(𝑋 𝑄)) → 𝐾 ∈ HL)
32 simpll2 1210 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) → 𝑋𝐵)
3332adantr 484 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) ∧ 𝑝(le‘𝐾)(𝑋 𝑄)) → 𝑋𝐵)
34 simplr 768 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) ∧ 𝑝(le‘𝐾)(𝑋 𝑄)) → 𝑝𝐴)
35 simpll3 1211 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) → 𝑄𝐴)
3635adantr 484 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) ∧ 𝑝(le‘𝐾)(𝑋 𝑄)) → 𝑄𝐴)
3733, 34, 363jca 1125 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) ∧ 𝑝(le‘𝐾)(𝑋 𝑄)) → (𝑋𝐵𝑝𝐴𝑄𝐴))
38 simpllr 775 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) ∧ 𝑝(le‘𝐾)(𝑋 𝑄)) → 𝑋 ≠ (0.‘𝐾))
39 simpr 488 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) ∧ 𝑝(le‘𝐾)(𝑋 𝑄)) → 𝑝(le‘𝐾)(𝑋 𝑄))
40 eqid 2821 . . . . . . . . . . 11 (le‘𝐾) = (le‘𝐾)
412, 40, 24, 16, 3cvrat42 36620 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑝𝐴𝑄𝐴)) → ((𝑋 ≠ (0.‘𝐾) ∧ 𝑝(le‘𝐾)(𝑋 𝑄)) → ∃𝑞𝐴 (𝑞(le‘𝐾)𝑋𝑝(le‘𝐾)(𝑞 𝑄))))
4241imp 410 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑝𝐴𝑄𝐴)) ∧ (𝑋 ≠ (0.‘𝐾) ∧ 𝑝(le‘𝐾)(𝑋 𝑄))) → ∃𝑞𝐴 (𝑞(le‘𝐾)𝑋𝑝(le‘𝐾)(𝑞 𝑄)))
4331, 37, 38, 39, 42syl22anc 837 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) ∧ 𝑝(le‘𝐾)(𝑋 𝑄)) → ∃𝑞𝐴 (𝑞(le‘𝐾)𝑋𝑝(le‘𝐾)(𝑞 𝑄)))
4443ex 416 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) → (𝑝(le‘𝐾)(𝑋 𝑄) → ∃𝑞𝐴 (𝑞(le‘𝐾)𝑋𝑝(le‘𝐾)(𝑞 𝑄))))
452, 40, 3, 6elpmap 36934 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑞 ∈ (𝑀𝑋) ↔ (𝑞𝐴𝑞(le‘𝐾)𝑋)))
46453adant3 1129 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑞 ∈ (𝑀𝑋) ↔ (𝑞𝐴𝑞(le‘𝐾)𝑋)))
47 df-rex 3132 . . . . . . . . . . . . 13 (∃𝑟 ∈ (𝑀𝑄)𝑝(le‘𝐾)(𝑞 𝑟) ↔ ∃𝑟(𝑟 ∈ (𝑀𝑄) ∧ 𝑝(le‘𝐾)(𝑞 𝑟)))
483, 6elpmapat 36940 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ 𝑄𝐴) → (𝑟 ∈ (𝑀𝑄) ↔ 𝑟 = 𝑄))
49483adant2 1128 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑟 ∈ (𝑀𝑄) ↔ 𝑟 = 𝑄))
5049anbi1d 632 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → ((𝑟 ∈ (𝑀𝑄) ∧ 𝑝(le‘𝐾)(𝑞 𝑟)) ↔ (𝑟 = 𝑄𝑝(le‘𝐾)(𝑞 𝑟))))
5150exbidv 1923 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (∃𝑟(𝑟 ∈ (𝑀𝑄) ∧ 𝑝(le‘𝐾)(𝑞 𝑟)) ↔ ∃𝑟(𝑟 = 𝑄𝑝(le‘𝐾)(𝑞 𝑟))))
5247, 51syl5rbb 287 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (∃𝑟(𝑟 = 𝑄𝑝(le‘𝐾)(𝑞 𝑟)) ↔ ∃𝑟 ∈ (𝑀𝑄)𝑝(le‘𝐾)(𝑞 𝑟)))
53 oveq2 7138 . . . . . . . . . . . . . . 15 (𝑟 = 𝑄 → (𝑞 𝑟) = (𝑞 𝑄))
5453breq2d 5051 . . . . . . . . . . . . . 14 (𝑟 = 𝑄 → (𝑝(le‘𝐾)(𝑞 𝑟) ↔ 𝑝(le‘𝐾)(𝑞 𝑄)))
5554ceqsexgv 3624 . . . . . . . . . . . . 13 (𝑄𝐴 → (∃𝑟(𝑟 = 𝑄𝑝(le‘𝐾)(𝑞 𝑟)) ↔ 𝑝(le‘𝐾)(𝑞 𝑄)))
56553ad2ant3 1132 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (∃𝑟(𝑟 = 𝑄𝑝(le‘𝐾)(𝑞 𝑟)) ↔ 𝑝(le‘𝐾)(𝑞 𝑄)))
5752, 56bitr3d 284 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (∃𝑟 ∈ (𝑀𝑄)𝑝(le‘𝐾)(𝑞 𝑟) ↔ 𝑝(le‘𝐾)(𝑞 𝑄)))
5846, 57anbi12d 633 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → ((𝑞 ∈ (𝑀𝑋) ∧ ∃𝑟 ∈ (𝑀𝑄)𝑝(le‘𝐾)(𝑞 𝑟)) ↔ ((𝑞𝐴𝑞(le‘𝐾)𝑋) ∧ 𝑝(le‘𝐾)(𝑞 𝑄))))
59 anass 472 . . . . . . . . . 10 (((𝑞𝐴𝑞(le‘𝐾)𝑋) ∧ 𝑝(le‘𝐾)(𝑞 𝑄)) ↔ (𝑞𝐴 ∧ (𝑞(le‘𝐾)𝑋𝑝(le‘𝐾)(𝑞 𝑄))))
6058, 59syl6bb 290 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → ((𝑞 ∈ (𝑀𝑋) ∧ ∃𝑟 ∈ (𝑀𝑄)𝑝(le‘𝐾)(𝑞 𝑟)) ↔ (𝑞𝐴 ∧ (𝑞(le‘𝐾)𝑋𝑝(le‘𝐾)(𝑞 𝑄)))))
6160rexbidv2 3281 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑄)𝑝(le‘𝐾)(𝑞 𝑟) ↔ ∃𝑞𝐴 (𝑞(le‘𝐾)𝑋𝑝(le‘𝐾)(𝑞 𝑄))))
6261ad2antrr 725 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) → (∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑄)𝑝(le‘𝐾)(𝑞 𝑟) ↔ ∃𝑞𝐴 (𝑞(le‘𝐾)𝑋𝑝(le‘𝐾)(𝑞 𝑄))))
6344, 62sylibrd 262 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) → (𝑝(le‘𝐾)(𝑋 𝑄) → ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑄)𝑝(le‘𝐾)(𝑞 𝑟)))
6463imdistanda 575 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → ((𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑄)) → (𝑝𝐴 ∧ ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑄)𝑝(le‘𝐾)(𝑞 𝑟))))
65 hllat 36539 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ Lat)
66653ad2ant1 1130 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → 𝐾 ∈ Lat)
67 simp2 1134 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → 𝑋𝐵)
682, 24latjcl 17639 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑄𝐵) → (𝑋 𝑄) ∈ 𝐵)
6966, 67, 5, 68syl3anc 1368 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑋 𝑄) ∈ 𝐵)
702, 40, 3, 6elpmap 36934 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋 𝑄) ∈ 𝐵) → (𝑝 ∈ (𝑀‘(𝑋 𝑄)) ↔ (𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑄))))
711, 69, 70syl2anc 587 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑝 ∈ (𝑀‘(𝑋 𝑄)) ↔ (𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑄))))
7271adantr 484 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → (𝑝 ∈ (𝑀‘(𝑋 𝑄)) ↔ (𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑄))))
732, 3, 6pmapssat 36935 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑀𝑋) ⊆ 𝐴)
74733adant3 1129 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑀𝑋) ⊆ 𝐴)
7566, 74, 83jca 1125 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝐾 ∈ Lat ∧ (𝑀𝑋) ⊆ 𝐴 ∧ (𝑀𝑄) ⊆ 𝐴))
7675adantr 484 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → (𝐾 ∈ Lat ∧ (𝑀𝑋) ⊆ 𝐴 ∧ (𝑀𝑄) ⊆ 𝐴))
772, 16, 6pmapeq0 36942 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((𝑀𝑋) = ∅ ↔ 𝑋 = (0.‘𝐾)))
78773adant3 1129 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → ((𝑀𝑋) = ∅ ↔ 𝑋 = (0.‘𝐾)))
7978necon3bid 3051 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → ((𝑀𝑋) ≠ ∅ ↔ 𝑋 ≠ (0.‘𝐾)))
8079biimpar 481 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → (𝑀𝑋) ≠ ∅)
81 simp3 1135 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → 𝑄𝐴)
8216, 3atn0 36484 . . . . . . . . 9 ((𝐾 ∈ AtLat ∧ 𝑄𝐴) → 𝑄 ≠ (0.‘𝐾))
8315, 81, 82syl2anc 587 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → 𝑄 ≠ (0.‘𝐾))
842, 16, 6pmapeq0 36942 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑄𝐵) → ((𝑀𝑄) = ∅ ↔ 𝑄 = (0.‘𝐾)))
851, 5, 84syl2anc 587 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → ((𝑀𝑄) = ∅ ↔ 𝑄 = (0.‘𝐾)))
8685necon3bid 3051 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → ((𝑀𝑄) ≠ ∅ ↔ 𝑄 ≠ (0.‘𝐾)))
8783, 86mpbird 260 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑀𝑄) ≠ ∅)
8887adantr 484 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → (𝑀𝑄) ≠ ∅)
8940, 24, 3, 9elpaddn0 36976 . . . . . 6 (((𝐾 ∈ Lat ∧ (𝑀𝑋) ⊆ 𝐴 ∧ (𝑀𝑄) ⊆ 𝐴) ∧ ((𝑀𝑋) ≠ ∅ ∧ (𝑀𝑄) ≠ ∅)) → (𝑝 ∈ ((𝑀𝑋) + (𝑀𝑄)) ↔ (𝑝𝐴 ∧ ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑄)𝑝(le‘𝐾)(𝑞 𝑟))))
9076, 80, 88, 89syl12anc 835 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → (𝑝 ∈ ((𝑀𝑋) + (𝑀𝑄)) ↔ (𝑝𝐴 ∧ ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑄)𝑝(le‘𝐾)(𝑞 𝑟))))
9164, 72, 903imtr4d 297 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → (𝑝 ∈ (𝑀‘(𝑋 𝑄)) → 𝑝 ∈ ((𝑀𝑋) + (𝑀𝑄))))
9291ssrdv 3949 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → (𝑀‘(𝑋 𝑄)) ⊆ ((𝑀𝑋) + (𝑀𝑄)))
932, 24, 6, 9pmapjoin 37028 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑄𝐵) → ((𝑀𝑋) + (𝑀𝑄)) ⊆ (𝑀‘(𝑋 𝑄)))
9466, 67, 5, 93syl3anc 1368 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → ((𝑀𝑋) + (𝑀𝑄)) ⊆ (𝑀‘(𝑋 𝑄)))
9594adantr 484 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → ((𝑀𝑋) + (𝑀𝑄)) ⊆ (𝑀‘(𝑋 𝑄)))
9692, 95eqssd 3960 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → (𝑀‘(𝑋 𝑄)) = ((𝑀𝑋) + (𝑀𝑄)))
9729, 96pm2.61dane 3094 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑀‘(𝑋 𝑄)) = ((𝑀𝑋) + (𝑀𝑄)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wex 1781  wcel 2115  wne 3007  wrex 3127  wss 3910  c0 4266   class class class wbr 5039  cfv 6328  (class class class)co 7130  Basecbs 16461  lecple 16550  joincjn 17532  0.cp0 17625  Latclat 17633  OLcol 36350  Atomscatm 36439  AtLatcal 36440  HLchlt 36526  pmapcpmap 36673  +𝑃cpadd 36971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-ral 3131  df-rex 3132  df-reu 3133  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-op 4547  df-uni 4812  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-id 5433  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-1st 7664  df-2nd 7665  df-proset 17516  df-poset 17534  df-plt 17546  df-lub 17562  df-glb 17563  df-join 17564  df-meet 17565  df-p0 17627  df-lat 17634  df-clat 17696  df-oposet 36352  df-ol 36354  df-oml 36355  df-covers 36442  df-ats 36443  df-atl 36474  df-cvlat 36498  df-hlat 36527  df-pmap 36680  df-padd 36972
This theorem is referenced by:  pmapjat2  37030  pmapjlln1  37031  atmod1i2  37035  paddatclN  37125
  Copyright terms: Public domain W3C validator