Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme32fva Structured version   Visualization version   GIF version

Theorem cdleme32fva 40419
Description: Part of proof of Lemma D in [Crawley] p. 113. Value of 𝐹 at an atom not under 𝑊. (Contributed by NM, 2-Mar-2013.)
Hypotheses
Ref Expression
cdleme32.b 𝐵 = (Base‘𝐾)
cdleme32.l = (le‘𝐾)
cdleme32.j = (join‘𝐾)
cdleme32.m = (meet‘𝐾)
cdleme32.a 𝐴 = (Atoms‘𝐾)
cdleme32.h 𝐻 = (LHyp‘𝐾)
cdleme32.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme32.c 𝐶 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
cdleme32.d 𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
cdleme32.e 𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))
cdleme32.i 𝐼 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸))
cdleme32.n 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐶)
cdleme32.o 𝑂 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (𝑁 (𝑥 𝑊))))
cdleme32.f 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥))
Assertion
Ref Expression
cdleme32fva ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) → 𝑅 / 𝑥𝑂 = 𝑅 / 𝑠𝑁)
Distinct variable groups:   𝑡,𝑠,𝑥,𝑦,𝑧,𝐴   𝐵,𝑠,𝑡,𝑥,𝑦,𝑧   𝑦,𝐶   𝐷,𝑠,𝑦,𝑧   𝑦,𝐸   𝐻,𝑠,𝑡   ,𝑠,𝑡,𝑥,𝑦,𝑧   𝐾,𝑠,𝑡   ,𝑠,𝑡,𝑥,𝑦,𝑧   ,𝑠,𝑡,𝑥,𝑦,𝑧   𝑥,𝑁,𝑧   𝑃,𝑠,𝑡,𝑥,𝑦,𝑧   𝑄,𝑠,𝑡,𝑥,𝑦,𝑧   𝑈,𝑠,𝑡,𝑥,𝑦,𝑧   𝑊,𝑠,𝑡,𝑥,𝑦,𝑧   𝑅,𝑠,𝑡,𝑦   𝑦,𝐻   𝑦,𝐾   𝑥,𝑅,𝑧   𝑧,𝐻   𝑧,𝐾
Allowed substitution hints:   𝐶(𝑥,𝑧,𝑡,𝑠)   𝐷(𝑥,𝑡)   𝐸(𝑥,𝑧,𝑡,𝑠)   𝐹(𝑥,𝑦,𝑧,𝑡,𝑠)   𝐻(𝑥)   𝐼(𝑥,𝑦,𝑧,𝑡,𝑠)   𝐾(𝑥)   𝑁(𝑦,𝑡,𝑠)   𝑂(𝑥,𝑦,𝑧,𝑡,𝑠)

Proof of Theorem cdleme32fva
StepHypRef Expression
1 simp2l 1198 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) → 𝑅𝐴)
2 cdleme32.b . . . . 5 𝐵 = (Base‘𝐾)
3 cdleme32.a . . . . 5 𝐴 = (Atoms‘𝐾)
42, 3atbase 39270 . . . 4 (𝑅𝐴𝑅𝐵)
51, 4syl 17 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) → 𝑅𝐵)
6 cdleme32.o . . . 4 𝑂 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (𝑁 (𝑥 𝑊))))
7 eqid 2734 . . . 4 (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊)))) = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))))
86, 7cdleme31so 40361 . . 3 (𝑅𝐵𝑅 / 𝑥𝑂 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊)))))
95, 8syl 17 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) → 𝑅 / 𝑥𝑂 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊)))))
10 simp1 1135 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)))
11 simp3 1137 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) → 𝑃𝑄)
12 simp2 1136 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊))
13 cdleme32.l . . . . 5 = (le‘𝐾)
14 cdleme32.j . . . . 5 = (join‘𝐾)
15 cdleme32.m . . . . 5 = (meet‘𝐾)
16 cdleme32.h . . . . 5 𝐻 = (LHyp‘𝐾)
17 cdleme32.u . . . . 5 𝑈 = ((𝑃 𝑄) 𝑊)
18 cdleme32.c . . . . 5 𝐶 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
19 cdleme32.d . . . . 5 𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
20 cdleme32.e . . . . 5 𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))
21 cdleme32.i . . . . 5 𝐼 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸))
22 cdleme32.n . . . . 5 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐶)
232, 13, 14, 15, 3, 16, 17, 18, 19, 20, 21, 22cdleme32snb 40418 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑅 / 𝑠𝑁𝐵)
2410, 11, 12, 23syl12anc 837 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) → 𝑅 / 𝑠𝑁𝐵)
25 nfv 1911 . . . . . . . . 9 𝑠 ¬ 𝑅 𝑊
26 nfcsb1v 3932 . . . . . . . . . 10 𝑠𝑅 / 𝑠𝑁
2726nfeq2 2920 . . . . . . . . 9 𝑠 𝑧 = 𝑅 / 𝑠𝑁
2825, 27nfim 1893 . . . . . . . 8 𝑠𝑅 𝑊𝑧 = 𝑅 / 𝑠𝑁)
29 breq1 5150 . . . . . . . . . . 11 (𝑠 = 𝑅 → (𝑠 𝑊𝑅 𝑊))
3029notbid 318 . . . . . . . . . 10 (𝑠 = 𝑅 → (¬ 𝑠 𝑊 ↔ ¬ 𝑅 𝑊))
31 csbeq1a 3921 . . . . . . . . . . 11 (𝑠 = 𝑅𝑁 = 𝑅 / 𝑠𝑁)
3231eqeq2d 2745 . . . . . . . . . 10 (𝑠 = 𝑅 → (𝑧 = 𝑁𝑧 = 𝑅 / 𝑠𝑁))
3330, 32imbi12d 344 . . . . . . . . 9 (𝑠 = 𝑅 → ((¬ 𝑠 𝑊𝑧 = 𝑁) ↔ (¬ 𝑅 𝑊𝑧 = 𝑅 / 𝑠𝑁)))
3433ax-gen 1791 . . . . . . . 8 𝑠(𝑠 = 𝑅 → ((¬ 𝑠 𝑊𝑧 = 𝑁) ↔ (¬ 𝑅 𝑊𝑧 = 𝑅 / 𝑠𝑁)))
35 ceqsralt 3513 . . . . . . . 8 ((Ⅎ𝑠𝑅 𝑊𝑧 = 𝑅 / 𝑠𝑁) ∧ ∀𝑠(𝑠 = 𝑅 → ((¬ 𝑠 𝑊𝑧 = 𝑁) ↔ (¬ 𝑅 𝑊𝑧 = 𝑅 / 𝑠𝑁))) ∧ 𝑅𝐴) → (∀𝑠𝐴 (𝑠 = 𝑅 → (¬ 𝑠 𝑊𝑧 = 𝑁)) ↔ (¬ 𝑅 𝑊𝑧 = 𝑅 / 𝑠𝑁)))
3628, 34, 35mp3an12 1450 . . . . . . 7 (𝑅𝐴 → (∀𝑠𝐴 (𝑠 = 𝑅 → (¬ 𝑠 𝑊𝑧 = 𝑁)) ↔ (¬ 𝑅 𝑊𝑧 = 𝑅 / 𝑠𝑁)))
3736adantr 480 . . . . . 6 ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) → (∀𝑠𝐴 (𝑠 = 𝑅 → (¬ 𝑠 𝑊𝑧 = 𝑁)) ↔ (¬ 𝑅 𝑊𝑧 = 𝑅 / 𝑠𝑁)))
38373ad2ant2 1133 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) → (∀𝑠𝐴 (𝑠 = 𝑅 → (¬ 𝑠 𝑊𝑧 = 𝑁)) ↔ (¬ 𝑅 𝑊𝑧 = 𝑅 / 𝑠𝑁)))
39 simp11 1202 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) → (𝐾 ∈ HL ∧ 𝑊𝐻))
40 eqid 2734 . . . . . . . . . . . . . . . 16 (0.‘𝐾) = (0.‘𝐾)
4113, 15, 40, 3, 16lhpmat 40012 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝑅 𝑊) = (0.‘𝐾))
4239, 12, 41syl2anc 584 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) → (𝑅 𝑊) = (0.‘𝐾))
4342adantr 480 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → (𝑅 𝑊) = (0.‘𝐾))
4443oveq2d 7446 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → (𝑠 (𝑅 𝑊)) = (𝑠 (0.‘𝐾)))
45 simp11l 1283 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) → 𝐾 ∈ HL)
4645adantr 480 . . . . . . . . . . . . . 14 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → 𝐾 ∈ HL)
47 hlol 39342 . . . . . . . . . . . . . 14 (𝐾 ∈ HL → 𝐾 ∈ OL)
4846, 47syl 17 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → 𝐾 ∈ OL)
492, 3atbase 39270 . . . . . . . . . . . . . 14 (𝑠𝐴𝑠𝐵)
5049ad2antrl 728 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → 𝑠𝐵)
512, 14, 40olj01 39206 . . . . . . . . . . . . 13 ((𝐾 ∈ OL ∧ 𝑠𝐵) → (𝑠 (0.‘𝐾)) = 𝑠)
5248, 50, 51syl2anc 584 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → (𝑠 (0.‘𝐾)) = 𝑠)
5344, 52eqtrd 2774 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → (𝑠 (𝑅 𝑊)) = 𝑠)
5453eqeq1d 2736 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → ((𝑠 (𝑅 𝑊)) = 𝑅𝑠 = 𝑅))
5543oveq2d 7446 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → (𝑁 (𝑅 𝑊)) = (𝑁 (0.‘𝐾)))
56 simpl11 1247 . . . . . . . . . . . . . 14 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
57 simpl12 1248 . . . . . . . . . . . . . 14 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
58 simpl13 1249 . . . . . . . . . . . . . 14 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
59 simpr 484 . . . . . . . . . . . . . 14 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → (𝑠𝐴 ∧ ¬ 𝑠 𝑊))
60 simpl3 1192 . . . . . . . . . . . . . 14 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → 𝑃𝑄)
612, 13, 14, 15, 3, 16, 17, 18, 19, 20, 21, 22cdleme27cl 40348 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ 𝑃𝑄)) → 𝑁𝐵)
6256, 57, 58, 59, 60, 61syl122anc 1378 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → 𝑁𝐵)
632, 14, 40olj01 39206 . . . . . . . . . . . . 13 ((𝐾 ∈ OL ∧ 𝑁𝐵) → (𝑁 (0.‘𝐾)) = 𝑁)
6448, 62, 63syl2anc 584 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → (𝑁 (0.‘𝐾)) = 𝑁)
6555, 64eqtrd 2774 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → (𝑁 (𝑅 𝑊)) = 𝑁)
6665eqeq2d 2745 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → (𝑧 = (𝑁 (𝑅 𝑊)) ↔ 𝑧 = 𝑁))
6754, 66imbi12d 344 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → (((𝑠 (𝑅 𝑊)) = 𝑅𝑧 = (𝑁 (𝑅 𝑊))) ↔ (𝑠 = 𝑅𝑧 = 𝑁)))
6867expr 456 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) ∧ 𝑠𝐴) → (¬ 𝑠 𝑊 → (((𝑠 (𝑅 𝑊)) = 𝑅𝑧 = (𝑁 (𝑅 𝑊))) ↔ (𝑠 = 𝑅𝑧 = 𝑁))))
6968pm5.74d 273 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) ∧ 𝑠𝐴) → ((¬ 𝑠 𝑊 → ((𝑠 (𝑅 𝑊)) = 𝑅𝑧 = (𝑁 (𝑅 𝑊)))) ↔ (¬ 𝑠 𝑊 → (𝑠 = 𝑅𝑧 = 𝑁))))
70 impexp 450 . . . . . . 7 (((¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))) ↔ (¬ 𝑠 𝑊 → ((𝑠 (𝑅 𝑊)) = 𝑅𝑧 = (𝑁 (𝑅 𝑊)))))
71 bi2.04 387 . . . . . . 7 ((𝑠 = 𝑅 → (¬ 𝑠 𝑊𝑧 = 𝑁)) ↔ (¬ 𝑠 𝑊 → (𝑠 = 𝑅𝑧 = 𝑁)))
7269, 70, 713bitr4g 314 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) ∧ 𝑠𝐴) → (((¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))) ↔ (𝑠 = 𝑅 → (¬ 𝑠 𝑊𝑧 = 𝑁))))
7372ralbidva 3173 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) → (∀𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))) ↔ ∀𝑠𝐴 (𝑠 = 𝑅 → (¬ 𝑠 𝑊𝑧 = 𝑁))))
74 simp2r 1199 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) → ¬ 𝑅 𝑊)
75 biimt 360 . . . . . 6 𝑅 𝑊 → (𝑧 = 𝑅 / 𝑠𝑁 ↔ (¬ 𝑅 𝑊𝑧 = 𝑅 / 𝑠𝑁)))
7674, 75syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) → (𝑧 = 𝑅 / 𝑠𝑁 ↔ (¬ 𝑅 𝑊𝑧 = 𝑅 / 𝑠𝑁)))
7738, 73, 763bitr4d 311 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) → (∀𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))) ↔ 𝑧 = 𝑅 / 𝑠𝑁))
7877adantr 480 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) ∧ 𝑧𝐵) → (∀𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))) ↔ 𝑧 = 𝑅 / 𝑠𝑁))
7924, 78riota5 7416 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) → (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊)))) = 𝑅 / 𝑠𝑁)
809, 79eqtrd 2774 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) → 𝑅 / 𝑥𝑂 = 𝑅 / 𝑠𝑁)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wal 1534   = wceq 1536  wnf 1779  wcel 2105  wne 2937  wral 3058  csb 3907  ifcif 4530   class class class wbr 5147  cmpt 5230  cfv 6562  crio 7386  (class class class)co 7430  Basecbs 17244  lecple 17304  joincjn 18368  meetcmee 18369  0.cp0 18480  OLcol 39155  Atomscatm 39244  HLchlt 39331  LHypclh 39966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-riotaBAD 38934
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-1st 8012  df-2nd 8013  df-undef 8296  df-proset 18351  df-poset 18370  df-plt 18387  df-lub 18403  df-glb 18404  df-join 18405  df-meet 18406  df-p0 18482  df-p1 18483  df-lat 18489  df-clat 18556  df-oposet 39157  df-ol 39159  df-oml 39160  df-covers 39247  df-ats 39248  df-atl 39279  df-cvlat 39303  df-hlat 39332  df-llines 39480  df-lplanes 39481  df-lvols 39482  df-lines 39483  df-psubsp 39485  df-pmap 39486  df-padd 39778  df-lhyp 39970
This theorem is referenced by:  cdleme32fva1  40420
  Copyright terms: Public domain W3C validator