MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isssc Structured version   Visualization version   GIF version

Theorem isssc 17782
Description: Value of the subcategory subset relation when the arguments are known functions. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
isssc.1 (𝜑𝐻 Fn (𝑆 × 𝑆))
isssc.2 (𝜑𝐽 Fn (𝑇 × 𝑇))
isssc.3 (𝜑𝑇𝑉)
Assertion
Ref Expression
isssc (𝜑 → (𝐻cat 𝐽 ↔ (𝑆𝑇 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐻   𝑥,𝐽,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑇(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem isssc
Dummy variables 𝑡 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brssc 17776 . . . 4 (𝐻cat 𝐽 ↔ ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧)))
2 fndm 6621 . . . . . . . . . . . 12 (𝐽 Fn (𝑡 × 𝑡) → dom 𝐽 = (𝑡 × 𝑡))
32adantl 481 . . . . . . . . . . 11 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → dom 𝐽 = (𝑡 × 𝑡))
4 isssc.2 . . . . . . . . . . . . 13 (𝜑𝐽 Fn (𝑇 × 𝑇))
54adantr 480 . . . . . . . . . . . 12 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → 𝐽 Fn (𝑇 × 𝑇))
65fndmd 6623 . . . . . . . . . . 11 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → dom 𝐽 = (𝑇 × 𝑇))
73, 6eqtr3d 2766 . . . . . . . . . 10 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → (𝑡 × 𝑡) = (𝑇 × 𝑇))
87dmeqd 5869 . . . . . . . . 9 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → dom (𝑡 × 𝑡) = dom (𝑇 × 𝑇))
9 dmxpid 5894 . . . . . . . . 9 dom (𝑡 × 𝑡) = 𝑡
10 dmxpid 5894 . . . . . . . . 9 dom (𝑇 × 𝑇) = 𝑇
118, 9, 103eqtr3g 2787 . . . . . . . 8 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → 𝑡 = 𝑇)
1211ex 412 . . . . . . 7 (𝜑 → (𝐽 Fn (𝑡 × 𝑡) → 𝑡 = 𝑇))
13 id 22 . . . . . . . . . 10 (𝑡 = 𝑇𝑡 = 𝑇)
1413sqxpeqd 5670 . . . . . . . . 9 (𝑡 = 𝑇 → (𝑡 × 𝑡) = (𝑇 × 𝑇))
1514fneq2d 6612 . . . . . . . 8 (𝑡 = 𝑇 → (𝐽 Fn (𝑡 × 𝑡) ↔ 𝐽 Fn (𝑇 × 𝑇)))
164, 15syl5ibrcom 247 . . . . . . 7 (𝜑 → (𝑡 = 𝑇𝐽 Fn (𝑡 × 𝑡)))
1712, 16impbid 212 . . . . . 6 (𝜑 → (𝐽 Fn (𝑡 × 𝑡) ↔ 𝑡 = 𝑇))
1817anbi1d 631 . . . . 5 (𝜑 → ((𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧)) ↔ (𝑡 = 𝑇 ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧))))
1918exbidv 1921 . . . 4 (𝜑 → (∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧)) ↔ ∃𝑡(𝑡 = 𝑇 ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧))))
201, 19bitrid 283 . . 3 (𝜑 → (𝐻cat 𝐽 ↔ ∃𝑡(𝑡 = 𝑇 ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧))))
21 isssc.3 . . . 4 (𝜑𝑇𝑉)
22 pweq 4577 . . . . . 6 (𝑡 = 𝑇 → 𝒫 𝑡 = 𝒫 𝑇)
2322rexeqdv 3300 . . . . 5 (𝑡 = 𝑇 → (∃𝑠 ∈ 𝒫 𝑡𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧) ↔ ∃𝑠 ∈ 𝒫 𝑇𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧)))
2423ceqsexgv 3620 . . . 4 (𝑇𝑉 → (∃𝑡(𝑡 = 𝑇 ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧)) ↔ ∃𝑠 ∈ 𝒫 𝑇𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧)))
2521, 24syl 17 . . 3 (𝜑 → (∃𝑡(𝑡 = 𝑇 ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧)) ↔ ∃𝑠 ∈ 𝒫 𝑇𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧)))
2620, 25bitrd 279 . 2 (𝜑 → (𝐻cat 𝐽 ↔ ∃𝑠 ∈ 𝒫 𝑇𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧)))
27 df-rex 3054 . . 3 (∃𝑠 ∈ 𝒫 𝑇𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧) ↔ ∃𝑠(𝑠 ∈ 𝒫 𝑇𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧)))
28 3anass 1094 . . . . . . . 8 ((𝐻 ∈ V ∧ 𝐻 Fn (𝑠 × 𝑠) ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧)) ↔ (𝐻 ∈ V ∧ (𝐻 Fn (𝑠 × 𝑠) ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧))))
29 elixp2 8874 . . . . . . . 8 (𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧) ↔ (𝐻 ∈ V ∧ 𝐻 Fn (𝑠 × 𝑠) ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧)))
30 vex 3451 . . . . . . . . . . . 12 𝑠 ∈ V
3130, 30xpex 7729 . . . . . . . . . . 11 (𝑠 × 𝑠) ∈ V
32 fnex 7191 . . . . . . . . . . 11 ((𝐻 Fn (𝑠 × 𝑠) ∧ (𝑠 × 𝑠) ∈ V) → 𝐻 ∈ V)
3331, 32mpan2 691 . . . . . . . . . 10 (𝐻 Fn (𝑠 × 𝑠) → 𝐻 ∈ V)
3433adantr 480 . . . . . . . . 9 ((𝐻 Fn (𝑠 × 𝑠) ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧)) → 𝐻 ∈ V)
3534pm4.71ri 560 . . . . . . . 8 ((𝐻 Fn (𝑠 × 𝑠) ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧)) ↔ (𝐻 ∈ V ∧ (𝐻 Fn (𝑠 × 𝑠) ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧))))
3628, 29, 353bitr4i 303 . . . . . . 7 (𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧) ↔ (𝐻 Fn (𝑠 × 𝑠) ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧)))
37 fndm 6621 . . . . . . . . . . . . . 14 (𝐻 Fn (𝑠 × 𝑠) → dom 𝐻 = (𝑠 × 𝑠))
3837adantl 481 . . . . . . . . . . . . 13 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → dom 𝐻 = (𝑠 × 𝑠))
39 isssc.1 . . . . . . . . . . . . . . 15 (𝜑𝐻 Fn (𝑆 × 𝑆))
4039adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → 𝐻 Fn (𝑆 × 𝑆))
4140fndmd 6623 . . . . . . . . . . . . 13 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → dom 𝐻 = (𝑆 × 𝑆))
4238, 41eqtr3d 2766 . . . . . . . . . . . 12 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → (𝑠 × 𝑠) = (𝑆 × 𝑆))
4342dmeqd 5869 . . . . . . . . . . 11 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → dom (𝑠 × 𝑠) = dom (𝑆 × 𝑆))
44 dmxpid 5894 . . . . . . . . . . 11 dom (𝑠 × 𝑠) = 𝑠
45 dmxpid 5894 . . . . . . . . . . 11 dom (𝑆 × 𝑆) = 𝑆
4643, 44, 453eqtr3g 2787 . . . . . . . . . 10 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → 𝑠 = 𝑆)
4746ex 412 . . . . . . . . 9 (𝜑 → (𝐻 Fn (𝑠 × 𝑠) → 𝑠 = 𝑆))
48 id 22 . . . . . . . . . . . 12 (𝑠 = 𝑆𝑠 = 𝑆)
4948sqxpeqd 5670 . . . . . . . . . . 11 (𝑠 = 𝑆 → (𝑠 × 𝑠) = (𝑆 × 𝑆))
5049fneq2d 6612 . . . . . . . . . 10 (𝑠 = 𝑆 → (𝐻 Fn (𝑠 × 𝑠) ↔ 𝐻 Fn (𝑆 × 𝑆)))
5139, 50syl5ibrcom 247 . . . . . . . . 9 (𝜑 → (𝑠 = 𝑆𝐻 Fn (𝑠 × 𝑠)))
5247, 51impbid 212 . . . . . . . 8 (𝜑 → (𝐻 Fn (𝑠 × 𝑠) ↔ 𝑠 = 𝑆))
5352anbi1d 631 . . . . . . 7 (𝜑 → ((𝐻 Fn (𝑠 × 𝑠) ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧)) ↔ (𝑠 = 𝑆 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧))))
5436, 53bitrid 283 . . . . . 6 (𝜑 → (𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧) ↔ (𝑠 = 𝑆 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧))))
5554anbi2d 630 . . . . 5 (𝜑 → ((𝑠 ∈ 𝒫 𝑇𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧)) ↔ (𝑠 ∈ 𝒫 𝑇 ∧ (𝑠 = 𝑆 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧)))))
56 an12 645 . . . . 5 ((𝑠 ∈ 𝒫 𝑇 ∧ (𝑠 = 𝑆 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧))) ↔ (𝑠 = 𝑆 ∧ (𝑠 ∈ 𝒫 𝑇 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧))))
5755, 56bitrdi 287 . . . 4 (𝜑 → ((𝑠 ∈ 𝒫 𝑇𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧)) ↔ (𝑠 = 𝑆 ∧ (𝑠 ∈ 𝒫 𝑇 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧)))))
5857exbidv 1921 . . 3 (𝜑 → (∃𝑠(𝑠 ∈ 𝒫 𝑇𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧)) ↔ ∃𝑠(𝑠 = 𝑆 ∧ (𝑠 ∈ 𝒫 𝑇 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧)))))
5927, 58bitrid 283 . 2 (𝜑 → (∃𝑠 ∈ 𝒫 𝑇𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧) ↔ ∃𝑠(𝑠 = 𝑆 ∧ (𝑠 ∈ 𝒫 𝑇 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧)))))
60 exsimpl 1868 . . . . 5 (∃𝑠(𝑠 = 𝑆 ∧ (𝑠 ∈ 𝒫 𝑇 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧))) → ∃𝑠 𝑠 = 𝑆)
61 isset 3461 . . . . 5 (𝑆 ∈ V ↔ ∃𝑠 𝑠 = 𝑆)
6260, 61sylibr 234 . . . 4 (∃𝑠(𝑠 = 𝑆 ∧ (𝑠 ∈ 𝒫 𝑇 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧))) → 𝑆 ∈ V)
6362a1i 11 . . 3 (𝜑 → (∃𝑠(𝑠 = 𝑆 ∧ (𝑠 ∈ 𝒫 𝑇 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧))) → 𝑆 ∈ V))
64 ssexg 5278 . . . . . 6 ((𝑆𝑇𝑇𝑉) → 𝑆 ∈ V)
6564expcom 413 . . . . 5 (𝑇𝑉 → (𝑆𝑇𝑆 ∈ V))
6621, 65syl 17 . . . 4 (𝜑 → (𝑆𝑇𝑆 ∈ V))
6766adantrd 491 . . 3 (𝜑 → ((𝑆𝑇 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦)) → 𝑆 ∈ V))
6830elpw 4567 . . . . . . 7 (𝑠 ∈ 𝒫 𝑇𝑠𝑇)
69 sseq1 3972 . . . . . . 7 (𝑠 = 𝑆 → (𝑠𝑇𝑆𝑇))
7068, 69bitrid 283 . . . . . 6 (𝑠 = 𝑆 → (𝑠 ∈ 𝒫 𝑇𝑆𝑇))
7149raleqdv 3299 . . . . . . 7 (𝑠 = 𝑆 → (∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧) ↔ ∀𝑧 ∈ (𝑆 × 𝑆)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧)))
72 fvex 6871 . . . . . . . . . 10 (𝐻𝑧) ∈ V
7372elpw 4567 . . . . . . . . 9 ((𝐻𝑧) ∈ 𝒫 (𝐽𝑧) ↔ (𝐻𝑧) ⊆ (𝐽𝑧))
74 fveq2 6858 . . . . . . . . . . 11 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐻𝑧) = (𝐻‘⟨𝑥, 𝑦⟩))
75 df-ov 7390 . . . . . . . . . . 11 (𝑥𝐻𝑦) = (𝐻‘⟨𝑥, 𝑦⟩)
7674, 75eqtr4di 2782 . . . . . . . . . 10 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐻𝑧) = (𝑥𝐻𝑦))
77 fveq2 6858 . . . . . . . . . . 11 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐽𝑧) = (𝐽‘⟨𝑥, 𝑦⟩))
78 df-ov 7390 . . . . . . . . . . 11 (𝑥𝐽𝑦) = (𝐽‘⟨𝑥, 𝑦⟩)
7977, 78eqtr4di 2782 . . . . . . . . . 10 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐽𝑧) = (𝑥𝐽𝑦))
8076, 79sseq12d 3980 . . . . . . . . 9 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝐻𝑧) ⊆ (𝐽𝑧) ↔ (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦)))
8173, 80bitrid 283 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝐻𝑧) ∈ 𝒫 (𝐽𝑧) ↔ (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦)))
8281ralxp 5805 . . . . . . 7 (∀𝑧 ∈ (𝑆 × 𝑆)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧) ↔ ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦))
8371, 82bitrdi 287 . . . . . 6 (𝑠 = 𝑆 → (∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧) ↔ ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦)))
8470, 83anbi12d 632 . . . . 5 (𝑠 = 𝑆 → ((𝑠 ∈ 𝒫 𝑇 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧)) ↔ (𝑆𝑇 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦))))
8584ceqsexgv 3620 . . . 4 (𝑆 ∈ V → (∃𝑠(𝑠 = 𝑆 ∧ (𝑠 ∈ 𝒫 𝑇 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧))) ↔ (𝑆𝑇 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦))))
8685a1i 11 . . 3 (𝜑 → (𝑆 ∈ V → (∃𝑠(𝑠 = 𝑆 ∧ (𝑠 ∈ 𝒫 𝑇 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧))) ↔ (𝑆𝑇 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦)))))
8763, 67, 86pm5.21ndd 379 . 2 (𝜑 → (∃𝑠(𝑠 = 𝑆 ∧ (𝑠 ∈ 𝒫 𝑇 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧))) ↔ (𝑆𝑇 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦))))
8826, 59, 873bitrd 305 1 (𝜑 → (𝐻cat 𝐽 ↔ (𝑆𝑇 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  Vcvv 3447  wss 3914  𝒫 cpw 4563  cop 4595   class class class wbr 5107   × cxp 5636  dom cdm 5638   Fn wfn 6506  cfv 6511  (class class class)co 7387  Xcixp 8870  cat cssc 17769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-ixp 8871  df-ssc 17772
This theorem is referenced by:  ssc1  17783  ssc2  17784  sscres  17785  ssctr  17787  0ssc  17799  catsubcat  17801  rnghmsscmap2  20538  rnghmsscmap  20539  rhmsscmap2  20567  rhmsscmap  20568  rhmsscrnghm  20574  srhmsubc  20589  fldhmsubc  20694  srhmsubcALTV  48313  fldhmsubcALTV  48321  iinfssc  49046  discsubc  49053  nelsubclem  49056  imassc  49142  setc1onsubc  49591
  Copyright terms: Public domain W3C validator