Proof of Theorem cdleme32fva
| Step | Hyp | Ref
| Expression |
| 1 | | simp2l 1200 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) → 𝑅 ∈ 𝐴) |
| 2 | | cdleme32.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐾) |
| 3 | | cdleme32.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
| 4 | 2, 3 | atbase 39290 |
. . . 4
⊢ (𝑅 ∈ 𝐴 → 𝑅 ∈ 𝐵) |
| 5 | 1, 4 | syl 17 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) → 𝑅 ∈ 𝐵) |
| 6 | | cdleme32.o |
. . . 4
⊢ 𝑂 = (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (𝑁 ∨ (𝑥 ∧ 𝑊)))) |
| 7 | | eqid 2737 |
. . . 4
⊢
(℩𝑧
∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑅 ∧ 𝑊)) = 𝑅) → 𝑧 = (𝑁 ∨ (𝑅 ∧ 𝑊)))) = (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑅 ∧ 𝑊)) = 𝑅) → 𝑧 = (𝑁 ∨ (𝑅 ∧ 𝑊)))) |
| 8 | 6, 7 | cdleme31so 40381 |
. . 3
⊢ (𝑅 ∈ 𝐵 → ⦋𝑅 / 𝑥⦌𝑂 = (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑅 ∧ 𝑊)) = 𝑅) → 𝑧 = (𝑁 ∨ (𝑅 ∧ 𝑊))))) |
| 9 | 5, 8 | syl 17 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) → ⦋𝑅 / 𝑥⦌𝑂 = (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑅 ∧ 𝑊)) = 𝑅) → 𝑧 = (𝑁 ∨ (𝑅 ∧ 𝑊))))) |
| 10 | | simp1 1137 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) → ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) |
| 11 | | simp3 1139 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) → 𝑃 ≠ 𝑄) |
| 12 | | simp2 1138 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) → (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) |
| 13 | | cdleme32.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
| 14 | | cdleme32.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
| 15 | | cdleme32.m |
. . . . 5
⊢ ∧ =
(meet‘𝐾) |
| 16 | | cdleme32.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
| 17 | | cdleme32.u |
. . . . 5
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
| 18 | | cdleme32.c |
. . . . 5
⊢ 𝐶 = ((𝑠 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊))) |
| 19 | | cdleme32.d |
. . . . 5
⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) |
| 20 | | cdleme32.e |
. . . . 5
⊢ 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) |
| 21 | | cdleme32.i |
. . . . 5
⊢ 𝐼 = (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝐸)) |
| 22 | | cdleme32.n |
. . . . 5
⊢ 𝑁 = if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐼, 𝐶) |
| 23 | 2, 13, 14, 15, 3, 16, 17, 18, 19, 20, 21, 22 | cdleme32snb 40438 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → ⦋𝑅 / 𝑠⦌𝑁 ∈ 𝐵) |
| 24 | 10, 11, 12, 23 | syl12anc 837 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) → ⦋𝑅 / 𝑠⦌𝑁 ∈ 𝐵) |
| 25 | | nfv 1914 |
. . . . . . . . 9
⊢
Ⅎ𝑠 ¬ 𝑅 ≤ 𝑊 |
| 26 | | nfcsb1v 3923 |
. . . . . . . . . 10
⊢
Ⅎ𝑠⦋𝑅 / 𝑠⦌𝑁 |
| 27 | 26 | nfeq2 2923 |
. . . . . . . . 9
⊢
Ⅎ𝑠 𝑧 = ⦋𝑅 / 𝑠⦌𝑁 |
| 28 | 25, 27 | nfim 1896 |
. . . . . . . 8
⊢
Ⅎ𝑠(¬ 𝑅 ≤ 𝑊 → 𝑧 = ⦋𝑅 / 𝑠⦌𝑁) |
| 29 | | breq1 5146 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑅 → (𝑠 ≤ 𝑊 ↔ 𝑅 ≤ 𝑊)) |
| 30 | 29 | notbid 318 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑅 → (¬ 𝑠 ≤ 𝑊 ↔ ¬ 𝑅 ≤ 𝑊)) |
| 31 | | csbeq1a 3913 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑅 → 𝑁 = ⦋𝑅 / 𝑠⦌𝑁) |
| 32 | 31 | eqeq2d 2748 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑅 → (𝑧 = 𝑁 ↔ 𝑧 = ⦋𝑅 / 𝑠⦌𝑁)) |
| 33 | 30, 32 | imbi12d 344 |
. . . . . . . . 9
⊢ (𝑠 = 𝑅 → ((¬ 𝑠 ≤ 𝑊 → 𝑧 = 𝑁) ↔ (¬ 𝑅 ≤ 𝑊 → 𝑧 = ⦋𝑅 / 𝑠⦌𝑁))) |
| 34 | 33 | ax-gen 1795 |
. . . . . . . 8
⊢
∀𝑠(𝑠 = 𝑅 → ((¬ 𝑠 ≤ 𝑊 → 𝑧 = 𝑁) ↔ (¬ 𝑅 ≤ 𝑊 → 𝑧 = ⦋𝑅 / 𝑠⦌𝑁))) |
| 35 | | ceqsralt 3516 |
. . . . . . . 8
⊢
((Ⅎ𝑠(¬
𝑅 ≤ 𝑊 → 𝑧 = ⦋𝑅 / 𝑠⦌𝑁) ∧ ∀𝑠(𝑠 = 𝑅 → ((¬ 𝑠 ≤ 𝑊 → 𝑧 = 𝑁) ↔ (¬ 𝑅 ≤ 𝑊 → 𝑧 = ⦋𝑅 / 𝑠⦌𝑁))) ∧ 𝑅 ∈ 𝐴) → (∀𝑠 ∈ 𝐴 (𝑠 = 𝑅 → (¬ 𝑠 ≤ 𝑊 → 𝑧 = 𝑁)) ↔ (¬ 𝑅 ≤ 𝑊 → 𝑧 = ⦋𝑅 / 𝑠⦌𝑁))) |
| 36 | 28, 34, 35 | mp3an12 1453 |
. . . . . . 7
⊢ (𝑅 ∈ 𝐴 → (∀𝑠 ∈ 𝐴 (𝑠 = 𝑅 → (¬ 𝑠 ≤ 𝑊 → 𝑧 = 𝑁)) ↔ (¬ 𝑅 ≤ 𝑊 → 𝑧 = ⦋𝑅 / 𝑠⦌𝑁))) |
| 37 | 36 | adantr 480 |
. . . . . 6
⊢ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) → (∀𝑠 ∈ 𝐴 (𝑠 = 𝑅 → (¬ 𝑠 ≤ 𝑊 → 𝑧 = 𝑁)) ↔ (¬ 𝑅 ≤ 𝑊 → 𝑧 = ⦋𝑅 / 𝑠⦌𝑁))) |
| 38 | 37 | 3ad2ant2 1135 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) → (∀𝑠 ∈ 𝐴 (𝑠 = 𝑅 → (¬ 𝑠 ≤ 𝑊 → 𝑧 = 𝑁)) ↔ (¬ 𝑅 ≤ 𝑊 → 𝑧 = ⦋𝑅 / 𝑠⦌𝑁))) |
| 39 | | simp11 1204 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 40 | | eqid 2737 |
. . . . . . . . . . . . . . . 16
⊢
(0.‘𝐾) =
(0.‘𝐾) |
| 41 | 13, 15, 40, 3, 16 | lhpmat 40032 |
. . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (𝑅 ∧ 𝑊) = (0.‘𝐾)) |
| 42 | 39, 12, 41 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) → (𝑅 ∧ 𝑊) = (0.‘𝐾)) |
| 43 | 42 | adantr 480 |
. . . . . . . . . . . . 13
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) → (𝑅 ∧ 𝑊) = (0.‘𝐾)) |
| 44 | 43 | oveq2d 7447 |
. . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) → (𝑠 ∨ (𝑅 ∧ 𝑊)) = (𝑠 ∨ (0.‘𝐾))) |
| 45 | | simp11l 1285 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) → 𝐾 ∈ HL) |
| 46 | 45 | adantr 480 |
. . . . . . . . . . . . . 14
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) → 𝐾 ∈ HL) |
| 47 | | hlol 39362 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
| 48 | 46, 47 | syl 17 |
. . . . . . . . . . . . 13
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) → 𝐾 ∈ OL) |
| 49 | 2, 3 | atbase 39290 |
. . . . . . . . . . . . . 14
⊢ (𝑠 ∈ 𝐴 → 𝑠 ∈ 𝐵) |
| 50 | 49 | ad2antrl 728 |
. . . . . . . . . . . . 13
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) → 𝑠 ∈ 𝐵) |
| 51 | 2, 14, 40 | olj01 39226 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ OL ∧ 𝑠 ∈ 𝐵) → (𝑠 ∨ (0.‘𝐾)) = 𝑠) |
| 52 | 48, 50, 51 | syl2anc 584 |
. . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) → (𝑠 ∨ (0.‘𝐾)) = 𝑠) |
| 53 | 44, 52 | eqtrd 2777 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) → (𝑠 ∨ (𝑅 ∧ 𝑊)) = 𝑠) |
| 54 | 53 | eqeq1d 2739 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) → ((𝑠 ∨ (𝑅 ∧ 𝑊)) = 𝑅 ↔ 𝑠 = 𝑅)) |
| 55 | 43 | oveq2d 7447 |
. . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) → (𝑁 ∨ (𝑅 ∧ 𝑊)) = (𝑁 ∨ (0.‘𝐾))) |
| 56 | | simpl11 1249 |
. . . . . . . . . . . . . 14
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 57 | | simpl12 1250 |
. . . . . . . . . . . . . 14
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
| 58 | | simpl13 1251 |
. . . . . . . . . . . . . 14
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
| 59 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) → (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) |
| 60 | | simpl3 1194 |
. . . . . . . . . . . . . 14
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) → 𝑃 ≠ 𝑄) |
| 61 | 2, 13, 14, 15, 3, 16, 17, 18, 19, 20, 21, 22 | cdleme27cl 40368 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄)) → 𝑁 ∈ 𝐵) |
| 62 | 56, 57, 58, 59, 60, 61 | syl122anc 1381 |
. . . . . . . . . . . . 13
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) → 𝑁 ∈ 𝐵) |
| 63 | 2, 14, 40 | olj01 39226 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ OL ∧ 𝑁 ∈ 𝐵) → (𝑁 ∨ (0.‘𝐾)) = 𝑁) |
| 64 | 48, 62, 63 | syl2anc 584 |
. . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) → (𝑁 ∨ (0.‘𝐾)) = 𝑁) |
| 65 | 55, 64 | eqtrd 2777 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) → (𝑁 ∨ (𝑅 ∧ 𝑊)) = 𝑁) |
| 66 | 65 | eqeq2d 2748 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) → (𝑧 = (𝑁 ∨ (𝑅 ∧ 𝑊)) ↔ 𝑧 = 𝑁)) |
| 67 | 54, 66 | imbi12d 344 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) → (((𝑠 ∨ (𝑅 ∧ 𝑊)) = 𝑅 → 𝑧 = (𝑁 ∨ (𝑅 ∧ 𝑊))) ↔ (𝑠 = 𝑅 → 𝑧 = 𝑁))) |
| 68 | 67 | expr 456 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ 𝑠 ∈ 𝐴) → (¬ 𝑠 ≤ 𝑊 → (((𝑠 ∨ (𝑅 ∧ 𝑊)) = 𝑅 → 𝑧 = (𝑁 ∨ (𝑅 ∧ 𝑊))) ↔ (𝑠 = 𝑅 → 𝑧 = 𝑁)))) |
| 69 | 68 | pm5.74d 273 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ 𝑠 ∈ 𝐴) → ((¬ 𝑠 ≤ 𝑊 → ((𝑠 ∨ (𝑅 ∧ 𝑊)) = 𝑅 → 𝑧 = (𝑁 ∨ (𝑅 ∧ 𝑊)))) ↔ (¬ 𝑠 ≤ 𝑊 → (𝑠 = 𝑅 → 𝑧 = 𝑁)))) |
| 70 | | impexp 450 |
. . . . . . 7
⊢ (((¬
𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑅 ∧ 𝑊)) = 𝑅) → 𝑧 = (𝑁 ∨ (𝑅 ∧ 𝑊))) ↔ (¬ 𝑠 ≤ 𝑊 → ((𝑠 ∨ (𝑅 ∧ 𝑊)) = 𝑅 → 𝑧 = (𝑁 ∨ (𝑅 ∧ 𝑊))))) |
| 71 | | bi2.04 387 |
. . . . . . 7
⊢ ((𝑠 = 𝑅 → (¬ 𝑠 ≤ 𝑊 → 𝑧 = 𝑁)) ↔ (¬ 𝑠 ≤ 𝑊 → (𝑠 = 𝑅 → 𝑧 = 𝑁))) |
| 72 | 69, 70, 71 | 3bitr4g 314 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ 𝑠 ∈ 𝐴) → (((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑅 ∧ 𝑊)) = 𝑅) → 𝑧 = (𝑁 ∨ (𝑅 ∧ 𝑊))) ↔ (𝑠 = 𝑅 → (¬ 𝑠 ≤ 𝑊 → 𝑧 = 𝑁)))) |
| 73 | 72 | ralbidva 3176 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) → (∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑅 ∧ 𝑊)) = 𝑅) → 𝑧 = (𝑁 ∨ (𝑅 ∧ 𝑊))) ↔ ∀𝑠 ∈ 𝐴 (𝑠 = 𝑅 → (¬ 𝑠 ≤ 𝑊 → 𝑧 = 𝑁)))) |
| 74 | | simp2r 1201 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) → ¬ 𝑅 ≤ 𝑊) |
| 75 | | biimt 360 |
. . . . . 6
⊢ (¬
𝑅 ≤ 𝑊 → (𝑧 = ⦋𝑅 / 𝑠⦌𝑁 ↔ (¬ 𝑅 ≤ 𝑊 → 𝑧 = ⦋𝑅 / 𝑠⦌𝑁))) |
| 76 | 74, 75 | syl 17 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) → (𝑧 = ⦋𝑅 / 𝑠⦌𝑁 ↔ (¬ 𝑅 ≤ 𝑊 → 𝑧 = ⦋𝑅 / 𝑠⦌𝑁))) |
| 77 | 38, 73, 76 | 3bitr4d 311 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) → (∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑅 ∧ 𝑊)) = 𝑅) → 𝑧 = (𝑁 ∨ (𝑅 ∧ 𝑊))) ↔ 𝑧 = ⦋𝑅 / 𝑠⦌𝑁)) |
| 78 | 77 | adantr 480 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ 𝑧 ∈ 𝐵) → (∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑅 ∧ 𝑊)) = 𝑅) → 𝑧 = (𝑁 ∨ (𝑅 ∧ 𝑊))) ↔ 𝑧 = ⦋𝑅 / 𝑠⦌𝑁)) |
| 79 | 24, 78 | riota5 7417 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) → (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑅 ∧ 𝑊)) = 𝑅) → 𝑧 = (𝑁 ∨ (𝑅 ∧ 𝑊)))) = ⦋𝑅 / 𝑠⦌𝑁) |
| 80 | 9, 79 | eqtrd 2777 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) → ⦋𝑅 / 𝑥⦌𝑂 = ⦋𝑅 / 𝑠⦌𝑁) |