MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isssc Structured version   Visualization version   GIF version

Theorem isssc 17764
Description: Value of the subcategory subset relation when the arguments are known functions. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
isssc.1 (𝜑𝐻 Fn (𝑆 × 𝑆))
isssc.2 (𝜑𝐽 Fn (𝑇 × 𝑇))
isssc.3 (𝜑𝑇𝑉)
Assertion
Ref Expression
isssc (𝜑 → (𝐻cat 𝐽 ↔ (𝑆𝑇 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐻   𝑥,𝐽,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑇(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem isssc
Dummy variables 𝑡 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brssc 17758 . . . 4 (𝐻cat 𝐽 ↔ ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧)))
2 fndm 6650 . . . . . . . . . . . 12 (𝐽 Fn (𝑡 × 𝑡) → dom 𝐽 = (𝑡 × 𝑡))
32adantl 483 . . . . . . . . . . 11 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → dom 𝐽 = (𝑡 × 𝑡))
4 isssc.2 . . . . . . . . . . . . 13 (𝜑𝐽 Fn (𝑇 × 𝑇))
54adantr 482 . . . . . . . . . . . 12 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → 𝐽 Fn (𝑇 × 𝑇))
65fndmd 6652 . . . . . . . . . . 11 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → dom 𝐽 = (𝑇 × 𝑇))
73, 6eqtr3d 2775 . . . . . . . . . 10 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → (𝑡 × 𝑡) = (𝑇 × 𝑇))
87dmeqd 5904 . . . . . . . . 9 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → dom (𝑡 × 𝑡) = dom (𝑇 × 𝑇))
9 dmxpid 5928 . . . . . . . . 9 dom (𝑡 × 𝑡) = 𝑡
10 dmxpid 5928 . . . . . . . . 9 dom (𝑇 × 𝑇) = 𝑇
118, 9, 103eqtr3g 2796 . . . . . . . 8 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → 𝑡 = 𝑇)
1211ex 414 . . . . . . 7 (𝜑 → (𝐽 Fn (𝑡 × 𝑡) → 𝑡 = 𝑇))
13 id 22 . . . . . . . . . 10 (𝑡 = 𝑇𝑡 = 𝑇)
1413sqxpeqd 5708 . . . . . . . . 9 (𝑡 = 𝑇 → (𝑡 × 𝑡) = (𝑇 × 𝑇))
1514fneq2d 6641 . . . . . . . 8 (𝑡 = 𝑇 → (𝐽 Fn (𝑡 × 𝑡) ↔ 𝐽 Fn (𝑇 × 𝑇)))
164, 15syl5ibrcom 246 . . . . . . 7 (𝜑 → (𝑡 = 𝑇𝐽 Fn (𝑡 × 𝑡)))
1712, 16impbid 211 . . . . . 6 (𝜑 → (𝐽 Fn (𝑡 × 𝑡) ↔ 𝑡 = 𝑇))
1817anbi1d 631 . . . . 5 (𝜑 → ((𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧)) ↔ (𝑡 = 𝑇 ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧))))
1918exbidv 1925 . . . 4 (𝜑 → (∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧)) ↔ ∃𝑡(𝑡 = 𝑇 ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧))))
201, 19bitrid 283 . . 3 (𝜑 → (𝐻cat 𝐽 ↔ ∃𝑡(𝑡 = 𝑇 ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧))))
21 isssc.3 . . . 4 (𝜑𝑇𝑉)
22 pweq 4616 . . . . . 6 (𝑡 = 𝑇 → 𝒫 𝑡 = 𝒫 𝑇)
2322rexeqdv 3327 . . . . 5 (𝑡 = 𝑇 → (∃𝑠 ∈ 𝒫 𝑡𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧) ↔ ∃𝑠 ∈ 𝒫 𝑇𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧)))
2423ceqsexgv 3642 . . . 4 (𝑇𝑉 → (∃𝑡(𝑡 = 𝑇 ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧)) ↔ ∃𝑠 ∈ 𝒫 𝑇𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧)))
2521, 24syl 17 . . 3 (𝜑 → (∃𝑡(𝑡 = 𝑇 ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧)) ↔ ∃𝑠 ∈ 𝒫 𝑇𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧)))
2620, 25bitrd 279 . 2 (𝜑 → (𝐻cat 𝐽 ↔ ∃𝑠 ∈ 𝒫 𝑇𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧)))
27 df-rex 3072 . . 3 (∃𝑠 ∈ 𝒫 𝑇𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧) ↔ ∃𝑠(𝑠 ∈ 𝒫 𝑇𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧)))
28 3anass 1096 . . . . . . . 8 ((𝐻 ∈ V ∧ 𝐻 Fn (𝑠 × 𝑠) ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧)) ↔ (𝐻 ∈ V ∧ (𝐻 Fn (𝑠 × 𝑠) ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧))))
29 elixp2 8892 . . . . . . . 8 (𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧) ↔ (𝐻 ∈ V ∧ 𝐻 Fn (𝑠 × 𝑠) ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧)))
30 vex 3479 . . . . . . . . . . . 12 𝑠 ∈ V
3130, 30xpex 7737 . . . . . . . . . . 11 (𝑠 × 𝑠) ∈ V
32 fnex 7216 . . . . . . . . . . 11 ((𝐻 Fn (𝑠 × 𝑠) ∧ (𝑠 × 𝑠) ∈ V) → 𝐻 ∈ V)
3331, 32mpan2 690 . . . . . . . . . 10 (𝐻 Fn (𝑠 × 𝑠) → 𝐻 ∈ V)
3433adantr 482 . . . . . . . . 9 ((𝐻 Fn (𝑠 × 𝑠) ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧)) → 𝐻 ∈ V)
3534pm4.71ri 562 . . . . . . . 8 ((𝐻 Fn (𝑠 × 𝑠) ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧)) ↔ (𝐻 ∈ V ∧ (𝐻 Fn (𝑠 × 𝑠) ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧))))
3628, 29, 353bitr4i 303 . . . . . . 7 (𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧) ↔ (𝐻 Fn (𝑠 × 𝑠) ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧)))
37 fndm 6650 . . . . . . . . . . . . . 14 (𝐻 Fn (𝑠 × 𝑠) → dom 𝐻 = (𝑠 × 𝑠))
3837adantl 483 . . . . . . . . . . . . 13 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → dom 𝐻 = (𝑠 × 𝑠))
39 isssc.1 . . . . . . . . . . . . . . 15 (𝜑𝐻 Fn (𝑆 × 𝑆))
4039adantr 482 . . . . . . . . . . . . . 14 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → 𝐻 Fn (𝑆 × 𝑆))
4140fndmd 6652 . . . . . . . . . . . . 13 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → dom 𝐻 = (𝑆 × 𝑆))
4238, 41eqtr3d 2775 . . . . . . . . . . . 12 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → (𝑠 × 𝑠) = (𝑆 × 𝑆))
4342dmeqd 5904 . . . . . . . . . . 11 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → dom (𝑠 × 𝑠) = dom (𝑆 × 𝑆))
44 dmxpid 5928 . . . . . . . . . . 11 dom (𝑠 × 𝑠) = 𝑠
45 dmxpid 5928 . . . . . . . . . . 11 dom (𝑆 × 𝑆) = 𝑆
4643, 44, 453eqtr3g 2796 . . . . . . . . . 10 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → 𝑠 = 𝑆)
4746ex 414 . . . . . . . . 9 (𝜑 → (𝐻 Fn (𝑠 × 𝑠) → 𝑠 = 𝑆))
48 id 22 . . . . . . . . . . . 12 (𝑠 = 𝑆𝑠 = 𝑆)
4948sqxpeqd 5708 . . . . . . . . . . 11 (𝑠 = 𝑆 → (𝑠 × 𝑠) = (𝑆 × 𝑆))
5049fneq2d 6641 . . . . . . . . . 10 (𝑠 = 𝑆 → (𝐻 Fn (𝑠 × 𝑠) ↔ 𝐻 Fn (𝑆 × 𝑆)))
5139, 50syl5ibrcom 246 . . . . . . . . 9 (𝜑 → (𝑠 = 𝑆𝐻 Fn (𝑠 × 𝑠)))
5247, 51impbid 211 . . . . . . . 8 (𝜑 → (𝐻 Fn (𝑠 × 𝑠) ↔ 𝑠 = 𝑆))
5352anbi1d 631 . . . . . . 7 (𝜑 → ((𝐻 Fn (𝑠 × 𝑠) ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧)) ↔ (𝑠 = 𝑆 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧))))
5436, 53bitrid 283 . . . . . 6 (𝜑 → (𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧) ↔ (𝑠 = 𝑆 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧))))
5554anbi2d 630 . . . . 5 (𝜑 → ((𝑠 ∈ 𝒫 𝑇𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧)) ↔ (𝑠 ∈ 𝒫 𝑇 ∧ (𝑠 = 𝑆 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧)))))
56 an12 644 . . . . 5 ((𝑠 ∈ 𝒫 𝑇 ∧ (𝑠 = 𝑆 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧))) ↔ (𝑠 = 𝑆 ∧ (𝑠 ∈ 𝒫 𝑇 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧))))
5755, 56bitrdi 287 . . . 4 (𝜑 → ((𝑠 ∈ 𝒫 𝑇𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧)) ↔ (𝑠 = 𝑆 ∧ (𝑠 ∈ 𝒫 𝑇 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧)))))
5857exbidv 1925 . . 3 (𝜑 → (∃𝑠(𝑠 ∈ 𝒫 𝑇𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧)) ↔ ∃𝑠(𝑠 = 𝑆 ∧ (𝑠 ∈ 𝒫 𝑇 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧)))))
5927, 58bitrid 283 . 2 (𝜑 → (∃𝑠 ∈ 𝒫 𝑇𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧) ↔ ∃𝑠(𝑠 = 𝑆 ∧ (𝑠 ∈ 𝒫 𝑇 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧)))))
60 exsimpl 1872 . . . . 5 (∃𝑠(𝑠 = 𝑆 ∧ (𝑠 ∈ 𝒫 𝑇 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧))) → ∃𝑠 𝑠 = 𝑆)
61 isset 3488 . . . . 5 (𝑆 ∈ V ↔ ∃𝑠 𝑠 = 𝑆)
6260, 61sylibr 233 . . . 4 (∃𝑠(𝑠 = 𝑆 ∧ (𝑠 ∈ 𝒫 𝑇 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧))) → 𝑆 ∈ V)
6362a1i 11 . . 3 (𝜑 → (∃𝑠(𝑠 = 𝑆 ∧ (𝑠 ∈ 𝒫 𝑇 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧))) → 𝑆 ∈ V))
64 ssexg 5323 . . . . . 6 ((𝑆𝑇𝑇𝑉) → 𝑆 ∈ V)
6564expcom 415 . . . . 5 (𝑇𝑉 → (𝑆𝑇𝑆 ∈ V))
6621, 65syl 17 . . . 4 (𝜑 → (𝑆𝑇𝑆 ∈ V))
6766adantrd 493 . . 3 (𝜑 → ((𝑆𝑇 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦)) → 𝑆 ∈ V))
6830elpw 4606 . . . . . . 7 (𝑠 ∈ 𝒫 𝑇𝑠𝑇)
69 sseq1 4007 . . . . . . 7 (𝑠 = 𝑆 → (𝑠𝑇𝑆𝑇))
7068, 69bitrid 283 . . . . . 6 (𝑠 = 𝑆 → (𝑠 ∈ 𝒫 𝑇𝑆𝑇))
7149raleqdv 3326 . . . . . . 7 (𝑠 = 𝑆 → (∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧) ↔ ∀𝑧 ∈ (𝑆 × 𝑆)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧)))
72 fvex 6902 . . . . . . . . . 10 (𝐻𝑧) ∈ V
7372elpw 4606 . . . . . . . . 9 ((𝐻𝑧) ∈ 𝒫 (𝐽𝑧) ↔ (𝐻𝑧) ⊆ (𝐽𝑧))
74 fveq2 6889 . . . . . . . . . . 11 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐻𝑧) = (𝐻‘⟨𝑥, 𝑦⟩))
75 df-ov 7409 . . . . . . . . . . 11 (𝑥𝐻𝑦) = (𝐻‘⟨𝑥, 𝑦⟩)
7674, 75eqtr4di 2791 . . . . . . . . . 10 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐻𝑧) = (𝑥𝐻𝑦))
77 fveq2 6889 . . . . . . . . . . 11 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐽𝑧) = (𝐽‘⟨𝑥, 𝑦⟩))
78 df-ov 7409 . . . . . . . . . . 11 (𝑥𝐽𝑦) = (𝐽‘⟨𝑥, 𝑦⟩)
7977, 78eqtr4di 2791 . . . . . . . . . 10 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐽𝑧) = (𝑥𝐽𝑦))
8076, 79sseq12d 4015 . . . . . . . . 9 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝐻𝑧) ⊆ (𝐽𝑧) ↔ (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦)))
8173, 80bitrid 283 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝐻𝑧) ∈ 𝒫 (𝐽𝑧) ↔ (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦)))
8281ralxp 5840 . . . . . . 7 (∀𝑧 ∈ (𝑆 × 𝑆)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧) ↔ ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦))
8371, 82bitrdi 287 . . . . . 6 (𝑠 = 𝑆 → (∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧) ↔ ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦)))
8470, 83anbi12d 632 . . . . 5 (𝑠 = 𝑆 → ((𝑠 ∈ 𝒫 𝑇 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧)) ↔ (𝑆𝑇 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦))))
8584ceqsexgv 3642 . . . 4 (𝑆 ∈ V → (∃𝑠(𝑠 = 𝑆 ∧ (𝑠 ∈ 𝒫 𝑇 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧))) ↔ (𝑆𝑇 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦))))
8685a1i 11 . . 3 (𝜑 → (𝑆 ∈ V → (∃𝑠(𝑠 = 𝑆 ∧ (𝑠 ∈ 𝒫 𝑇 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧))) ↔ (𝑆𝑇 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦)))))
8763, 67, 86pm5.21ndd 381 . 2 (𝜑 → (∃𝑠(𝑠 = 𝑆 ∧ (𝑠 ∈ 𝒫 𝑇 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧))) ↔ (𝑆𝑇 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦))))
8826, 59, 873bitrd 305 1 (𝜑 → (𝐻cat 𝐽 ↔ (𝑆𝑇 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wex 1782  wcel 2107  wral 3062  wrex 3071  Vcvv 3475  wss 3948  𝒫 cpw 4602  cop 4634   class class class wbr 5148   × cxp 5674  dom cdm 5676   Fn wfn 6536  cfv 6541  (class class class)co 7406  Xcixp 8888  cat cssc 17751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7409  df-ixp 8889  df-ssc 17754
This theorem is referenced by:  ssc1  17765  ssc2  17766  sscres  17767  ssctr  17769  0ssc  17784  catsubcat  17786  rnghmsscmap2  46825  rnghmsscmap  46826  rhmsscmap2  46871  rhmsscmap  46872  rhmsscrnghm  46878  srhmsubc  46928  fldhmsubc  46936  srhmsubcALTV  46946  fldhmsubcALTV  46954
  Copyright terms: Public domain W3C validator