| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnv0OLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of cnv0 6086 as of 31-Jan-2026. (Contributed by NM, 6-Apr-1998.) Remove dependency on ax-sep 5232, ax-nul 5242, ax-pr 5368. (Revised by KP, 25-Oct-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cnv0OLD | ⊢ ◡∅ = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | br0 5138 | . . . . . 6 ⊢ ¬ 𝑦∅𝑧 | |
| 2 | 1 | intnan 486 | . . . . 5 ⊢ ¬ (𝑥 = 〈𝑧, 𝑦〉 ∧ 𝑦∅𝑧) |
| 3 | 2 | nex 1801 | . . . 4 ⊢ ¬ ∃𝑦(𝑥 = 〈𝑧, 𝑦〉 ∧ 𝑦∅𝑧) |
| 4 | 3 | nex 1801 | . . 3 ⊢ ¬ ∃𝑧∃𝑦(𝑥 = 〈𝑧, 𝑦〉 ∧ 𝑦∅𝑧) |
| 5 | df-cnv 5622 | . . . . 5 ⊢ ◡∅ = {〈𝑧, 𝑦〉 ∣ 𝑦∅𝑧} | |
| 6 | df-opab 5152 | . . . . 5 ⊢ {〈𝑧, 𝑦〉 ∣ 𝑦∅𝑧} = {𝑥 ∣ ∃𝑧∃𝑦(𝑥 = 〈𝑧, 𝑦〉 ∧ 𝑦∅𝑧)} | |
| 7 | 5, 6 | eqtri 2754 | . . . 4 ⊢ ◡∅ = {𝑥 ∣ ∃𝑧∃𝑦(𝑥 = 〈𝑧, 𝑦〉 ∧ 𝑦∅𝑧)} |
| 8 | 7 | eqabri 2874 | . . 3 ⊢ (𝑥 ∈ ◡∅ ↔ ∃𝑧∃𝑦(𝑥 = 〈𝑧, 𝑦〉 ∧ 𝑦∅𝑧)) |
| 9 | 4, 8 | mtbir 323 | . 2 ⊢ ¬ 𝑥 ∈ ◡∅ |
| 10 | 9 | nel0 4301 | 1 ⊢ ◡∅ = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 {cab 2709 ∅c0 4280 〈cop 4579 class class class wbr 5089 {copab 5151 ◡ccnv 5613 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-dif 3900 df-nul 4281 df-br 5090 df-opab 5152 df-cnv 5622 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |