MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isssc Structured version   Visualization version   GIF version

Theorem isssc 17092
Description: Value of the subcategory subset relation when the arguments are known functions. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
isssc.1 (𝜑𝐻 Fn (𝑆 × 𝑆))
isssc.2 (𝜑𝐽 Fn (𝑇 × 𝑇))
isssc.3 (𝜑𝑇𝑉)
Assertion
Ref Expression
isssc (𝜑 → (𝐻cat 𝐽 ↔ (𝑆𝑇 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐻   𝑥,𝐽,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑇(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem isssc
Dummy variables 𝑡 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brssc 17086 . . . 4 (𝐻cat 𝐽 ↔ ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧)))
2 fndm 6457 . . . . . . . . . . . 12 (𝐽 Fn (𝑡 × 𝑡) → dom 𝐽 = (𝑡 × 𝑡))
32adantl 484 . . . . . . . . . . 11 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → dom 𝐽 = (𝑡 × 𝑡))
4 isssc.2 . . . . . . . . . . . . 13 (𝜑𝐽 Fn (𝑇 × 𝑇))
54adantr 483 . . . . . . . . . . . 12 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → 𝐽 Fn (𝑇 × 𝑇))
6 fndm 6457 . . . . . . . . . . . 12 (𝐽 Fn (𝑇 × 𝑇) → dom 𝐽 = (𝑇 × 𝑇))
75, 6syl 17 . . . . . . . . . . 11 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → dom 𝐽 = (𝑇 × 𝑇))
83, 7eqtr3d 2860 . . . . . . . . . 10 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → (𝑡 × 𝑡) = (𝑇 × 𝑇))
98dmeqd 5776 . . . . . . . . 9 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → dom (𝑡 × 𝑡) = dom (𝑇 × 𝑇))
10 dmxpid 5802 . . . . . . . . 9 dom (𝑡 × 𝑡) = 𝑡
11 dmxpid 5802 . . . . . . . . 9 dom (𝑇 × 𝑇) = 𝑇
129, 10, 113eqtr3g 2881 . . . . . . . 8 ((𝜑𝐽 Fn (𝑡 × 𝑡)) → 𝑡 = 𝑇)
1312ex 415 . . . . . . 7 (𝜑 → (𝐽 Fn (𝑡 × 𝑡) → 𝑡 = 𝑇))
14 id 22 . . . . . . . . . 10 (𝑡 = 𝑇𝑡 = 𝑇)
1514sqxpeqd 5589 . . . . . . . . 9 (𝑡 = 𝑇 → (𝑡 × 𝑡) = (𝑇 × 𝑇))
1615fneq2d 6449 . . . . . . . 8 (𝑡 = 𝑇 → (𝐽 Fn (𝑡 × 𝑡) ↔ 𝐽 Fn (𝑇 × 𝑇)))
174, 16syl5ibrcom 249 . . . . . . 7 (𝜑 → (𝑡 = 𝑇𝐽 Fn (𝑡 × 𝑡)))
1813, 17impbid 214 . . . . . 6 (𝜑 → (𝐽 Fn (𝑡 × 𝑡) ↔ 𝑡 = 𝑇))
1918anbi1d 631 . . . . 5 (𝜑 → ((𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧)) ↔ (𝑡 = 𝑇 ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧))))
2019exbidv 1922 . . . 4 (𝜑 → (∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧)) ↔ ∃𝑡(𝑡 = 𝑇 ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧))))
211, 20syl5bb 285 . . 3 (𝜑 → (𝐻cat 𝐽 ↔ ∃𝑡(𝑡 = 𝑇 ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧))))
22 isssc.3 . . . 4 (𝜑𝑇𝑉)
23 pweq 4557 . . . . . 6 (𝑡 = 𝑇 → 𝒫 𝑡 = 𝒫 𝑇)
2423rexeqdv 3418 . . . . 5 (𝑡 = 𝑇 → (∃𝑠 ∈ 𝒫 𝑡𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧) ↔ ∃𝑠 ∈ 𝒫 𝑇𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧)))
2524ceqsexgv 3649 . . . 4 (𝑇𝑉 → (∃𝑡(𝑡 = 𝑇 ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧)) ↔ ∃𝑠 ∈ 𝒫 𝑇𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧)))
2622, 25syl 17 . . 3 (𝜑 → (∃𝑡(𝑡 = 𝑇 ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧)) ↔ ∃𝑠 ∈ 𝒫 𝑇𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧)))
2721, 26bitrd 281 . 2 (𝜑 → (𝐻cat 𝐽 ↔ ∃𝑠 ∈ 𝒫 𝑇𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧)))
28 df-rex 3146 . . 3 (∃𝑠 ∈ 𝒫 𝑇𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧) ↔ ∃𝑠(𝑠 ∈ 𝒫 𝑇𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧)))
29 3anass 1091 . . . . . . . 8 ((𝐻 ∈ V ∧ 𝐻 Fn (𝑠 × 𝑠) ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧)) ↔ (𝐻 ∈ V ∧ (𝐻 Fn (𝑠 × 𝑠) ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧))))
30 elixp2 8467 . . . . . . . 8 (𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧) ↔ (𝐻 ∈ V ∧ 𝐻 Fn (𝑠 × 𝑠) ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧)))
31 vex 3499 . . . . . . . . . . . 12 𝑠 ∈ V
3231, 31xpex 7478 . . . . . . . . . . 11 (𝑠 × 𝑠) ∈ V
33 fnex 6982 . . . . . . . . . . 11 ((𝐻 Fn (𝑠 × 𝑠) ∧ (𝑠 × 𝑠) ∈ V) → 𝐻 ∈ V)
3432, 33mpan2 689 . . . . . . . . . 10 (𝐻 Fn (𝑠 × 𝑠) → 𝐻 ∈ V)
3534adantr 483 . . . . . . . . 9 ((𝐻 Fn (𝑠 × 𝑠) ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧)) → 𝐻 ∈ V)
3635pm4.71ri 563 . . . . . . . 8 ((𝐻 Fn (𝑠 × 𝑠) ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧)) ↔ (𝐻 ∈ V ∧ (𝐻 Fn (𝑠 × 𝑠) ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧))))
3729, 30, 363bitr4i 305 . . . . . . 7 (𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧) ↔ (𝐻 Fn (𝑠 × 𝑠) ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧)))
38 fndm 6457 . . . . . . . . . . . . . 14 (𝐻 Fn (𝑠 × 𝑠) → dom 𝐻 = (𝑠 × 𝑠))
3938adantl 484 . . . . . . . . . . . . 13 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → dom 𝐻 = (𝑠 × 𝑠))
40 isssc.1 . . . . . . . . . . . . . . 15 (𝜑𝐻 Fn (𝑆 × 𝑆))
4140adantr 483 . . . . . . . . . . . . . 14 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → 𝐻 Fn (𝑆 × 𝑆))
42 fndm 6457 . . . . . . . . . . . . . 14 (𝐻 Fn (𝑆 × 𝑆) → dom 𝐻 = (𝑆 × 𝑆))
4341, 42syl 17 . . . . . . . . . . . . 13 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → dom 𝐻 = (𝑆 × 𝑆))
4439, 43eqtr3d 2860 . . . . . . . . . . . 12 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → (𝑠 × 𝑠) = (𝑆 × 𝑆))
4544dmeqd 5776 . . . . . . . . . . 11 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → dom (𝑠 × 𝑠) = dom (𝑆 × 𝑆))
46 dmxpid 5802 . . . . . . . . . . 11 dom (𝑠 × 𝑠) = 𝑠
47 dmxpid 5802 . . . . . . . . . . 11 dom (𝑆 × 𝑆) = 𝑆
4845, 46, 473eqtr3g 2881 . . . . . . . . . 10 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → 𝑠 = 𝑆)
4948ex 415 . . . . . . . . 9 (𝜑 → (𝐻 Fn (𝑠 × 𝑠) → 𝑠 = 𝑆))
50 id 22 . . . . . . . . . . . 12 (𝑠 = 𝑆𝑠 = 𝑆)
5150sqxpeqd 5589 . . . . . . . . . . 11 (𝑠 = 𝑆 → (𝑠 × 𝑠) = (𝑆 × 𝑆))
5251fneq2d 6449 . . . . . . . . . 10 (𝑠 = 𝑆 → (𝐻 Fn (𝑠 × 𝑠) ↔ 𝐻 Fn (𝑆 × 𝑆)))
5340, 52syl5ibrcom 249 . . . . . . . . 9 (𝜑 → (𝑠 = 𝑆𝐻 Fn (𝑠 × 𝑠)))
5449, 53impbid 214 . . . . . . . 8 (𝜑 → (𝐻 Fn (𝑠 × 𝑠) ↔ 𝑠 = 𝑆))
5554anbi1d 631 . . . . . . 7 (𝜑 → ((𝐻 Fn (𝑠 × 𝑠) ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧)) ↔ (𝑠 = 𝑆 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧))))
5637, 55syl5bb 285 . . . . . 6 (𝜑 → (𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧) ↔ (𝑠 = 𝑆 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧))))
5756anbi2d 630 . . . . 5 (𝜑 → ((𝑠 ∈ 𝒫 𝑇𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧)) ↔ (𝑠 ∈ 𝒫 𝑇 ∧ (𝑠 = 𝑆 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧)))))
58 an12 643 . . . . 5 ((𝑠 ∈ 𝒫 𝑇 ∧ (𝑠 = 𝑆 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧))) ↔ (𝑠 = 𝑆 ∧ (𝑠 ∈ 𝒫 𝑇 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧))))
5957, 58syl6bb 289 . . . 4 (𝜑 → ((𝑠 ∈ 𝒫 𝑇𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧)) ↔ (𝑠 = 𝑆 ∧ (𝑠 ∈ 𝒫 𝑇 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧)))))
6059exbidv 1922 . . 3 (𝜑 → (∃𝑠(𝑠 ∈ 𝒫 𝑇𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧)) ↔ ∃𝑠(𝑠 = 𝑆 ∧ (𝑠 ∈ 𝒫 𝑇 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧)))))
6128, 60syl5bb 285 . 2 (𝜑 → (∃𝑠 ∈ 𝒫 𝑇𝐻X𝑧 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑧) ↔ ∃𝑠(𝑠 = 𝑆 ∧ (𝑠 ∈ 𝒫 𝑇 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧)))))
62 exsimpl 1869 . . . . 5 (∃𝑠(𝑠 = 𝑆 ∧ (𝑠 ∈ 𝒫 𝑇 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧))) → ∃𝑠 𝑠 = 𝑆)
63 isset 3508 . . . . 5 (𝑆 ∈ V ↔ ∃𝑠 𝑠 = 𝑆)
6462, 63sylibr 236 . . . 4 (∃𝑠(𝑠 = 𝑆 ∧ (𝑠 ∈ 𝒫 𝑇 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧))) → 𝑆 ∈ V)
6564a1i 11 . . 3 (𝜑 → (∃𝑠(𝑠 = 𝑆 ∧ (𝑠 ∈ 𝒫 𝑇 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧))) → 𝑆 ∈ V))
66 ssexg 5229 . . . . . 6 ((𝑆𝑇𝑇𝑉) → 𝑆 ∈ V)
6766expcom 416 . . . . 5 (𝑇𝑉 → (𝑆𝑇𝑆 ∈ V))
6822, 67syl 17 . . . 4 (𝜑 → (𝑆𝑇𝑆 ∈ V))
6968adantrd 494 . . 3 (𝜑 → ((𝑆𝑇 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦)) → 𝑆 ∈ V))
7031elpw 4545 . . . . . . 7 (𝑠 ∈ 𝒫 𝑇𝑠𝑇)
71 sseq1 3994 . . . . . . 7 (𝑠 = 𝑆 → (𝑠𝑇𝑆𝑇))
7270, 71syl5bb 285 . . . . . 6 (𝑠 = 𝑆 → (𝑠 ∈ 𝒫 𝑇𝑆𝑇))
7351raleqdv 3417 . . . . . . 7 (𝑠 = 𝑆 → (∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧) ↔ ∀𝑧 ∈ (𝑆 × 𝑆)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧)))
74 fvex 6685 . . . . . . . . . 10 (𝐻𝑧) ∈ V
7574elpw 4545 . . . . . . . . 9 ((𝐻𝑧) ∈ 𝒫 (𝐽𝑧) ↔ (𝐻𝑧) ⊆ (𝐽𝑧))
76 fveq2 6672 . . . . . . . . . . 11 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐻𝑧) = (𝐻‘⟨𝑥, 𝑦⟩))
77 df-ov 7161 . . . . . . . . . . 11 (𝑥𝐻𝑦) = (𝐻‘⟨𝑥, 𝑦⟩)
7876, 77syl6eqr 2876 . . . . . . . . . 10 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐻𝑧) = (𝑥𝐻𝑦))
79 fveq2 6672 . . . . . . . . . . 11 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐽𝑧) = (𝐽‘⟨𝑥, 𝑦⟩))
80 df-ov 7161 . . . . . . . . . . 11 (𝑥𝐽𝑦) = (𝐽‘⟨𝑥, 𝑦⟩)
8179, 80syl6eqr 2876 . . . . . . . . . 10 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐽𝑧) = (𝑥𝐽𝑦))
8278, 81sseq12d 4002 . . . . . . . . 9 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝐻𝑧) ⊆ (𝐽𝑧) ↔ (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦)))
8375, 82syl5bb 285 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝐻𝑧) ∈ 𝒫 (𝐽𝑧) ↔ (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦)))
8483ralxp 5714 . . . . . . 7 (∀𝑧 ∈ (𝑆 × 𝑆)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧) ↔ ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦))
8573, 84syl6bb 289 . . . . . 6 (𝑠 = 𝑆 → (∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧) ↔ ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦)))
8672, 85anbi12d 632 . . . . 5 (𝑠 = 𝑆 → ((𝑠 ∈ 𝒫 𝑇 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧)) ↔ (𝑆𝑇 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦))))
8786ceqsexgv 3649 . . . 4 (𝑆 ∈ V → (∃𝑠(𝑠 = 𝑆 ∧ (𝑠 ∈ 𝒫 𝑇 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧))) ↔ (𝑆𝑇 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦))))
8887a1i 11 . . 3 (𝜑 → (𝑆 ∈ V → (∃𝑠(𝑠 = 𝑆 ∧ (𝑠 ∈ 𝒫 𝑇 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧))) ↔ (𝑆𝑇 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦)))))
8965, 69, 88pm5.21ndd 383 . 2 (𝜑 → (∃𝑠(𝑠 = 𝑆 ∧ (𝑠 ∈ 𝒫 𝑇 ∧ ∀𝑧 ∈ (𝑠 × 𝑠)(𝐻𝑧) ∈ 𝒫 (𝐽𝑧))) ↔ (𝑆𝑇 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦))))
9027, 61, 893bitrd 307 1 (𝜑 → (𝐻cat 𝐽 ↔ (𝑆𝑇 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  wral 3140  wrex 3141  Vcvv 3496  wss 3938  𝒫 cpw 4541  cop 4575   class class class wbr 5068   × cxp 5555  dom cdm 5557   Fn wfn 6352  cfv 6357  (class class class)co 7158  Xcixp 8463  cat cssc 17079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-ixp 8464  df-ssc 17082
This theorem is referenced by:  ssc1  17093  ssc2  17094  sscres  17095  ssctr  17097  0ssc  17109  catsubcat  17111  rnghmsscmap2  44251  rnghmsscmap  44252  rhmsscmap2  44297  rhmsscmap  44298  rhmsscrnghm  44304  srhmsubc  44354  fldhmsubc  44362  srhmsubcALTV  44372  fldhmsubcALTV  44380
  Copyright terms: Public domain W3C validator