Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapjat1 Structured version   Visualization version   GIF version

Theorem pmapjat1 39315
Description: The projective map of the join of a lattice element and an atom. (Contributed by NM, 28-Jan-2012.)
Hypotheses
Ref Expression
pmapjat.b 𝐵 = (Base‘𝐾)
pmapjat.j = (join‘𝐾)
pmapjat.a 𝐴 = (Atoms‘𝐾)
pmapjat.m 𝑀 = (pmap‘𝐾)
pmapjat.p + = (+𝑃𝐾)
Assertion
Ref Expression
pmapjat1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑀‘(𝑋 𝑄)) = ((𝑀𝑋) + (𝑀𝑄)))

Proof of Theorem pmapjat1
Dummy variables 𝑞 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1134 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → 𝐾 ∈ HL)
2 pmapjat.b . . . . . . . 8 𝐵 = (Base‘𝐾)
3 pmapjat.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
42, 3atbase 38750 . . . . . . 7 (𝑄𝐴𝑄𝐵)
543ad2ant3 1133 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → 𝑄𝐵)
6 pmapjat.m . . . . . . 7 𝑀 = (pmap‘𝐾)
72, 3, 6pmapssat 39221 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑄𝐵) → (𝑀𝑄) ⊆ 𝐴)
81, 5, 7syl2anc 583 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑀𝑄) ⊆ 𝐴)
9 pmapjat.p . . . . . 6 + = (+𝑃𝐾)
103, 9padd02 39274 . . . . 5 ((𝐾 ∈ HL ∧ (𝑀𝑄) ⊆ 𝐴) → (∅ + (𝑀𝑄)) = (𝑀𝑄))
111, 8, 10syl2anc 583 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (∅ + (𝑀𝑄)) = (𝑀𝑄))
1211adantr 480 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 = (0.‘𝐾)) → (∅ + (𝑀𝑄)) = (𝑀𝑄))
13 fveq2 6891 . . . . 5 (𝑋 = (0.‘𝐾) → (𝑀𝑋) = (𝑀‘(0.‘𝐾)))
14 hlatl 38821 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
15143ad2ant1 1131 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → 𝐾 ∈ AtLat)
16 eqid 2727 . . . . . . 7 (0.‘𝐾) = (0.‘𝐾)
1716, 6pmap0 39227 . . . . . 6 (𝐾 ∈ AtLat → (𝑀‘(0.‘𝐾)) = ∅)
1815, 17syl 17 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑀‘(0.‘𝐾)) = ∅)
1913, 18sylan9eqr 2789 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 = (0.‘𝐾)) → (𝑀𝑋) = ∅)
2019oveq1d 7429 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 = (0.‘𝐾)) → ((𝑀𝑋) + (𝑀𝑄)) = (∅ + (𝑀𝑄)))
21 oveq1 7421 . . . . 5 (𝑋 = (0.‘𝐾) → (𝑋 𝑄) = ((0.‘𝐾) 𝑄))
22 hlol 38822 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OL)
23223ad2ant1 1131 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → 𝐾 ∈ OL)
24 pmapjat.j . . . . . . 7 = (join‘𝐾)
252, 24, 16olj02 38687 . . . . . 6 ((𝐾 ∈ OL ∧ 𝑄𝐵) → ((0.‘𝐾) 𝑄) = 𝑄)
2623, 5, 25syl2anc 583 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → ((0.‘𝐾) 𝑄) = 𝑄)
2721, 26sylan9eqr 2789 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 = (0.‘𝐾)) → (𝑋 𝑄) = 𝑄)
2827fveq2d 6895 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 = (0.‘𝐾)) → (𝑀‘(𝑋 𝑄)) = (𝑀𝑄))
2912, 20, 283eqtr4rd 2778 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 = (0.‘𝐾)) → (𝑀‘(𝑋 𝑄)) = ((𝑀𝑋) + (𝑀𝑄)))
30 simpll1 1210 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) → 𝐾 ∈ HL)
3130adantr 480 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) ∧ 𝑝(le‘𝐾)(𝑋 𝑄)) → 𝐾 ∈ HL)
32 simpll2 1211 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) → 𝑋𝐵)
3332adantr 480 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) ∧ 𝑝(le‘𝐾)(𝑋 𝑄)) → 𝑋𝐵)
34 simplr 768 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) ∧ 𝑝(le‘𝐾)(𝑋 𝑄)) → 𝑝𝐴)
35 simpll3 1212 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) → 𝑄𝐴)
3635adantr 480 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) ∧ 𝑝(le‘𝐾)(𝑋 𝑄)) → 𝑄𝐴)
3733, 34, 363jca 1126 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) ∧ 𝑝(le‘𝐾)(𝑋 𝑄)) → (𝑋𝐵𝑝𝐴𝑄𝐴))
38 simpllr 775 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) ∧ 𝑝(le‘𝐾)(𝑋 𝑄)) → 𝑋 ≠ (0.‘𝐾))
39 simpr 484 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) ∧ 𝑝(le‘𝐾)(𝑋 𝑄)) → 𝑝(le‘𝐾)(𝑋 𝑄))
40 eqid 2727 . . . . . . . . . . 11 (le‘𝐾) = (le‘𝐾)
412, 40, 24, 16, 3cvrat42 38906 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑝𝐴𝑄𝐴)) → ((𝑋 ≠ (0.‘𝐾) ∧ 𝑝(le‘𝐾)(𝑋 𝑄)) → ∃𝑞𝐴 (𝑞(le‘𝐾)𝑋𝑝(le‘𝐾)(𝑞 𝑄))))
4241imp 406 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑝𝐴𝑄𝐴)) ∧ (𝑋 ≠ (0.‘𝐾) ∧ 𝑝(le‘𝐾)(𝑋 𝑄))) → ∃𝑞𝐴 (𝑞(le‘𝐾)𝑋𝑝(le‘𝐾)(𝑞 𝑄)))
4331, 37, 38, 39, 42syl22anc 838 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) ∧ 𝑝(le‘𝐾)(𝑋 𝑄)) → ∃𝑞𝐴 (𝑞(le‘𝐾)𝑋𝑝(le‘𝐾)(𝑞 𝑄)))
4443ex 412 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) → (𝑝(le‘𝐾)(𝑋 𝑄) → ∃𝑞𝐴 (𝑞(le‘𝐾)𝑋𝑝(le‘𝐾)(𝑞 𝑄))))
452, 40, 3, 6elpmap 39220 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑞 ∈ (𝑀𝑋) ↔ (𝑞𝐴𝑞(le‘𝐾)𝑋)))
46453adant3 1130 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑞 ∈ (𝑀𝑋) ↔ (𝑞𝐴𝑞(le‘𝐾)𝑋)))
47 df-rex 3066 . . . . . . . . . . . . 13 (∃𝑟 ∈ (𝑀𝑄)𝑝(le‘𝐾)(𝑞 𝑟) ↔ ∃𝑟(𝑟 ∈ (𝑀𝑄) ∧ 𝑝(le‘𝐾)(𝑞 𝑟)))
483, 6elpmapat 39226 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ 𝑄𝐴) → (𝑟 ∈ (𝑀𝑄) ↔ 𝑟 = 𝑄))
49483adant2 1129 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑟 ∈ (𝑀𝑄) ↔ 𝑟 = 𝑄))
5049anbi1d 629 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → ((𝑟 ∈ (𝑀𝑄) ∧ 𝑝(le‘𝐾)(𝑞 𝑟)) ↔ (𝑟 = 𝑄𝑝(le‘𝐾)(𝑞 𝑟))))
5150exbidv 1917 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (∃𝑟(𝑟 ∈ (𝑀𝑄) ∧ 𝑝(le‘𝐾)(𝑞 𝑟)) ↔ ∃𝑟(𝑟 = 𝑄𝑝(le‘𝐾)(𝑞 𝑟))))
5247, 51bitr2id 284 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (∃𝑟(𝑟 = 𝑄𝑝(le‘𝐾)(𝑞 𝑟)) ↔ ∃𝑟 ∈ (𝑀𝑄)𝑝(le‘𝐾)(𝑞 𝑟)))
53 oveq2 7422 . . . . . . . . . . . . . . 15 (𝑟 = 𝑄 → (𝑞 𝑟) = (𝑞 𝑄))
5453breq2d 5154 . . . . . . . . . . . . . 14 (𝑟 = 𝑄 → (𝑝(le‘𝐾)(𝑞 𝑟) ↔ 𝑝(le‘𝐾)(𝑞 𝑄)))
5554ceqsexgv 3638 . . . . . . . . . . . . 13 (𝑄𝐴 → (∃𝑟(𝑟 = 𝑄𝑝(le‘𝐾)(𝑞 𝑟)) ↔ 𝑝(le‘𝐾)(𝑞 𝑄)))
56553ad2ant3 1133 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (∃𝑟(𝑟 = 𝑄𝑝(le‘𝐾)(𝑞 𝑟)) ↔ 𝑝(le‘𝐾)(𝑞 𝑄)))
5752, 56bitr3d 281 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (∃𝑟 ∈ (𝑀𝑄)𝑝(le‘𝐾)(𝑞 𝑟) ↔ 𝑝(le‘𝐾)(𝑞 𝑄)))
5846, 57anbi12d 630 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → ((𝑞 ∈ (𝑀𝑋) ∧ ∃𝑟 ∈ (𝑀𝑄)𝑝(le‘𝐾)(𝑞 𝑟)) ↔ ((𝑞𝐴𝑞(le‘𝐾)𝑋) ∧ 𝑝(le‘𝐾)(𝑞 𝑄))))
59 anass 468 . . . . . . . . . 10 (((𝑞𝐴𝑞(le‘𝐾)𝑋) ∧ 𝑝(le‘𝐾)(𝑞 𝑄)) ↔ (𝑞𝐴 ∧ (𝑞(le‘𝐾)𝑋𝑝(le‘𝐾)(𝑞 𝑄))))
6058, 59bitrdi 287 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → ((𝑞 ∈ (𝑀𝑋) ∧ ∃𝑟 ∈ (𝑀𝑄)𝑝(le‘𝐾)(𝑞 𝑟)) ↔ (𝑞𝐴 ∧ (𝑞(le‘𝐾)𝑋𝑝(le‘𝐾)(𝑞 𝑄)))))
6160rexbidv2 3169 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑄)𝑝(le‘𝐾)(𝑞 𝑟) ↔ ∃𝑞𝐴 (𝑞(le‘𝐾)𝑋𝑝(le‘𝐾)(𝑞 𝑄))))
6261ad2antrr 725 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) → (∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑄)𝑝(le‘𝐾)(𝑞 𝑟) ↔ ∃𝑞𝐴 (𝑞(le‘𝐾)𝑋𝑝(le‘𝐾)(𝑞 𝑄))))
6344, 62sylibrd 259 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) → (𝑝(le‘𝐾)(𝑋 𝑄) → ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑄)𝑝(le‘𝐾)(𝑞 𝑟)))
6463imdistanda 571 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → ((𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑄)) → (𝑝𝐴 ∧ ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑄)𝑝(le‘𝐾)(𝑞 𝑟))))
65 hllat 38824 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ Lat)
66653ad2ant1 1131 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → 𝐾 ∈ Lat)
67 simp2 1135 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → 𝑋𝐵)
682, 24latjcl 18424 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑄𝐵) → (𝑋 𝑄) ∈ 𝐵)
6966, 67, 5, 68syl3anc 1369 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑋 𝑄) ∈ 𝐵)
702, 40, 3, 6elpmap 39220 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋 𝑄) ∈ 𝐵) → (𝑝 ∈ (𝑀‘(𝑋 𝑄)) ↔ (𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑄))))
711, 69, 70syl2anc 583 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑝 ∈ (𝑀‘(𝑋 𝑄)) ↔ (𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑄))))
7271adantr 480 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → (𝑝 ∈ (𝑀‘(𝑋 𝑄)) ↔ (𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑄))))
732, 3, 6pmapssat 39221 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑀𝑋) ⊆ 𝐴)
74733adant3 1130 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑀𝑋) ⊆ 𝐴)
7566, 74, 83jca 1126 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝐾 ∈ Lat ∧ (𝑀𝑋) ⊆ 𝐴 ∧ (𝑀𝑄) ⊆ 𝐴))
7675adantr 480 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → (𝐾 ∈ Lat ∧ (𝑀𝑋) ⊆ 𝐴 ∧ (𝑀𝑄) ⊆ 𝐴))
772, 16, 6pmapeq0 39228 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((𝑀𝑋) = ∅ ↔ 𝑋 = (0.‘𝐾)))
78773adant3 1130 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → ((𝑀𝑋) = ∅ ↔ 𝑋 = (0.‘𝐾)))
7978necon3bid 2980 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → ((𝑀𝑋) ≠ ∅ ↔ 𝑋 ≠ (0.‘𝐾)))
8079biimpar 477 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → (𝑀𝑋) ≠ ∅)
81 simp3 1136 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → 𝑄𝐴)
8216, 3atn0 38769 . . . . . . . . 9 ((𝐾 ∈ AtLat ∧ 𝑄𝐴) → 𝑄 ≠ (0.‘𝐾))
8315, 81, 82syl2anc 583 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → 𝑄 ≠ (0.‘𝐾))
842, 16, 6pmapeq0 39228 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑄𝐵) → ((𝑀𝑄) = ∅ ↔ 𝑄 = (0.‘𝐾)))
851, 5, 84syl2anc 583 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → ((𝑀𝑄) = ∅ ↔ 𝑄 = (0.‘𝐾)))
8685necon3bid 2980 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → ((𝑀𝑄) ≠ ∅ ↔ 𝑄 ≠ (0.‘𝐾)))
8783, 86mpbird 257 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑀𝑄) ≠ ∅)
8887adantr 480 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → (𝑀𝑄) ≠ ∅)
8940, 24, 3, 9elpaddn0 39262 . . . . . 6 (((𝐾 ∈ Lat ∧ (𝑀𝑋) ⊆ 𝐴 ∧ (𝑀𝑄) ⊆ 𝐴) ∧ ((𝑀𝑋) ≠ ∅ ∧ (𝑀𝑄) ≠ ∅)) → (𝑝 ∈ ((𝑀𝑋) + (𝑀𝑄)) ↔ (𝑝𝐴 ∧ ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑄)𝑝(le‘𝐾)(𝑞 𝑟))))
9076, 80, 88, 89syl12anc 836 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → (𝑝 ∈ ((𝑀𝑋) + (𝑀𝑄)) ↔ (𝑝𝐴 ∧ ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑄)𝑝(le‘𝐾)(𝑞 𝑟))))
9164, 72, 903imtr4d 294 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → (𝑝 ∈ (𝑀‘(𝑋 𝑄)) → 𝑝 ∈ ((𝑀𝑋) + (𝑀𝑄))))
9291ssrdv 3984 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → (𝑀‘(𝑋 𝑄)) ⊆ ((𝑀𝑋) + (𝑀𝑄)))
932, 24, 6, 9pmapjoin 39314 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑄𝐵) → ((𝑀𝑋) + (𝑀𝑄)) ⊆ (𝑀‘(𝑋 𝑄)))
9466, 67, 5, 93syl3anc 1369 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → ((𝑀𝑋) + (𝑀𝑄)) ⊆ (𝑀‘(𝑋 𝑄)))
9594adantr 480 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → ((𝑀𝑋) + (𝑀𝑄)) ⊆ (𝑀‘(𝑋 𝑄)))
9692, 95eqssd 3995 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → (𝑀‘(𝑋 𝑄)) = ((𝑀𝑋) + (𝑀𝑄)))
9729, 96pm2.61dane 3024 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑀‘(𝑋 𝑄)) = ((𝑀𝑋) + (𝑀𝑄)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wex 1774  wcel 2099  wne 2935  wrex 3065  wss 3944  c0 4318   class class class wbr 5142  cfv 6542  (class class class)co 7414  Basecbs 17173  lecple 17233  joincjn 18296  0.cp0 18408  Latclat 18416  OLcol 38635  Atomscatm 38724  AtLatcal 38725  HLchlt 38811  pmapcpmap 38959  +𝑃cpadd 39257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7987  df-2nd 7988  df-proset 18280  df-poset 18298  df-plt 18315  df-lub 18331  df-glb 18332  df-join 18333  df-meet 18334  df-p0 18410  df-lat 18417  df-clat 18484  df-oposet 38637  df-ol 38639  df-oml 38640  df-covers 38727  df-ats 38728  df-atl 38759  df-cvlat 38783  df-hlat 38812  df-pmap 38966  df-padd 39258
This theorem is referenced by:  pmapjat2  39316  pmapjlln1  39317  atmod1i2  39321  paddatclN  39411
  Copyright terms: Public domain W3C validator