Proof of Theorem cdleme32fva
Step | Hyp | Ref
| Expression |
1 | | simp2l 1197 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) → 𝑅 ∈ 𝐴) |
2 | | cdleme32.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐾) |
3 | | cdleme32.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
4 | 2, 3 | atbase 36850 |
. . . 4
⊢ (𝑅 ∈ 𝐴 → 𝑅 ∈ 𝐵) |
5 | 1, 4 | syl 17 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) → 𝑅 ∈ 𝐵) |
6 | | cdleme32.o |
. . . 4
⊢ 𝑂 = (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (𝑁 ∨ (𝑥 ∧ 𝑊)))) |
7 | | eqid 2759 |
. . . 4
⊢
(℩𝑧
∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑅 ∧ 𝑊)) = 𝑅) → 𝑧 = (𝑁 ∨ (𝑅 ∧ 𝑊)))) = (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑅 ∧ 𝑊)) = 𝑅) → 𝑧 = (𝑁 ∨ (𝑅 ∧ 𝑊)))) |
8 | 6, 7 | cdleme31so 37940 |
. . 3
⊢ (𝑅 ∈ 𝐵 → ⦋𝑅 / 𝑥⦌𝑂 = (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑅 ∧ 𝑊)) = 𝑅) → 𝑧 = (𝑁 ∨ (𝑅 ∧ 𝑊))))) |
9 | 5, 8 | syl 17 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) → ⦋𝑅 / 𝑥⦌𝑂 = (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑅 ∧ 𝑊)) = 𝑅) → 𝑧 = (𝑁 ∨ (𝑅 ∧ 𝑊))))) |
10 | | simp1 1134 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) → ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) |
11 | | simp3 1136 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) → 𝑃 ≠ 𝑄) |
12 | | simp2 1135 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) → (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) |
13 | | cdleme32.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
14 | | cdleme32.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
15 | | cdleme32.m |
. . . . 5
⊢ ∧ =
(meet‘𝐾) |
16 | | cdleme32.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
17 | | cdleme32.u |
. . . . 5
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
18 | | cdleme32.c |
. . . . 5
⊢ 𝐶 = ((𝑠 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊))) |
19 | | cdleme32.d |
. . . . 5
⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) |
20 | | cdleme32.e |
. . . . 5
⊢ 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) |
21 | | cdleme32.i |
. . . . 5
⊢ 𝐼 = (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝐸)) |
22 | | cdleme32.n |
. . . . 5
⊢ 𝑁 = if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐼, 𝐶) |
23 | 2, 13, 14, 15, 3, 16, 17, 18, 19, 20, 21, 22 | cdleme32snb 37997 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → ⦋𝑅 / 𝑠⦌𝑁 ∈ 𝐵) |
24 | 10, 11, 12, 23 | syl12anc 836 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) → ⦋𝑅 / 𝑠⦌𝑁 ∈ 𝐵) |
25 | | nfv 1916 |
. . . . . . . . 9
⊢
Ⅎ𝑠 ¬ 𝑅 ≤ 𝑊 |
26 | | nfcsb1v 3825 |
. . . . . . . . . 10
⊢
Ⅎ𝑠⦋𝑅 / 𝑠⦌𝑁 |
27 | 26 | nfeq2 2934 |
. . . . . . . . 9
⊢
Ⅎ𝑠 𝑧 = ⦋𝑅 / 𝑠⦌𝑁 |
28 | 25, 27 | nfim 1898 |
. . . . . . . 8
⊢
Ⅎ𝑠(¬ 𝑅 ≤ 𝑊 → 𝑧 = ⦋𝑅 / 𝑠⦌𝑁) |
29 | | breq1 5028 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑅 → (𝑠 ≤ 𝑊 ↔ 𝑅 ≤ 𝑊)) |
30 | 29 | notbid 322 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑅 → (¬ 𝑠 ≤ 𝑊 ↔ ¬ 𝑅 ≤ 𝑊)) |
31 | | csbeq1a 3815 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑅 → 𝑁 = ⦋𝑅 / 𝑠⦌𝑁) |
32 | 31 | eqeq2d 2770 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑅 → (𝑧 = 𝑁 ↔ 𝑧 = ⦋𝑅 / 𝑠⦌𝑁)) |
33 | 30, 32 | imbi12d 349 |
. . . . . . . . 9
⊢ (𝑠 = 𝑅 → ((¬ 𝑠 ≤ 𝑊 → 𝑧 = 𝑁) ↔ (¬ 𝑅 ≤ 𝑊 → 𝑧 = ⦋𝑅 / 𝑠⦌𝑁))) |
34 | 33 | ax-gen 1798 |
. . . . . . . 8
⊢
∀𝑠(𝑠 = 𝑅 → ((¬ 𝑠 ≤ 𝑊 → 𝑧 = 𝑁) ↔ (¬ 𝑅 ≤ 𝑊 → 𝑧 = ⦋𝑅 / 𝑠⦌𝑁))) |
35 | | ceqsralt 3443 |
. . . . . . . 8
⊢
((Ⅎ𝑠(¬
𝑅 ≤ 𝑊 → 𝑧 = ⦋𝑅 / 𝑠⦌𝑁) ∧ ∀𝑠(𝑠 = 𝑅 → ((¬ 𝑠 ≤ 𝑊 → 𝑧 = 𝑁) ↔ (¬ 𝑅 ≤ 𝑊 → 𝑧 = ⦋𝑅 / 𝑠⦌𝑁))) ∧ 𝑅 ∈ 𝐴) → (∀𝑠 ∈ 𝐴 (𝑠 = 𝑅 → (¬ 𝑠 ≤ 𝑊 → 𝑧 = 𝑁)) ↔ (¬ 𝑅 ≤ 𝑊 → 𝑧 = ⦋𝑅 / 𝑠⦌𝑁))) |
36 | 28, 34, 35 | mp3an12 1449 |
. . . . . . 7
⊢ (𝑅 ∈ 𝐴 → (∀𝑠 ∈ 𝐴 (𝑠 = 𝑅 → (¬ 𝑠 ≤ 𝑊 → 𝑧 = 𝑁)) ↔ (¬ 𝑅 ≤ 𝑊 → 𝑧 = ⦋𝑅 / 𝑠⦌𝑁))) |
37 | 36 | adantr 485 |
. . . . . 6
⊢ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) → (∀𝑠 ∈ 𝐴 (𝑠 = 𝑅 → (¬ 𝑠 ≤ 𝑊 → 𝑧 = 𝑁)) ↔ (¬ 𝑅 ≤ 𝑊 → 𝑧 = ⦋𝑅 / 𝑠⦌𝑁))) |
38 | 37 | 3ad2ant2 1132 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) → (∀𝑠 ∈ 𝐴 (𝑠 = 𝑅 → (¬ 𝑠 ≤ 𝑊 → 𝑧 = 𝑁)) ↔ (¬ 𝑅 ≤ 𝑊 → 𝑧 = ⦋𝑅 / 𝑠⦌𝑁))) |
39 | | simp11 1201 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
40 | | eqid 2759 |
. . . . . . . . . . . . . . . 16
⊢
(0.‘𝐾) =
(0.‘𝐾) |
41 | 13, 15, 40, 3, 16 | lhpmat 37591 |
. . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (𝑅 ∧ 𝑊) = (0.‘𝐾)) |
42 | 39, 12, 41 | syl2anc 588 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) → (𝑅 ∧ 𝑊) = (0.‘𝐾)) |
43 | 42 | adantr 485 |
. . . . . . . . . . . . 13
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) → (𝑅 ∧ 𝑊) = (0.‘𝐾)) |
44 | 43 | oveq2d 7159 |
. . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) → (𝑠 ∨ (𝑅 ∧ 𝑊)) = (𝑠 ∨ (0.‘𝐾))) |
45 | | simp11l 1282 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) → 𝐾 ∈ HL) |
46 | 45 | adantr 485 |
. . . . . . . . . . . . . 14
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) → 𝐾 ∈ HL) |
47 | | hlol 36922 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
48 | 46, 47 | syl 17 |
. . . . . . . . . . . . 13
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) → 𝐾 ∈ OL) |
49 | 2, 3 | atbase 36850 |
. . . . . . . . . . . . . 14
⊢ (𝑠 ∈ 𝐴 → 𝑠 ∈ 𝐵) |
50 | 49 | ad2antrl 728 |
. . . . . . . . . . . . 13
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) → 𝑠 ∈ 𝐵) |
51 | 2, 14, 40 | olj01 36786 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ OL ∧ 𝑠 ∈ 𝐵) → (𝑠 ∨ (0.‘𝐾)) = 𝑠) |
52 | 48, 50, 51 | syl2anc 588 |
. . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) → (𝑠 ∨ (0.‘𝐾)) = 𝑠) |
53 | 44, 52 | eqtrd 2794 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) → (𝑠 ∨ (𝑅 ∧ 𝑊)) = 𝑠) |
54 | 53 | eqeq1d 2761 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) → ((𝑠 ∨ (𝑅 ∧ 𝑊)) = 𝑅 ↔ 𝑠 = 𝑅)) |
55 | 43 | oveq2d 7159 |
. . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) → (𝑁 ∨ (𝑅 ∧ 𝑊)) = (𝑁 ∨ (0.‘𝐾))) |
56 | | simpl11 1246 |
. . . . . . . . . . . . . 14
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
57 | | simpl12 1247 |
. . . . . . . . . . . . . 14
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
58 | | simpl13 1248 |
. . . . . . . . . . . . . 14
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
59 | | simpr 489 |
. . . . . . . . . . . . . 14
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) → (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) |
60 | | simpl3 1191 |
. . . . . . . . . . . . . 14
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) → 𝑃 ≠ 𝑄) |
61 | 2, 13, 14, 15, 3, 16, 17, 18, 19, 20, 21, 22 | cdleme27cl 37927 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄)) → 𝑁 ∈ 𝐵) |
62 | 56, 57, 58, 59, 60, 61 | syl122anc 1377 |
. . . . . . . . . . . . 13
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) → 𝑁 ∈ 𝐵) |
63 | 2, 14, 40 | olj01 36786 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ OL ∧ 𝑁 ∈ 𝐵) → (𝑁 ∨ (0.‘𝐾)) = 𝑁) |
64 | 48, 62, 63 | syl2anc 588 |
. . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) → (𝑁 ∨ (0.‘𝐾)) = 𝑁) |
65 | 55, 64 | eqtrd 2794 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) → (𝑁 ∨ (𝑅 ∧ 𝑊)) = 𝑁) |
66 | 65 | eqeq2d 2770 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) → (𝑧 = (𝑁 ∨ (𝑅 ∧ 𝑊)) ↔ 𝑧 = 𝑁)) |
67 | 54, 66 | imbi12d 349 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) → (((𝑠 ∨ (𝑅 ∧ 𝑊)) = 𝑅 → 𝑧 = (𝑁 ∨ (𝑅 ∧ 𝑊))) ↔ (𝑠 = 𝑅 → 𝑧 = 𝑁))) |
68 | 67 | expr 461 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ 𝑠 ∈ 𝐴) → (¬ 𝑠 ≤ 𝑊 → (((𝑠 ∨ (𝑅 ∧ 𝑊)) = 𝑅 → 𝑧 = (𝑁 ∨ (𝑅 ∧ 𝑊))) ↔ (𝑠 = 𝑅 → 𝑧 = 𝑁)))) |
69 | 68 | pm5.74d 276 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ 𝑠 ∈ 𝐴) → ((¬ 𝑠 ≤ 𝑊 → ((𝑠 ∨ (𝑅 ∧ 𝑊)) = 𝑅 → 𝑧 = (𝑁 ∨ (𝑅 ∧ 𝑊)))) ↔ (¬ 𝑠 ≤ 𝑊 → (𝑠 = 𝑅 → 𝑧 = 𝑁)))) |
70 | | impexp 455 |
. . . . . . 7
⊢ (((¬
𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑅 ∧ 𝑊)) = 𝑅) → 𝑧 = (𝑁 ∨ (𝑅 ∧ 𝑊))) ↔ (¬ 𝑠 ≤ 𝑊 → ((𝑠 ∨ (𝑅 ∧ 𝑊)) = 𝑅 → 𝑧 = (𝑁 ∨ (𝑅 ∧ 𝑊))))) |
71 | | bi2.04 393 |
. . . . . . 7
⊢ ((𝑠 = 𝑅 → (¬ 𝑠 ≤ 𝑊 → 𝑧 = 𝑁)) ↔ (¬ 𝑠 ≤ 𝑊 → (𝑠 = 𝑅 → 𝑧 = 𝑁))) |
72 | 69, 70, 71 | 3bitr4g 318 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ 𝑠 ∈ 𝐴) → (((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑅 ∧ 𝑊)) = 𝑅) → 𝑧 = (𝑁 ∨ (𝑅 ∧ 𝑊))) ↔ (𝑠 = 𝑅 → (¬ 𝑠 ≤ 𝑊 → 𝑧 = 𝑁)))) |
73 | 72 | ralbidva 3123 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) → (∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑅 ∧ 𝑊)) = 𝑅) → 𝑧 = (𝑁 ∨ (𝑅 ∧ 𝑊))) ↔ ∀𝑠 ∈ 𝐴 (𝑠 = 𝑅 → (¬ 𝑠 ≤ 𝑊 → 𝑧 = 𝑁)))) |
74 | | simp2r 1198 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) → ¬ 𝑅 ≤ 𝑊) |
75 | | biimt 365 |
. . . . . 6
⊢ (¬
𝑅 ≤ 𝑊 → (𝑧 = ⦋𝑅 / 𝑠⦌𝑁 ↔ (¬ 𝑅 ≤ 𝑊 → 𝑧 = ⦋𝑅 / 𝑠⦌𝑁))) |
76 | 74, 75 | syl 17 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) → (𝑧 = ⦋𝑅 / 𝑠⦌𝑁 ↔ (¬ 𝑅 ≤ 𝑊 → 𝑧 = ⦋𝑅 / 𝑠⦌𝑁))) |
77 | 38, 73, 76 | 3bitr4d 315 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) → (∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑅 ∧ 𝑊)) = 𝑅) → 𝑧 = (𝑁 ∨ (𝑅 ∧ 𝑊))) ↔ 𝑧 = ⦋𝑅 / 𝑠⦌𝑁)) |
78 | 77 | adantr 485 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ 𝑧 ∈ 𝐵) → (∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑅 ∧ 𝑊)) = 𝑅) → 𝑧 = (𝑁 ∨ (𝑅 ∧ 𝑊))) ↔ 𝑧 = ⦋𝑅 / 𝑠⦌𝑁)) |
79 | 24, 78 | riota5 7130 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) → (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑅 ∧ 𝑊)) = 𝑅) → 𝑧 = (𝑁 ∨ (𝑅 ∧ 𝑊)))) = ⦋𝑅 / 𝑠⦌𝑁) |
80 | 9, 79 | eqtrd 2794 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) → ⦋𝑅 / 𝑥⦌𝑂 = ⦋𝑅 / 𝑠⦌𝑁) |