MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnv0OLD Structured version   Visualization version   GIF version

Theorem cnv0OLD 6087
Description: Obsolete version of cnv0 6086 as of 31-Jan-2026. (Contributed by NM, 6-Apr-1998.) Remove dependency on ax-sep 5232, ax-nul 5242, ax-pr 5368. (Revised by KP, 25-Oct-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
cnv0OLD ∅ = ∅

Proof of Theorem cnv0OLD
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 br0 5138 . . . . . 6 ¬ 𝑦𝑧
21intnan 486 . . . . 5 ¬ (𝑥 = ⟨𝑧, 𝑦⟩ ∧ 𝑦𝑧)
32nex 1801 . . . 4 ¬ ∃𝑦(𝑥 = ⟨𝑧, 𝑦⟩ ∧ 𝑦𝑧)
43nex 1801 . . 3 ¬ ∃𝑧𝑦(𝑥 = ⟨𝑧, 𝑦⟩ ∧ 𝑦𝑧)
5 df-cnv 5622 . . . . 5 ∅ = {⟨𝑧, 𝑦⟩ ∣ 𝑦𝑧}
6 df-opab 5152 . . . . 5 {⟨𝑧, 𝑦⟩ ∣ 𝑦𝑧} = {𝑥 ∣ ∃𝑧𝑦(𝑥 = ⟨𝑧, 𝑦⟩ ∧ 𝑦𝑧)}
75, 6eqtri 2754 . . . 4 ∅ = {𝑥 ∣ ∃𝑧𝑦(𝑥 = ⟨𝑧, 𝑦⟩ ∧ 𝑦𝑧)}
87eqabri 2874 . . 3 (𝑥∅ ↔ ∃𝑧𝑦(𝑥 = ⟨𝑧, 𝑦⟩ ∧ 𝑦𝑧))
94, 8mtbir 323 . 2 ¬ 𝑥
109nel0 4301 1 ∅ = ∅
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wex 1780  wcel 2111  {cab 2709  c0 4280  cop 4579   class class class wbr 5089  {copab 5151  ccnv 5613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-dif 3900  df-nul 4281  df-br 5090  df-opab 5152  df-cnv 5622
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator