Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme32fva Structured version   Visualization version   GIF version

Theorem cdleme32fva 37998
Description: Part of proof of Lemma D in [Crawley] p. 113. Value of 𝐹 at an atom not under 𝑊. (Contributed by NM, 2-Mar-2013.)
Hypotheses
Ref Expression
cdleme32.b 𝐵 = (Base‘𝐾)
cdleme32.l = (le‘𝐾)
cdleme32.j = (join‘𝐾)
cdleme32.m = (meet‘𝐾)
cdleme32.a 𝐴 = (Atoms‘𝐾)
cdleme32.h 𝐻 = (LHyp‘𝐾)
cdleme32.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme32.c 𝐶 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
cdleme32.d 𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
cdleme32.e 𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))
cdleme32.i 𝐼 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸))
cdleme32.n 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐶)
cdleme32.o 𝑂 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (𝑁 (𝑥 𝑊))))
cdleme32.f 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥))
Assertion
Ref Expression
cdleme32fva ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) → 𝑅 / 𝑥𝑂 = 𝑅 / 𝑠𝑁)
Distinct variable groups:   𝑡,𝑠,𝑥,𝑦,𝑧,𝐴   𝐵,𝑠,𝑡,𝑥,𝑦,𝑧   𝑦,𝐶   𝐷,𝑠,𝑦,𝑧   𝑦,𝐸   𝐻,𝑠,𝑡   ,𝑠,𝑡,𝑥,𝑦,𝑧   𝐾,𝑠,𝑡   ,𝑠,𝑡,𝑥,𝑦,𝑧   ,𝑠,𝑡,𝑥,𝑦,𝑧   𝑥,𝑁,𝑧   𝑃,𝑠,𝑡,𝑥,𝑦,𝑧   𝑄,𝑠,𝑡,𝑥,𝑦,𝑧   𝑈,𝑠,𝑡,𝑥,𝑦,𝑧   𝑊,𝑠,𝑡,𝑥,𝑦,𝑧   𝑅,𝑠,𝑡,𝑦   𝑦,𝐻   𝑦,𝐾   𝑥,𝑅,𝑧   𝑧,𝐻   𝑧,𝐾
Allowed substitution hints:   𝐶(𝑥,𝑧,𝑡,𝑠)   𝐷(𝑥,𝑡)   𝐸(𝑥,𝑧,𝑡,𝑠)   𝐹(𝑥,𝑦,𝑧,𝑡,𝑠)   𝐻(𝑥)   𝐼(𝑥,𝑦,𝑧,𝑡,𝑠)   𝐾(𝑥)   𝑁(𝑦,𝑡,𝑠)   𝑂(𝑥,𝑦,𝑧,𝑡,𝑠)

Proof of Theorem cdleme32fva
StepHypRef Expression
1 simp2l 1197 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) → 𝑅𝐴)
2 cdleme32.b . . . . 5 𝐵 = (Base‘𝐾)
3 cdleme32.a . . . . 5 𝐴 = (Atoms‘𝐾)
42, 3atbase 36850 . . . 4 (𝑅𝐴𝑅𝐵)
51, 4syl 17 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) → 𝑅𝐵)
6 cdleme32.o . . . 4 𝑂 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (𝑁 (𝑥 𝑊))))
7 eqid 2759 . . . 4 (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊)))) = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))))
86, 7cdleme31so 37940 . . 3 (𝑅𝐵𝑅 / 𝑥𝑂 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊)))))
95, 8syl 17 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) → 𝑅 / 𝑥𝑂 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊)))))
10 simp1 1134 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)))
11 simp3 1136 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) → 𝑃𝑄)
12 simp2 1135 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊))
13 cdleme32.l . . . . 5 = (le‘𝐾)
14 cdleme32.j . . . . 5 = (join‘𝐾)
15 cdleme32.m . . . . 5 = (meet‘𝐾)
16 cdleme32.h . . . . 5 𝐻 = (LHyp‘𝐾)
17 cdleme32.u . . . . 5 𝑈 = ((𝑃 𝑄) 𝑊)
18 cdleme32.c . . . . 5 𝐶 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
19 cdleme32.d . . . . 5 𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
20 cdleme32.e . . . . 5 𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))
21 cdleme32.i . . . . 5 𝐼 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸))
22 cdleme32.n . . . . 5 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐶)
232, 13, 14, 15, 3, 16, 17, 18, 19, 20, 21, 22cdleme32snb 37997 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑅 / 𝑠𝑁𝐵)
2410, 11, 12, 23syl12anc 836 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) → 𝑅 / 𝑠𝑁𝐵)
25 nfv 1916 . . . . . . . . 9 𝑠 ¬ 𝑅 𝑊
26 nfcsb1v 3825 . . . . . . . . . 10 𝑠𝑅 / 𝑠𝑁
2726nfeq2 2934 . . . . . . . . 9 𝑠 𝑧 = 𝑅 / 𝑠𝑁
2825, 27nfim 1898 . . . . . . . 8 𝑠𝑅 𝑊𝑧 = 𝑅 / 𝑠𝑁)
29 breq1 5028 . . . . . . . . . . 11 (𝑠 = 𝑅 → (𝑠 𝑊𝑅 𝑊))
3029notbid 322 . . . . . . . . . 10 (𝑠 = 𝑅 → (¬ 𝑠 𝑊 ↔ ¬ 𝑅 𝑊))
31 csbeq1a 3815 . . . . . . . . . . 11 (𝑠 = 𝑅𝑁 = 𝑅 / 𝑠𝑁)
3231eqeq2d 2770 . . . . . . . . . 10 (𝑠 = 𝑅 → (𝑧 = 𝑁𝑧 = 𝑅 / 𝑠𝑁))
3330, 32imbi12d 349 . . . . . . . . 9 (𝑠 = 𝑅 → ((¬ 𝑠 𝑊𝑧 = 𝑁) ↔ (¬ 𝑅 𝑊𝑧 = 𝑅 / 𝑠𝑁)))
3433ax-gen 1798 . . . . . . . 8 𝑠(𝑠 = 𝑅 → ((¬ 𝑠 𝑊𝑧 = 𝑁) ↔ (¬ 𝑅 𝑊𝑧 = 𝑅 / 𝑠𝑁)))
35 ceqsralt 3443 . . . . . . . 8 ((Ⅎ𝑠𝑅 𝑊𝑧 = 𝑅 / 𝑠𝑁) ∧ ∀𝑠(𝑠 = 𝑅 → ((¬ 𝑠 𝑊𝑧 = 𝑁) ↔ (¬ 𝑅 𝑊𝑧 = 𝑅 / 𝑠𝑁))) ∧ 𝑅𝐴) → (∀𝑠𝐴 (𝑠 = 𝑅 → (¬ 𝑠 𝑊𝑧 = 𝑁)) ↔ (¬ 𝑅 𝑊𝑧 = 𝑅 / 𝑠𝑁)))
3628, 34, 35mp3an12 1449 . . . . . . 7 (𝑅𝐴 → (∀𝑠𝐴 (𝑠 = 𝑅 → (¬ 𝑠 𝑊𝑧 = 𝑁)) ↔ (¬ 𝑅 𝑊𝑧 = 𝑅 / 𝑠𝑁)))
3736adantr 485 . . . . . 6 ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) → (∀𝑠𝐴 (𝑠 = 𝑅 → (¬ 𝑠 𝑊𝑧 = 𝑁)) ↔ (¬ 𝑅 𝑊𝑧 = 𝑅 / 𝑠𝑁)))
38373ad2ant2 1132 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) → (∀𝑠𝐴 (𝑠 = 𝑅 → (¬ 𝑠 𝑊𝑧 = 𝑁)) ↔ (¬ 𝑅 𝑊𝑧 = 𝑅 / 𝑠𝑁)))
39 simp11 1201 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) → (𝐾 ∈ HL ∧ 𝑊𝐻))
40 eqid 2759 . . . . . . . . . . . . . . . 16 (0.‘𝐾) = (0.‘𝐾)
4113, 15, 40, 3, 16lhpmat 37591 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝑅 𝑊) = (0.‘𝐾))
4239, 12, 41syl2anc 588 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) → (𝑅 𝑊) = (0.‘𝐾))
4342adantr 485 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → (𝑅 𝑊) = (0.‘𝐾))
4443oveq2d 7159 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → (𝑠 (𝑅 𝑊)) = (𝑠 (0.‘𝐾)))
45 simp11l 1282 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) → 𝐾 ∈ HL)
4645adantr 485 . . . . . . . . . . . . . 14 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → 𝐾 ∈ HL)
47 hlol 36922 . . . . . . . . . . . . . 14 (𝐾 ∈ HL → 𝐾 ∈ OL)
4846, 47syl 17 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → 𝐾 ∈ OL)
492, 3atbase 36850 . . . . . . . . . . . . . 14 (𝑠𝐴𝑠𝐵)
5049ad2antrl 728 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → 𝑠𝐵)
512, 14, 40olj01 36786 . . . . . . . . . . . . 13 ((𝐾 ∈ OL ∧ 𝑠𝐵) → (𝑠 (0.‘𝐾)) = 𝑠)
5248, 50, 51syl2anc 588 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → (𝑠 (0.‘𝐾)) = 𝑠)
5344, 52eqtrd 2794 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → (𝑠 (𝑅 𝑊)) = 𝑠)
5453eqeq1d 2761 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → ((𝑠 (𝑅 𝑊)) = 𝑅𝑠 = 𝑅))
5543oveq2d 7159 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → (𝑁 (𝑅 𝑊)) = (𝑁 (0.‘𝐾)))
56 simpl11 1246 . . . . . . . . . . . . . 14 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
57 simpl12 1247 . . . . . . . . . . . . . 14 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
58 simpl13 1248 . . . . . . . . . . . . . 14 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
59 simpr 489 . . . . . . . . . . . . . 14 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → (𝑠𝐴 ∧ ¬ 𝑠 𝑊))
60 simpl3 1191 . . . . . . . . . . . . . 14 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → 𝑃𝑄)
612, 13, 14, 15, 3, 16, 17, 18, 19, 20, 21, 22cdleme27cl 37927 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ 𝑃𝑄)) → 𝑁𝐵)
6256, 57, 58, 59, 60, 61syl122anc 1377 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → 𝑁𝐵)
632, 14, 40olj01 36786 . . . . . . . . . . . . 13 ((𝐾 ∈ OL ∧ 𝑁𝐵) → (𝑁 (0.‘𝐾)) = 𝑁)
6448, 62, 63syl2anc 588 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → (𝑁 (0.‘𝐾)) = 𝑁)
6555, 64eqtrd 2794 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → (𝑁 (𝑅 𝑊)) = 𝑁)
6665eqeq2d 2770 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → (𝑧 = (𝑁 (𝑅 𝑊)) ↔ 𝑧 = 𝑁))
6754, 66imbi12d 349 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → (((𝑠 (𝑅 𝑊)) = 𝑅𝑧 = (𝑁 (𝑅 𝑊))) ↔ (𝑠 = 𝑅𝑧 = 𝑁)))
6867expr 461 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) ∧ 𝑠𝐴) → (¬ 𝑠 𝑊 → (((𝑠 (𝑅 𝑊)) = 𝑅𝑧 = (𝑁 (𝑅 𝑊))) ↔ (𝑠 = 𝑅𝑧 = 𝑁))))
6968pm5.74d 276 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) ∧ 𝑠𝐴) → ((¬ 𝑠 𝑊 → ((𝑠 (𝑅 𝑊)) = 𝑅𝑧 = (𝑁 (𝑅 𝑊)))) ↔ (¬ 𝑠 𝑊 → (𝑠 = 𝑅𝑧 = 𝑁))))
70 impexp 455 . . . . . . 7 (((¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))) ↔ (¬ 𝑠 𝑊 → ((𝑠 (𝑅 𝑊)) = 𝑅𝑧 = (𝑁 (𝑅 𝑊)))))
71 bi2.04 393 . . . . . . 7 ((𝑠 = 𝑅 → (¬ 𝑠 𝑊𝑧 = 𝑁)) ↔ (¬ 𝑠 𝑊 → (𝑠 = 𝑅𝑧 = 𝑁)))
7269, 70, 713bitr4g 318 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) ∧ 𝑠𝐴) → (((¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))) ↔ (𝑠 = 𝑅 → (¬ 𝑠 𝑊𝑧 = 𝑁))))
7372ralbidva 3123 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) → (∀𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))) ↔ ∀𝑠𝐴 (𝑠 = 𝑅 → (¬ 𝑠 𝑊𝑧 = 𝑁))))
74 simp2r 1198 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) → ¬ 𝑅 𝑊)
75 biimt 365 . . . . . 6 𝑅 𝑊 → (𝑧 = 𝑅 / 𝑠𝑁 ↔ (¬ 𝑅 𝑊𝑧 = 𝑅 / 𝑠𝑁)))
7674, 75syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) → (𝑧 = 𝑅 / 𝑠𝑁 ↔ (¬ 𝑅 𝑊𝑧 = 𝑅 / 𝑠𝑁)))
7738, 73, 763bitr4d 315 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) → (∀𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))) ↔ 𝑧 = 𝑅 / 𝑠𝑁))
7877adantr 485 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) ∧ 𝑧𝐵) → (∀𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))) ↔ 𝑧 = 𝑅 / 𝑠𝑁))
7924, 78riota5 7130 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) → (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊)))) = 𝑅 / 𝑠𝑁)
809, 79eqtrd 2794 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑃𝑄) → 𝑅 / 𝑥𝑂 = 𝑅 / 𝑠𝑁)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 400  w3a 1085  wal 1537   = wceq 1539  wnf 1786  wcel 2112  wne 2949  wral 3068  csb 3801  ifcif 4413   class class class wbr 5025  cmpt 5105  cfv 6328  crio 7100  (class class class)co 7143  Basecbs 16526  lecple 16615  joincjn 17605  meetcmee 17606  0.cp0 17698  OLcol 36735  Atomscatm 36824  HLchlt 36911  LHypclh 37545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5149  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-riotaBAD 36514
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-ral 3073  df-rex 3074  df-reu 3075  df-rmo 3076  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-op 4522  df-uni 4792  df-iun 4878  df-iin 4879  df-br 5026  df-opab 5088  df-mpt 5106  df-id 5423  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7101  df-ov 7146  df-oprab 7147  df-mpo 7148  df-1st 7686  df-2nd 7687  df-undef 7942  df-proset 17589  df-poset 17607  df-plt 17619  df-lub 17635  df-glb 17636  df-join 17637  df-meet 17638  df-p0 17700  df-p1 17701  df-lat 17707  df-clat 17769  df-oposet 36737  df-ol 36739  df-oml 36740  df-covers 36827  df-ats 36828  df-atl 36859  df-cvlat 36883  df-hlat 36912  df-llines 37059  df-lplanes 37060  df-lvols 37061  df-lines 37062  df-psubsp 37064  df-pmap 37065  df-padd 37357  df-lhyp 37549
This theorem is referenced by:  cdleme32fva1  37999
  Copyright terms: Public domain W3C validator