Step | Hyp | Ref
| Expression |
1 | | simp1 1135 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → 𝐾 ∈ HL) |
2 | | pmapjat.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐾) |
3 | | pmapjat.a |
. . . . . . . 8
⊢ 𝐴 = (Atoms‘𝐾) |
4 | 2, 3 | atbase 37303 |
. . . . . . 7
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵) |
5 | 4 | 3ad2ant3 1134 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → 𝑄 ∈ 𝐵) |
6 | | pmapjat.m |
. . . . . . 7
⊢ 𝑀 = (pmap‘𝐾) |
7 | 2, 3, 6 | pmapssat 37773 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐵) → (𝑀‘𝑄) ⊆ 𝐴) |
8 | 1, 5, 7 | syl2anc 584 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → (𝑀‘𝑄) ⊆ 𝐴) |
9 | | pmapjat.p |
. . . . . 6
⊢ + =
(+𝑃‘𝐾) |
10 | 3, 9 | padd02 37826 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑀‘𝑄) ⊆ 𝐴) → (∅ + (𝑀‘𝑄)) = (𝑀‘𝑄)) |
11 | 1, 8, 10 | syl2anc 584 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → (∅ + (𝑀‘𝑄)) = (𝑀‘𝑄)) |
12 | 11 | adantr 481 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 = (0.‘𝐾)) → (∅ + (𝑀‘𝑄)) = (𝑀‘𝑄)) |
13 | | fveq2 6774 |
. . . . 5
⊢ (𝑋 = (0.‘𝐾) → (𝑀‘𝑋) = (𝑀‘(0.‘𝐾))) |
14 | | hlatl 37374 |
. . . . . . 7
⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
15 | 14 | 3ad2ant1 1132 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → 𝐾 ∈ AtLat) |
16 | | eqid 2738 |
. . . . . . 7
⊢
(0.‘𝐾) =
(0.‘𝐾) |
17 | 16, 6 | pmap0 37779 |
. . . . . 6
⊢ (𝐾 ∈ AtLat → (𝑀‘(0.‘𝐾)) = ∅) |
18 | 15, 17 | syl 17 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → (𝑀‘(0.‘𝐾)) = ∅) |
19 | 13, 18 | sylan9eqr 2800 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 = (0.‘𝐾)) → (𝑀‘𝑋) = ∅) |
20 | 19 | oveq1d 7290 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 = (0.‘𝐾)) → ((𝑀‘𝑋) + (𝑀‘𝑄)) = (∅ + (𝑀‘𝑄))) |
21 | | oveq1 7282 |
. . . . 5
⊢ (𝑋 = (0.‘𝐾) → (𝑋 ∨ 𝑄) = ((0.‘𝐾) ∨ 𝑄)) |
22 | | hlol 37375 |
. . . . . . 7
⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
23 | 22 | 3ad2ant1 1132 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → 𝐾 ∈ OL) |
24 | | pmapjat.j |
. . . . . . 7
⊢ ∨ =
(join‘𝐾) |
25 | 2, 24, 16 | olj02 37240 |
. . . . . 6
⊢ ((𝐾 ∈ OL ∧ 𝑄 ∈ 𝐵) → ((0.‘𝐾) ∨ 𝑄) = 𝑄) |
26 | 23, 5, 25 | syl2anc 584 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → ((0.‘𝐾) ∨ 𝑄) = 𝑄) |
27 | 21, 26 | sylan9eqr 2800 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 = (0.‘𝐾)) → (𝑋 ∨ 𝑄) = 𝑄) |
28 | 27 | fveq2d 6778 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 = (0.‘𝐾)) → (𝑀‘(𝑋 ∨ 𝑄)) = (𝑀‘𝑄)) |
29 | 12, 20, 28 | 3eqtr4rd 2789 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 = (0.‘𝐾)) → (𝑀‘(𝑋 ∨ 𝑄)) = ((𝑀‘𝑋) + (𝑀‘𝑄))) |
30 | | simpll1 1211 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝 ∈ 𝐴) → 𝐾 ∈ HL) |
31 | 30 | adantr 481 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝 ∈ 𝐴) ∧ 𝑝(le‘𝐾)(𝑋 ∨ 𝑄)) → 𝐾 ∈ HL) |
32 | | simpll2 1212 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝 ∈ 𝐴) → 𝑋 ∈ 𝐵) |
33 | 32 | adantr 481 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝 ∈ 𝐴) ∧ 𝑝(le‘𝐾)(𝑋 ∨ 𝑄)) → 𝑋 ∈ 𝐵) |
34 | | simplr 766 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝 ∈ 𝐴) ∧ 𝑝(le‘𝐾)(𝑋 ∨ 𝑄)) → 𝑝 ∈ 𝐴) |
35 | | simpll3 1213 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝 ∈ 𝐴) → 𝑄 ∈ 𝐴) |
36 | 35 | adantr 481 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝 ∈ 𝐴) ∧ 𝑝(le‘𝐾)(𝑋 ∨ 𝑄)) → 𝑄 ∈ 𝐴) |
37 | 33, 34, 36 | 3jca 1127 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝 ∈ 𝐴) ∧ 𝑝(le‘𝐾)(𝑋 ∨ 𝑄)) → (𝑋 ∈ 𝐵 ∧ 𝑝 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) |
38 | | simpllr 773 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝 ∈ 𝐴) ∧ 𝑝(le‘𝐾)(𝑋 ∨ 𝑄)) → 𝑋 ≠ (0.‘𝐾)) |
39 | | simpr 485 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝 ∈ 𝐴) ∧ 𝑝(le‘𝐾)(𝑋 ∨ 𝑄)) → 𝑝(le‘𝐾)(𝑋 ∨ 𝑄)) |
40 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(le‘𝐾) =
(le‘𝐾) |
41 | 2, 40, 24, 16, 3 | cvrat42 37458 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑝 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑋 ≠ (0.‘𝐾) ∧ 𝑝(le‘𝐾)(𝑋 ∨ 𝑄)) → ∃𝑞 ∈ 𝐴 (𝑞(le‘𝐾)𝑋 ∧ 𝑝(le‘𝐾)(𝑞 ∨ 𝑄)))) |
42 | 41 | imp 407 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑝 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ (𝑋 ≠ (0.‘𝐾) ∧ 𝑝(le‘𝐾)(𝑋 ∨ 𝑄))) → ∃𝑞 ∈ 𝐴 (𝑞(le‘𝐾)𝑋 ∧ 𝑝(le‘𝐾)(𝑞 ∨ 𝑄))) |
43 | 31, 37, 38, 39, 42 | syl22anc 836 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝 ∈ 𝐴) ∧ 𝑝(le‘𝐾)(𝑋 ∨ 𝑄)) → ∃𝑞 ∈ 𝐴 (𝑞(le‘𝐾)𝑋 ∧ 𝑝(le‘𝐾)(𝑞 ∨ 𝑄))) |
44 | 43 | ex 413 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝 ∈ 𝐴) → (𝑝(le‘𝐾)(𝑋 ∨ 𝑄) → ∃𝑞 ∈ 𝐴 (𝑞(le‘𝐾)𝑋 ∧ 𝑝(le‘𝐾)(𝑞 ∨ 𝑄)))) |
45 | 2, 40, 3, 6 | elpmap 37772 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑞 ∈ (𝑀‘𝑋) ↔ (𝑞 ∈ 𝐴 ∧ 𝑞(le‘𝐾)𝑋))) |
46 | 45 | 3adant3 1131 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → (𝑞 ∈ (𝑀‘𝑋) ↔ (𝑞 ∈ 𝐴 ∧ 𝑞(le‘𝐾)𝑋))) |
47 | | df-rex 3070 |
. . . . . . . . . . . . 13
⊢
(∃𝑟 ∈
(𝑀‘𝑄)𝑝(le‘𝐾)(𝑞 ∨ 𝑟) ↔ ∃𝑟(𝑟 ∈ (𝑀‘𝑄) ∧ 𝑝(le‘𝐾)(𝑞 ∨ 𝑟))) |
48 | 3, 6 | elpmapat 37778 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → (𝑟 ∈ (𝑀‘𝑄) ↔ 𝑟 = 𝑄)) |
49 | 48 | 3adant2 1130 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → (𝑟 ∈ (𝑀‘𝑄) ↔ 𝑟 = 𝑄)) |
50 | 49 | anbi1d 630 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → ((𝑟 ∈ (𝑀‘𝑄) ∧ 𝑝(le‘𝐾)(𝑞 ∨ 𝑟)) ↔ (𝑟 = 𝑄 ∧ 𝑝(le‘𝐾)(𝑞 ∨ 𝑟)))) |
51 | 50 | exbidv 1924 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → (∃𝑟(𝑟 ∈ (𝑀‘𝑄) ∧ 𝑝(le‘𝐾)(𝑞 ∨ 𝑟)) ↔ ∃𝑟(𝑟 = 𝑄 ∧ 𝑝(le‘𝐾)(𝑞 ∨ 𝑟)))) |
52 | 47, 51 | bitr2id 284 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → (∃𝑟(𝑟 = 𝑄 ∧ 𝑝(le‘𝐾)(𝑞 ∨ 𝑟)) ↔ ∃𝑟 ∈ (𝑀‘𝑄)𝑝(le‘𝐾)(𝑞 ∨ 𝑟))) |
53 | | oveq2 7283 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 = 𝑄 → (𝑞 ∨ 𝑟) = (𝑞 ∨ 𝑄)) |
54 | 53 | breq2d 5086 |
. . . . . . . . . . . . . 14
⊢ (𝑟 = 𝑄 → (𝑝(le‘𝐾)(𝑞 ∨ 𝑟) ↔ 𝑝(le‘𝐾)(𝑞 ∨ 𝑄))) |
55 | 54 | ceqsexgv 3584 |
. . . . . . . . . . . . 13
⊢ (𝑄 ∈ 𝐴 → (∃𝑟(𝑟 = 𝑄 ∧ 𝑝(le‘𝐾)(𝑞 ∨ 𝑟)) ↔ 𝑝(le‘𝐾)(𝑞 ∨ 𝑄))) |
56 | 55 | 3ad2ant3 1134 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → (∃𝑟(𝑟 = 𝑄 ∧ 𝑝(le‘𝐾)(𝑞 ∨ 𝑟)) ↔ 𝑝(le‘𝐾)(𝑞 ∨ 𝑄))) |
57 | 52, 56 | bitr3d 280 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → (∃𝑟 ∈ (𝑀‘𝑄)𝑝(le‘𝐾)(𝑞 ∨ 𝑟) ↔ 𝑝(le‘𝐾)(𝑞 ∨ 𝑄))) |
58 | 46, 57 | anbi12d 631 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → ((𝑞 ∈ (𝑀‘𝑋) ∧ ∃𝑟 ∈ (𝑀‘𝑄)𝑝(le‘𝐾)(𝑞 ∨ 𝑟)) ↔ ((𝑞 ∈ 𝐴 ∧ 𝑞(le‘𝐾)𝑋) ∧ 𝑝(le‘𝐾)(𝑞 ∨ 𝑄)))) |
59 | | anass 469 |
. . . . . . . . . 10
⊢ (((𝑞 ∈ 𝐴 ∧ 𝑞(le‘𝐾)𝑋) ∧ 𝑝(le‘𝐾)(𝑞 ∨ 𝑄)) ↔ (𝑞 ∈ 𝐴 ∧ (𝑞(le‘𝐾)𝑋 ∧ 𝑝(le‘𝐾)(𝑞 ∨ 𝑄)))) |
60 | 58, 59 | bitrdi 287 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → ((𝑞 ∈ (𝑀‘𝑋) ∧ ∃𝑟 ∈ (𝑀‘𝑄)𝑝(le‘𝐾)(𝑞 ∨ 𝑟)) ↔ (𝑞 ∈ 𝐴 ∧ (𝑞(le‘𝐾)𝑋 ∧ 𝑝(le‘𝐾)(𝑞 ∨ 𝑄))))) |
61 | 60 | rexbidv2 3224 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → (∃𝑞 ∈ (𝑀‘𝑋)∃𝑟 ∈ (𝑀‘𝑄)𝑝(le‘𝐾)(𝑞 ∨ 𝑟) ↔ ∃𝑞 ∈ 𝐴 (𝑞(le‘𝐾)𝑋 ∧ 𝑝(le‘𝐾)(𝑞 ∨ 𝑄)))) |
62 | 61 | ad2antrr 723 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝 ∈ 𝐴) → (∃𝑞 ∈ (𝑀‘𝑋)∃𝑟 ∈ (𝑀‘𝑄)𝑝(le‘𝐾)(𝑞 ∨ 𝑟) ↔ ∃𝑞 ∈ 𝐴 (𝑞(le‘𝐾)𝑋 ∧ 𝑝(le‘𝐾)(𝑞 ∨ 𝑄)))) |
63 | 44, 62 | sylibrd 258 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝 ∈ 𝐴) → (𝑝(le‘𝐾)(𝑋 ∨ 𝑄) → ∃𝑞 ∈ (𝑀‘𝑋)∃𝑟 ∈ (𝑀‘𝑄)𝑝(le‘𝐾)(𝑞 ∨ 𝑟))) |
64 | 63 | imdistanda 572 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → ((𝑝 ∈ 𝐴 ∧ 𝑝(le‘𝐾)(𝑋 ∨ 𝑄)) → (𝑝 ∈ 𝐴 ∧ ∃𝑞 ∈ (𝑀‘𝑋)∃𝑟 ∈ (𝑀‘𝑄)𝑝(le‘𝐾)(𝑞 ∨ 𝑟)))) |
65 | | hllat 37377 |
. . . . . . . . 9
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
66 | 65 | 3ad2ant1 1132 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → 𝐾 ∈ Lat) |
67 | | simp2 1136 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → 𝑋 ∈ 𝐵) |
68 | 2, 24 | latjcl 18157 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵) → (𝑋 ∨ 𝑄) ∈ 𝐵) |
69 | 66, 67, 5, 68 | syl3anc 1370 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → (𝑋 ∨ 𝑄) ∈ 𝐵) |
70 | 2, 40, 3, 6 | elpmap 37772 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∨ 𝑄) ∈ 𝐵) → (𝑝 ∈ (𝑀‘(𝑋 ∨ 𝑄)) ↔ (𝑝 ∈ 𝐴 ∧ 𝑝(le‘𝐾)(𝑋 ∨ 𝑄)))) |
71 | 1, 69, 70 | syl2anc 584 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → (𝑝 ∈ (𝑀‘(𝑋 ∨ 𝑄)) ↔ (𝑝 ∈ 𝐴 ∧ 𝑝(le‘𝐾)(𝑋 ∨ 𝑄)))) |
72 | 71 | adantr 481 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → (𝑝 ∈ (𝑀‘(𝑋 ∨ 𝑄)) ↔ (𝑝 ∈ 𝐴 ∧ 𝑝(le‘𝐾)(𝑋 ∨ 𝑄)))) |
73 | 2, 3, 6 | pmapssat 37773 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) ⊆ 𝐴) |
74 | 73 | 3adant3 1131 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → (𝑀‘𝑋) ⊆ 𝐴) |
75 | 66, 74, 8 | 3jca 1127 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → (𝐾 ∈ Lat ∧ (𝑀‘𝑋) ⊆ 𝐴 ∧ (𝑀‘𝑄) ⊆ 𝐴)) |
76 | 75 | adantr 481 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → (𝐾 ∈ Lat ∧ (𝑀‘𝑋) ⊆ 𝐴 ∧ (𝑀‘𝑄) ⊆ 𝐴)) |
77 | 2, 16, 6 | pmapeq0 37780 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((𝑀‘𝑋) = ∅ ↔ 𝑋 = (0.‘𝐾))) |
78 | 77 | 3adant3 1131 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → ((𝑀‘𝑋) = ∅ ↔ 𝑋 = (0.‘𝐾))) |
79 | 78 | necon3bid 2988 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → ((𝑀‘𝑋) ≠ ∅ ↔ 𝑋 ≠ (0.‘𝐾))) |
80 | 79 | biimpar 478 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → (𝑀‘𝑋) ≠ ∅) |
81 | | simp3 1137 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → 𝑄 ∈ 𝐴) |
82 | 16, 3 | atn0 37322 |
. . . . . . . . 9
⊢ ((𝐾 ∈ AtLat ∧ 𝑄 ∈ 𝐴) → 𝑄 ≠ (0.‘𝐾)) |
83 | 15, 81, 82 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → 𝑄 ≠ (0.‘𝐾)) |
84 | 2, 16, 6 | pmapeq0 37780 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐵) → ((𝑀‘𝑄) = ∅ ↔ 𝑄 = (0.‘𝐾))) |
85 | 1, 5, 84 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → ((𝑀‘𝑄) = ∅ ↔ 𝑄 = (0.‘𝐾))) |
86 | 85 | necon3bid 2988 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → ((𝑀‘𝑄) ≠ ∅ ↔ 𝑄 ≠ (0.‘𝐾))) |
87 | 83, 86 | mpbird 256 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → (𝑀‘𝑄) ≠ ∅) |
88 | 87 | adantr 481 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → (𝑀‘𝑄) ≠ ∅) |
89 | 40, 24, 3, 9 | elpaddn0 37814 |
. . . . . 6
⊢ (((𝐾 ∈ Lat ∧ (𝑀‘𝑋) ⊆ 𝐴 ∧ (𝑀‘𝑄) ⊆ 𝐴) ∧ ((𝑀‘𝑋) ≠ ∅ ∧ (𝑀‘𝑄) ≠ ∅)) → (𝑝 ∈ ((𝑀‘𝑋) + (𝑀‘𝑄)) ↔ (𝑝 ∈ 𝐴 ∧ ∃𝑞 ∈ (𝑀‘𝑋)∃𝑟 ∈ (𝑀‘𝑄)𝑝(le‘𝐾)(𝑞 ∨ 𝑟)))) |
90 | 76, 80, 88, 89 | syl12anc 834 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → (𝑝 ∈ ((𝑀‘𝑋) + (𝑀‘𝑄)) ↔ (𝑝 ∈ 𝐴 ∧ ∃𝑞 ∈ (𝑀‘𝑋)∃𝑟 ∈ (𝑀‘𝑄)𝑝(le‘𝐾)(𝑞 ∨ 𝑟)))) |
91 | 64, 72, 90 | 3imtr4d 294 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → (𝑝 ∈ (𝑀‘(𝑋 ∨ 𝑄)) → 𝑝 ∈ ((𝑀‘𝑋) + (𝑀‘𝑄)))) |
92 | 91 | ssrdv 3927 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → (𝑀‘(𝑋 ∨ 𝑄)) ⊆ ((𝑀‘𝑋) + (𝑀‘𝑄))) |
93 | 2, 24, 6, 9 | pmapjoin 37866 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵) → ((𝑀‘𝑋) + (𝑀‘𝑄)) ⊆ (𝑀‘(𝑋 ∨ 𝑄))) |
94 | 66, 67, 5, 93 | syl3anc 1370 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → ((𝑀‘𝑋) + (𝑀‘𝑄)) ⊆ (𝑀‘(𝑋 ∨ 𝑄))) |
95 | 94 | adantr 481 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → ((𝑀‘𝑋) + (𝑀‘𝑄)) ⊆ (𝑀‘(𝑋 ∨ 𝑄))) |
96 | 92, 95 | eqssd 3938 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → (𝑀‘(𝑋 ∨ 𝑄)) = ((𝑀‘𝑋) + (𝑀‘𝑄))) |
97 | 29, 96 | pm2.61dane 3032 |
1
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → (𝑀‘(𝑋 ∨ 𝑄)) = ((𝑀‘𝑋) + (𝑀‘𝑄))) |