Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapjat1 Structured version   Visualization version   GIF version

Theorem pmapjat1 37876
Description: The projective map of the join of a lattice element and an atom. (Contributed by NM, 28-Jan-2012.)
Hypotheses
Ref Expression
pmapjat.b 𝐵 = (Base‘𝐾)
pmapjat.j = (join‘𝐾)
pmapjat.a 𝐴 = (Atoms‘𝐾)
pmapjat.m 𝑀 = (pmap‘𝐾)
pmapjat.p + = (+𝑃𝐾)
Assertion
Ref Expression
pmapjat1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑀‘(𝑋 𝑄)) = ((𝑀𝑋) + (𝑀𝑄)))

Proof of Theorem pmapjat1
Dummy variables 𝑞 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1135 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → 𝐾 ∈ HL)
2 pmapjat.b . . . . . . . 8 𝐵 = (Base‘𝐾)
3 pmapjat.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
42, 3atbase 37312 . . . . . . 7 (𝑄𝐴𝑄𝐵)
543ad2ant3 1134 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → 𝑄𝐵)
6 pmapjat.m . . . . . . 7 𝑀 = (pmap‘𝐾)
72, 3, 6pmapssat 37782 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑄𝐵) → (𝑀𝑄) ⊆ 𝐴)
81, 5, 7syl2anc 584 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑀𝑄) ⊆ 𝐴)
9 pmapjat.p . . . . . 6 + = (+𝑃𝐾)
103, 9padd02 37835 . . . . 5 ((𝐾 ∈ HL ∧ (𝑀𝑄) ⊆ 𝐴) → (∅ + (𝑀𝑄)) = (𝑀𝑄))
111, 8, 10syl2anc 584 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (∅ + (𝑀𝑄)) = (𝑀𝑄))
1211adantr 481 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 = (0.‘𝐾)) → (∅ + (𝑀𝑄)) = (𝑀𝑄))
13 fveq2 6771 . . . . 5 (𝑋 = (0.‘𝐾) → (𝑀𝑋) = (𝑀‘(0.‘𝐾)))
14 hlatl 37383 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
15143ad2ant1 1132 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → 𝐾 ∈ AtLat)
16 eqid 2740 . . . . . . 7 (0.‘𝐾) = (0.‘𝐾)
1716, 6pmap0 37788 . . . . . 6 (𝐾 ∈ AtLat → (𝑀‘(0.‘𝐾)) = ∅)
1815, 17syl 17 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑀‘(0.‘𝐾)) = ∅)
1913, 18sylan9eqr 2802 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 = (0.‘𝐾)) → (𝑀𝑋) = ∅)
2019oveq1d 7287 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 = (0.‘𝐾)) → ((𝑀𝑋) + (𝑀𝑄)) = (∅ + (𝑀𝑄)))
21 oveq1 7279 . . . . 5 (𝑋 = (0.‘𝐾) → (𝑋 𝑄) = ((0.‘𝐾) 𝑄))
22 hlol 37384 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OL)
23223ad2ant1 1132 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → 𝐾 ∈ OL)
24 pmapjat.j . . . . . . 7 = (join‘𝐾)
252, 24, 16olj02 37249 . . . . . 6 ((𝐾 ∈ OL ∧ 𝑄𝐵) → ((0.‘𝐾) 𝑄) = 𝑄)
2623, 5, 25syl2anc 584 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → ((0.‘𝐾) 𝑄) = 𝑄)
2721, 26sylan9eqr 2802 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 = (0.‘𝐾)) → (𝑋 𝑄) = 𝑄)
2827fveq2d 6775 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 = (0.‘𝐾)) → (𝑀‘(𝑋 𝑄)) = (𝑀𝑄))
2912, 20, 283eqtr4rd 2791 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 = (0.‘𝐾)) → (𝑀‘(𝑋 𝑄)) = ((𝑀𝑋) + (𝑀𝑄)))
30 simpll1 1211 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) → 𝐾 ∈ HL)
3130adantr 481 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) ∧ 𝑝(le‘𝐾)(𝑋 𝑄)) → 𝐾 ∈ HL)
32 simpll2 1212 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) → 𝑋𝐵)
3332adantr 481 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) ∧ 𝑝(le‘𝐾)(𝑋 𝑄)) → 𝑋𝐵)
34 simplr 766 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) ∧ 𝑝(le‘𝐾)(𝑋 𝑄)) → 𝑝𝐴)
35 simpll3 1213 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) → 𝑄𝐴)
3635adantr 481 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) ∧ 𝑝(le‘𝐾)(𝑋 𝑄)) → 𝑄𝐴)
3733, 34, 363jca 1127 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) ∧ 𝑝(le‘𝐾)(𝑋 𝑄)) → (𝑋𝐵𝑝𝐴𝑄𝐴))
38 simpllr 773 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) ∧ 𝑝(le‘𝐾)(𝑋 𝑄)) → 𝑋 ≠ (0.‘𝐾))
39 simpr 485 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) ∧ 𝑝(le‘𝐾)(𝑋 𝑄)) → 𝑝(le‘𝐾)(𝑋 𝑄))
40 eqid 2740 . . . . . . . . . . 11 (le‘𝐾) = (le‘𝐾)
412, 40, 24, 16, 3cvrat42 37467 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑝𝐴𝑄𝐴)) → ((𝑋 ≠ (0.‘𝐾) ∧ 𝑝(le‘𝐾)(𝑋 𝑄)) → ∃𝑞𝐴 (𝑞(le‘𝐾)𝑋𝑝(le‘𝐾)(𝑞 𝑄))))
4241imp 407 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑝𝐴𝑄𝐴)) ∧ (𝑋 ≠ (0.‘𝐾) ∧ 𝑝(le‘𝐾)(𝑋 𝑄))) → ∃𝑞𝐴 (𝑞(le‘𝐾)𝑋𝑝(le‘𝐾)(𝑞 𝑄)))
4331, 37, 38, 39, 42syl22anc 836 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) ∧ 𝑝(le‘𝐾)(𝑋 𝑄)) → ∃𝑞𝐴 (𝑞(le‘𝐾)𝑋𝑝(le‘𝐾)(𝑞 𝑄)))
4443ex 413 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) → (𝑝(le‘𝐾)(𝑋 𝑄) → ∃𝑞𝐴 (𝑞(le‘𝐾)𝑋𝑝(le‘𝐾)(𝑞 𝑄))))
452, 40, 3, 6elpmap 37781 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑞 ∈ (𝑀𝑋) ↔ (𝑞𝐴𝑞(le‘𝐾)𝑋)))
46453adant3 1131 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑞 ∈ (𝑀𝑋) ↔ (𝑞𝐴𝑞(le‘𝐾)𝑋)))
47 df-rex 3072 . . . . . . . . . . . . 13 (∃𝑟 ∈ (𝑀𝑄)𝑝(le‘𝐾)(𝑞 𝑟) ↔ ∃𝑟(𝑟 ∈ (𝑀𝑄) ∧ 𝑝(le‘𝐾)(𝑞 𝑟)))
483, 6elpmapat 37787 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ 𝑄𝐴) → (𝑟 ∈ (𝑀𝑄) ↔ 𝑟 = 𝑄))
49483adant2 1130 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑟 ∈ (𝑀𝑄) ↔ 𝑟 = 𝑄))
5049anbi1d 630 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → ((𝑟 ∈ (𝑀𝑄) ∧ 𝑝(le‘𝐾)(𝑞 𝑟)) ↔ (𝑟 = 𝑄𝑝(le‘𝐾)(𝑞 𝑟))))
5150exbidv 1928 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (∃𝑟(𝑟 ∈ (𝑀𝑄) ∧ 𝑝(le‘𝐾)(𝑞 𝑟)) ↔ ∃𝑟(𝑟 = 𝑄𝑝(le‘𝐾)(𝑞 𝑟))))
5247, 51bitr2id 284 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (∃𝑟(𝑟 = 𝑄𝑝(le‘𝐾)(𝑞 𝑟)) ↔ ∃𝑟 ∈ (𝑀𝑄)𝑝(le‘𝐾)(𝑞 𝑟)))
53 oveq2 7280 . . . . . . . . . . . . . . 15 (𝑟 = 𝑄 → (𝑞 𝑟) = (𝑞 𝑄))
5453breq2d 5091 . . . . . . . . . . . . . 14 (𝑟 = 𝑄 → (𝑝(le‘𝐾)(𝑞 𝑟) ↔ 𝑝(le‘𝐾)(𝑞 𝑄)))
5554ceqsexgv 3585 . . . . . . . . . . . . 13 (𝑄𝐴 → (∃𝑟(𝑟 = 𝑄𝑝(le‘𝐾)(𝑞 𝑟)) ↔ 𝑝(le‘𝐾)(𝑞 𝑄)))
56553ad2ant3 1134 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (∃𝑟(𝑟 = 𝑄𝑝(le‘𝐾)(𝑞 𝑟)) ↔ 𝑝(le‘𝐾)(𝑞 𝑄)))
5752, 56bitr3d 280 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (∃𝑟 ∈ (𝑀𝑄)𝑝(le‘𝐾)(𝑞 𝑟) ↔ 𝑝(le‘𝐾)(𝑞 𝑄)))
5846, 57anbi12d 631 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → ((𝑞 ∈ (𝑀𝑋) ∧ ∃𝑟 ∈ (𝑀𝑄)𝑝(le‘𝐾)(𝑞 𝑟)) ↔ ((𝑞𝐴𝑞(le‘𝐾)𝑋) ∧ 𝑝(le‘𝐾)(𝑞 𝑄))))
59 anass 469 . . . . . . . . . 10 (((𝑞𝐴𝑞(le‘𝐾)𝑋) ∧ 𝑝(le‘𝐾)(𝑞 𝑄)) ↔ (𝑞𝐴 ∧ (𝑞(le‘𝐾)𝑋𝑝(le‘𝐾)(𝑞 𝑄))))
6058, 59bitrdi 287 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → ((𝑞 ∈ (𝑀𝑋) ∧ ∃𝑟 ∈ (𝑀𝑄)𝑝(le‘𝐾)(𝑞 𝑟)) ↔ (𝑞𝐴 ∧ (𝑞(le‘𝐾)𝑋𝑝(le‘𝐾)(𝑞 𝑄)))))
6160rexbidv2 3226 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑄)𝑝(le‘𝐾)(𝑞 𝑟) ↔ ∃𝑞𝐴 (𝑞(le‘𝐾)𝑋𝑝(le‘𝐾)(𝑞 𝑄))))
6261ad2antrr 723 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) → (∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑄)𝑝(le‘𝐾)(𝑞 𝑟) ↔ ∃𝑞𝐴 (𝑞(le‘𝐾)𝑋𝑝(le‘𝐾)(𝑞 𝑄))))
6344, 62sylibrd 258 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) → (𝑝(le‘𝐾)(𝑋 𝑄) → ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑄)𝑝(le‘𝐾)(𝑞 𝑟)))
6463imdistanda 572 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → ((𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑄)) → (𝑝𝐴 ∧ ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑄)𝑝(le‘𝐾)(𝑞 𝑟))))
65 hllat 37386 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ Lat)
66653ad2ant1 1132 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → 𝐾 ∈ Lat)
67 simp2 1136 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → 𝑋𝐵)
682, 24latjcl 18168 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑄𝐵) → (𝑋 𝑄) ∈ 𝐵)
6966, 67, 5, 68syl3anc 1370 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑋 𝑄) ∈ 𝐵)
702, 40, 3, 6elpmap 37781 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋 𝑄) ∈ 𝐵) → (𝑝 ∈ (𝑀‘(𝑋 𝑄)) ↔ (𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑄))))
711, 69, 70syl2anc 584 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑝 ∈ (𝑀‘(𝑋 𝑄)) ↔ (𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑄))))
7271adantr 481 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → (𝑝 ∈ (𝑀‘(𝑋 𝑄)) ↔ (𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑄))))
732, 3, 6pmapssat 37782 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑀𝑋) ⊆ 𝐴)
74733adant3 1131 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑀𝑋) ⊆ 𝐴)
7566, 74, 83jca 1127 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝐾 ∈ Lat ∧ (𝑀𝑋) ⊆ 𝐴 ∧ (𝑀𝑄) ⊆ 𝐴))
7675adantr 481 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → (𝐾 ∈ Lat ∧ (𝑀𝑋) ⊆ 𝐴 ∧ (𝑀𝑄) ⊆ 𝐴))
772, 16, 6pmapeq0 37789 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((𝑀𝑋) = ∅ ↔ 𝑋 = (0.‘𝐾)))
78773adant3 1131 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → ((𝑀𝑋) = ∅ ↔ 𝑋 = (0.‘𝐾)))
7978necon3bid 2990 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → ((𝑀𝑋) ≠ ∅ ↔ 𝑋 ≠ (0.‘𝐾)))
8079biimpar 478 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → (𝑀𝑋) ≠ ∅)
81 simp3 1137 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → 𝑄𝐴)
8216, 3atn0 37331 . . . . . . . . 9 ((𝐾 ∈ AtLat ∧ 𝑄𝐴) → 𝑄 ≠ (0.‘𝐾))
8315, 81, 82syl2anc 584 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → 𝑄 ≠ (0.‘𝐾))
842, 16, 6pmapeq0 37789 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑄𝐵) → ((𝑀𝑄) = ∅ ↔ 𝑄 = (0.‘𝐾)))
851, 5, 84syl2anc 584 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → ((𝑀𝑄) = ∅ ↔ 𝑄 = (0.‘𝐾)))
8685necon3bid 2990 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → ((𝑀𝑄) ≠ ∅ ↔ 𝑄 ≠ (0.‘𝐾)))
8783, 86mpbird 256 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑀𝑄) ≠ ∅)
8887adantr 481 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → (𝑀𝑄) ≠ ∅)
8940, 24, 3, 9elpaddn0 37823 . . . . . 6 (((𝐾 ∈ Lat ∧ (𝑀𝑋) ⊆ 𝐴 ∧ (𝑀𝑄) ⊆ 𝐴) ∧ ((𝑀𝑋) ≠ ∅ ∧ (𝑀𝑄) ≠ ∅)) → (𝑝 ∈ ((𝑀𝑋) + (𝑀𝑄)) ↔ (𝑝𝐴 ∧ ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑄)𝑝(le‘𝐾)(𝑞 𝑟))))
9076, 80, 88, 89syl12anc 834 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → (𝑝 ∈ ((𝑀𝑋) + (𝑀𝑄)) ↔ (𝑝𝐴 ∧ ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑄)𝑝(le‘𝐾)(𝑞 𝑟))))
9164, 72, 903imtr4d 294 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → (𝑝 ∈ (𝑀‘(𝑋 𝑄)) → 𝑝 ∈ ((𝑀𝑋) + (𝑀𝑄))))
9291ssrdv 3932 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → (𝑀‘(𝑋 𝑄)) ⊆ ((𝑀𝑋) + (𝑀𝑄)))
932, 24, 6, 9pmapjoin 37875 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑄𝐵) → ((𝑀𝑋) + (𝑀𝑄)) ⊆ (𝑀‘(𝑋 𝑄)))
9466, 67, 5, 93syl3anc 1370 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → ((𝑀𝑋) + (𝑀𝑄)) ⊆ (𝑀‘(𝑋 𝑄)))
9594adantr 481 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → ((𝑀𝑋) + (𝑀𝑄)) ⊆ (𝑀‘(𝑋 𝑄)))
9692, 95eqssd 3943 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → (𝑀‘(𝑋 𝑄)) = ((𝑀𝑋) + (𝑀𝑄)))
9729, 96pm2.61dane 3034 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑀‘(𝑋 𝑄)) = ((𝑀𝑋) + (𝑀𝑄)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1542  wex 1786  wcel 2110  wne 2945  wrex 3067  wss 3892  c0 4262   class class class wbr 5079  cfv 6432  (class class class)co 7272  Basecbs 16923  lecple 16980  joincjn 18040  0.cp0 18152  Latclat 18160  OLcol 37197  Atomscatm 37286  AtLatcal 37287  HLchlt 37373  pmapcpmap 37520  +𝑃cpadd 37818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7583
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7229  df-ov 7275  df-oprab 7276  df-mpo 7277  df-1st 7825  df-2nd 7826  df-proset 18024  df-poset 18042  df-plt 18059  df-lub 18075  df-glb 18076  df-join 18077  df-meet 18078  df-p0 18154  df-lat 18161  df-clat 18228  df-oposet 37199  df-ol 37201  df-oml 37202  df-covers 37289  df-ats 37290  df-atl 37321  df-cvlat 37345  df-hlat 37374  df-pmap 37527  df-padd 37819
This theorem is referenced by:  pmapjat2  37877  pmapjlln1  37878  atmod1i2  37882  paddatclN  37972
  Copyright terms: Public domain W3C validator