Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapjat1 Structured version   Visualization version   GIF version

Theorem pmapjat1 37794
Description: The projective map of the join of a lattice element and an atom. (Contributed by NM, 28-Jan-2012.)
Hypotheses
Ref Expression
pmapjat.b 𝐵 = (Base‘𝐾)
pmapjat.j = (join‘𝐾)
pmapjat.a 𝐴 = (Atoms‘𝐾)
pmapjat.m 𝑀 = (pmap‘𝐾)
pmapjat.p + = (+𝑃𝐾)
Assertion
Ref Expression
pmapjat1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑀‘(𝑋 𝑄)) = ((𝑀𝑋) + (𝑀𝑄)))

Proof of Theorem pmapjat1
Dummy variables 𝑞 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1134 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → 𝐾 ∈ HL)
2 pmapjat.b . . . . . . . 8 𝐵 = (Base‘𝐾)
3 pmapjat.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
42, 3atbase 37230 . . . . . . 7 (𝑄𝐴𝑄𝐵)
543ad2ant3 1133 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → 𝑄𝐵)
6 pmapjat.m . . . . . . 7 𝑀 = (pmap‘𝐾)
72, 3, 6pmapssat 37700 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑄𝐵) → (𝑀𝑄) ⊆ 𝐴)
81, 5, 7syl2anc 583 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑀𝑄) ⊆ 𝐴)
9 pmapjat.p . . . . . 6 + = (+𝑃𝐾)
103, 9padd02 37753 . . . . 5 ((𝐾 ∈ HL ∧ (𝑀𝑄) ⊆ 𝐴) → (∅ + (𝑀𝑄)) = (𝑀𝑄))
111, 8, 10syl2anc 583 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (∅ + (𝑀𝑄)) = (𝑀𝑄))
1211adantr 480 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 = (0.‘𝐾)) → (∅ + (𝑀𝑄)) = (𝑀𝑄))
13 fveq2 6756 . . . . 5 (𝑋 = (0.‘𝐾) → (𝑀𝑋) = (𝑀‘(0.‘𝐾)))
14 hlatl 37301 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
15143ad2ant1 1131 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → 𝐾 ∈ AtLat)
16 eqid 2738 . . . . . . 7 (0.‘𝐾) = (0.‘𝐾)
1716, 6pmap0 37706 . . . . . 6 (𝐾 ∈ AtLat → (𝑀‘(0.‘𝐾)) = ∅)
1815, 17syl 17 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑀‘(0.‘𝐾)) = ∅)
1913, 18sylan9eqr 2801 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 = (0.‘𝐾)) → (𝑀𝑋) = ∅)
2019oveq1d 7270 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 = (0.‘𝐾)) → ((𝑀𝑋) + (𝑀𝑄)) = (∅ + (𝑀𝑄)))
21 oveq1 7262 . . . . 5 (𝑋 = (0.‘𝐾) → (𝑋 𝑄) = ((0.‘𝐾) 𝑄))
22 hlol 37302 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OL)
23223ad2ant1 1131 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → 𝐾 ∈ OL)
24 pmapjat.j . . . . . . 7 = (join‘𝐾)
252, 24, 16olj02 37167 . . . . . 6 ((𝐾 ∈ OL ∧ 𝑄𝐵) → ((0.‘𝐾) 𝑄) = 𝑄)
2623, 5, 25syl2anc 583 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → ((0.‘𝐾) 𝑄) = 𝑄)
2721, 26sylan9eqr 2801 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 = (0.‘𝐾)) → (𝑋 𝑄) = 𝑄)
2827fveq2d 6760 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 = (0.‘𝐾)) → (𝑀‘(𝑋 𝑄)) = (𝑀𝑄))
2912, 20, 283eqtr4rd 2789 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 = (0.‘𝐾)) → (𝑀‘(𝑋 𝑄)) = ((𝑀𝑋) + (𝑀𝑄)))
30 simpll1 1210 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) → 𝐾 ∈ HL)
3130adantr 480 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) ∧ 𝑝(le‘𝐾)(𝑋 𝑄)) → 𝐾 ∈ HL)
32 simpll2 1211 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) → 𝑋𝐵)
3332adantr 480 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) ∧ 𝑝(le‘𝐾)(𝑋 𝑄)) → 𝑋𝐵)
34 simplr 765 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) ∧ 𝑝(le‘𝐾)(𝑋 𝑄)) → 𝑝𝐴)
35 simpll3 1212 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) → 𝑄𝐴)
3635adantr 480 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) ∧ 𝑝(le‘𝐾)(𝑋 𝑄)) → 𝑄𝐴)
3733, 34, 363jca 1126 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) ∧ 𝑝(le‘𝐾)(𝑋 𝑄)) → (𝑋𝐵𝑝𝐴𝑄𝐴))
38 simpllr 772 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) ∧ 𝑝(le‘𝐾)(𝑋 𝑄)) → 𝑋 ≠ (0.‘𝐾))
39 simpr 484 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) ∧ 𝑝(le‘𝐾)(𝑋 𝑄)) → 𝑝(le‘𝐾)(𝑋 𝑄))
40 eqid 2738 . . . . . . . . . . 11 (le‘𝐾) = (le‘𝐾)
412, 40, 24, 16, 3cvrat42 37385 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑝𝐴𝑄𝐴)) → ((𝑋 ≠ (0.‘𝐾) ∧ 𝑝(le‘𝐾)(𝑋 𝑄)) → ∃𝑞𝐴 (𝑞(le‘𝐾)𝑋𝑝(le‘𝐾)(𝑞 𝑄))))
4241imp 406 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑝𝐴𝑄𝐴)) ∧ (𝑋 ≠ (0.‘𝐾) ∧ 𝑝(le‘𝐾)(𝑋 𝑄))) → ∃𝑞𝐴 (𝑞(le‘𝐾)𝑋𝑝(le‘𝐾)(𝑞 𝑄)))
4331, 37, 38, 39, 42syl22anc 835 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) ∧ 𝑝(le‘𝐾)(𝑋 𝑄)) → ∃𝑞𝐴 (𝑞(le‘𝐾)𝑋𝑝(le‘𝐾)(𝑞 𝑄)))
4443ex 412 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) → (𝑝(le‘𝐾)(𝑋 𝑄) → ∃𝑞𝐴 (𝑞(le‘𝐾)𝑋𝑝(le‘𝐾)(𝑞 𝑄))))
452, 40, 3, 6elpmap 37699 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑞 ∈ (𝑀𝑋) ↔ (𝑞𝐴𝑞(le‘𝐾)𝑋)))
46453adant3 1130 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑞 ∈ (𝑀𝑋) ↔ (𝑞𝐴𝑞(le‘𝐾)𝑋)))
47 df-rex 3069 . . . . . . . . . . . . 13 (∃𝑟 ∈ (𝑀𝑄)𝑝(le‘𝐾)(𝑞 𝑟) ↔ ∃𝑟(𝑟 ∈ (𝑀𝑄) ∧ 𝑝(le‘𝐾)(𝑞 𝑟)))
483, 6elpmapat 37705 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ 𝑄𝐴) → (𝑟 ∈ (𝑀𝑄) ↔ 𝑟 = 𝑄))
49483adant2 1129 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑟 ∈ (𝑀𝑄) ↔ 𝑟 = 𝑄))
5049anbi1d 629 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → ((𝑟 ∈ (𝑀𝑄) ∧ 𝑝(le‘𝐾)(𝑞 𝑟)) ↔ (𝑟 = 𝑄𝑝(le‘𝐾)(𝑞 𝑟))))
5150exbidv 1925 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (∃𝑟(𝑟 ∈ (𝑀𝑄) ∧ 𝑝(le‘𝐾)(𝑞 𝑟)) ↔ ∃𝑟(𝑟 = 𝑄𝑝(le‘𝐾)(𝑞 𝑟))))
5247, 51bitr2id 283 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (∃𝑟(𝑟 = 𝑄𝑝(le‘𝐾)(𝑞 𝑟)) ↔ ∃𝑟 ∈ (𝑀𝑄)𝑝(le‘𝐾)(𝑞 𝑟)))
53 oveq2 7263 . . . . . . . . . . . . . . 15 (𝑟 = 𝑄 → (𝑞 𝑟) = (𝑞 𝑄))
5453breq2d 5082 . . . . . . . . . . . . . 14 (𝑟 = 𝑄 → (𝑝(le‘𝐾)(𝑞 𝑟) ↔ 𝑝(le‘𝐾)(𝑞 𝑄)))
5554ceqsexgv 3576 . . . . . . . . . . . . 13 (𝑄𝐴 → (∃𝑟(𝑟 = 𝑄𝑝(le‘𝐾)(𝑞 𝑟)) ↔ 𝑝(le‘𝐾)(𝑞 𝑄)))
56553ad2ant3 1133 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (∃𝑟(𝑟 = 𝑄𝑝(le‘𝐾)(𝑞 𝑟)) ↔ 𝑝(le‘𝐾)(𝑞 𝑄)))
5752, 56bitr3d 280 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (∃𝑟 ∈ (𝑀𝑄)𝑝(le‘𝐾)(𝑞 𝑟) ↔ 𝑝(le‘𝐾)(𝑞 𝑄)))
5846, 57anbi12d 630 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → ((𝑞 ∈ (𝑀𝑋) ∧ ∃𝑟 ∈ (𝑀𝑄)𝑝(le‘𝐾)(𝑞 𝑟)) ↔ ((𝑞𝐴𝑞(le‘𝐾)𝑋) ∧ 𝑝(le‘𝐾)(𝑞 𝑄))))
59 anass 468 . . . . . . . . . 10 (((𝑞𝐴𝑞(le‘𝐾)𝑋) ∧ 𝑝(le‘𝐾)(𝑞 𝑄)) ↔ (𝑞𝐴 ∧ (𝑞(le‘𝐾)𝑋𝑝(le‘𝐾)(𝑞 𝑄))))
6058, 59bitrdi 286 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → ((𝑞 ∈ (𝑀𝑋) ∧ ∃𝑟 ∈ (𝑀𝑄)𝑝(le‘𝐾)(𝑞 𝑟)) ↔ (𝑞𝐴 ∧ (𝑞(le‘𝐾)𝑋𝑝(le‘𝐾)(𝑞 𝑄)))))
6160rexbidv2 3223 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑄)𝑝(le‘𝐾)(𝑞 𝑟) ↔ ∃𝑞𝐴 (𝑞(le‘𝐾)𝑋𝑝(le‘𝐾)(𝑞 𝑄))))
6261ad2antrr 722 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) → (∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑄)𝑝(le‘𝐾)(𝑞 𝑟) ↔ ∃𝑞𝐴 (𝑞(le‘𝐾)𝑋𝑝(le‘𝐾)(𝑞 𝑄))))
6344, 62sylibrd 258 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) → (𝑝(le‘𝐾)(𝑋 𝑄) → ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑄)𝑝(le‘𝐾)(𝑞 𝑟)))
6463imdistanda 571 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → ((𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑄)) → (𝑝𝐴 ∧ ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑄)𝑝(le‘𝐾)(𝑞 𝑟))))
65 hllat 37304 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ Lat)
66653ad2ant1 1131 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → 𝐾 ∈ Lat)
67 simp2 1135 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → 𝑋𝐵)
682, 24latjcl 18072 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑄𝐵) → (𝑋 𝑄) ∈ 𝐵)
6966, 67, 5, 68syl3anc 1369 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑋 𝑄) ∈ 𝐵)
702, 40, 3, 6elpmap 37699 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋 𝑄) ∈ 𝐵) → (𝑝 ∈ (𝑀‘(𝑋 𝑄)) ↔ (𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑄))))
711, 69, 70syl2anc 583 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑝 ∈ (𝑀‘(𝑋 𝑄)) ↔ (𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑄))))
7271adantr 480 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → (𝑝 ∈ (𝑀‘(𝑋 𝑄)) ↔ (𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑄))))
732, 3, 6pmapssat 37700 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑀𝑋) ⊆ 𝐴)
74733adant3 1130 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑀𝑋) ⊆ 𝐴)
7566, 74, 83jca 1126 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝐾 ∈ Lat ∧ (𝑀𝑋) ⊆ 𝐴 ∧ (𝑀𝑄) ⊆ 𝐴))
7675adantr 480 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → (𝐾 ∈ Lat ∧ (𝑀𝑋) ⊆ 𝐴 ∧ (𝑀𝑄) ⊆ 𝐴))
772, 16, 6pmapeq0 37707 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((𝑀𝑋) = ∅ ↔ 𝑋 = (0.‘𝐾)))
78773adant3 1130 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → ((𝑀𝑋) = ∅ ↔ 𝑋 = (0.‘𝐾)))
7978necon3bid 2987 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → ((𝑀𝑋) ≠ ∅ ↔ 𝑋 ≠ (0.‘𝐾)))
8079biimpar 477 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → (𝑀𝑋) ≠ ∅)
81 simp3 1136 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → 𝑄𝐴)
8216, 3atn0 37249 . . . . . . . . 9 ((𝐾 ∈ AtLat ∧ 𝑄𝐴) → 𝑄 ≠ (0.‘𝐾))
8315, 81, 82syl2anc 583 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → 𝑄 ≠ (0.‘𝐾))
842, 16, 6pmapeq0 37707 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑄𝐵) → ((𝑀𝑄) = ∅ ↔ 𝑄 = (0.‘𝐾)))
851, 5, 84syl2anc 583 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → ((𝑀𝑄) = ∅ ↔ 𝑄 = (0.‘𝐾)))
8685necon3bid 2987 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → ((𝑀𝑄) ≠ ∅ ↔ 𝑄 ≠ (0.‘𝐾)))
8783, 86mpbird 256 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑀𝑄) ≠ ∅)
8887adantr 480 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → (𝑀𝑄) ≠ ∅)
8940, 24, 3, 9elpaddn0 37741 . . . . . 6 (((𝐾 ∈ Lat ∧ (𝑀𝑋) ⊆ 𝐴 ∧ (𝑀𝑄) ⊆ 𝐴) ∧ ((𝑀𝑋) ≠ ∅ ∧ (𝑀𝑄) ≠ ∅)) → (𝑝 ∈ ((𝑀𝑋) + (𝑀𝑄)) ↔ (𝑝𝐴 ∧ ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑄)𝑝(le‘𝐾)(𝑞 𝑟))))
9076, 80, 88, 89syl12anc 833 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → (𝑝 ∈ ((𝑀𝑋) + (𝑀𝑄)) ↔ (𝑝𝐴 ∧ ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑄)𝑝(le‘𝐾)(𝑞 𝑟))))
9164, 72, 903imtr4d 293 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → (𝑝 ∈ (𝑀‘(𝑋 𝑄)) → 𝑝 ∈ ((𝑀𝑋) + (𝑀𝑄))))
9291ssrdv 3923 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → (𝑀‘(𝑋 𝑄)) ⊆ ((𝑀𝑋) + (𝑀𝑄)))
932, 24, 6, 9pmapjoin 37793 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑄𝐵) → ((𝑀𝑋) + (𝑀𝑄)) ⊆ (𝑀‘(𝑋 𝑄)))
9466, 67, 5, 93syl3anc 1369 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → ((𝑀𝑋) + (𝑀𝑄)) ⊆ (𝑀‘(𝑋 𝑄)))
9594adantr 480 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → ((𝑀𝑋) + (𝑀𝑄)) ⊆ (𝑀‘(𝑋 𝑄)))
9692, 95eqssd 3934 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → (𝑀‘(𝑋 𝑄)) = ((𝑀𝑋) + (𝑀𝑄)))
9729, 96pm2.61dane 3031 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑀‘(𝑋 𝑄)) = ((𝑀𝑋) + (𝑀𝑄)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wex 1783  wcel 2108  wne 2942  wrex 3064  wss 3883  c0 4253   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  lecple 16895  joincjn 17944  0.cp0 18056  Latclat 18064  OLcol 37115  Atomscatm 37204  AtLatcal 37205  HLchlt 37291  pmapcpmap 37438  +𝑃cpadd 37736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-lat 18065  df-clat 18132  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292  df-pmap 37445  df-padd 37737
This theorem is referenced by:  pmapjat2  37795  pmapjlln1  37796  atmod1i2  37800  paddatclN  37890
  Copyright terms: Public domain W3C validator