| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | csbeq1 3901 | . . . 4
⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌(𝐵 ∖ 𝐶) = ⦋𝐴 / 𝑥⦌(𝐵 ∖ 𝐶)) | 
| 2 |  | csbeq1 3901 | . . . . 5
⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) | 
| 3 |  | csbeq1 3901 | . . . . 5
⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑥⦌𝐶) | 
| 4 | 2, 3 | difeq12d 4126 | . . . 4
⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌𝐵 ∖ ⦋𝑦 / 𝑥⦌𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ∖ ⦋𝐴 / 𝑥⦌𝐶)) | 
| 5 | 1, 4 | eqeq12d 2752 | . . 3
⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌(𝐵 ∖ 𝐶) = (⦋𝑦 / 𝑥⦌𝐵 ∖ ⦋𝑦 / 𝑥⦌𝐶) ↔ ⦋𝐴 / 𝑥⦌(𝐵 ∖ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ∖ ⦋𝐴 / 𝑥⦌𝐶))) | 
| 6 |  | vex 3483 | . . . 4
⊢ 𝑦 ∈ V | 
| 7 |  | nfcsb1v 3922 | . . . . 5
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | 
| 8 |  | nfcsb1v 3922 | . . . . 5
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 | 
| 9 | 7, 8 | nfdif 4128 | . . . 4
⊢
Ⅎ𝑥(⦋𝑦 / 𝑥⦌𝐵 ∖ ⦋𝑦 / 𝑥⦌𝐶) | 
| 10 |  | csbeq1a 3912 | . . . . 5
⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | 
| 11 |  | csbeq1a 3912 | . . . . 5
⊢ (𝑥 = 𝑦 → 𝐶 = ⦋𝑦 / 𝑥⦌𝐶) | 
| 12 | 10, 11 | difeq12d 4126 | . . . 4
⊢ (𝑥 = 𝑦 → (𝐵 ∖ 𝐶) = (⦋𝑦 / 𝑥⦌𝐵 ∖ ⦋𝑦 / 𝑥⦌𝐶)) | 
| 13 | 6, 9, 12 | csbief 3932 | . . 3
⊢
⦋𝑦 /
𝑥⦌(𝐵 ∖ 𝐶) = (⦋𝑦 / 𝑥⦌𝐵 ∖ ⦋𝑦 / 𝑥⦌𝐶) | 
| 14 | 5, 13 | vtoclg 3553 | . 2
⊢ (𝐴 ∈ V →
⦋𝐴 / 𝑥⦌(𝐵 ∖ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ∖ ⦋𝐴 / 𝑥⦌𝐶)) | 
| 15 |  | dif0 4377 | . . . 4
⊢ (∅
∖ ∅) = ∅ | 
| 16 | 15 | a1i 11 | . . 3
⊢ (¬
𝐴 ∈ V → (∅
∖ ∅) = ∅) | 
| 17 |  | csbprc 4408 | . . . 4
⊢ (¬
𝐴 ∈ V →
⦋𝐴 / 𝑥⦌𝐵 = ∅) | 
| 18 |  | csbprc 4408 | . . . 4
⊢ (¬
𝐴 ∈ V →
⦋𝐴 / 𝑥⦌𝐶 = ∅) | 
| 19 | 17, 18 | difeq12d 4126 | . . 3
⊢ (¬
𝐴 ∈ V →
(⦋𝐴 / 𝑥⦌𝐵 ∖ ⦋𝐴 / 𝑥⦌𝐶) = (∅ ∖
∅)) | 
| 20 |  | csbprc 4408 | . . 3
⊢ (¬
𝐴 ∈ V →
⦋𝐴 / 𝑥⦌(𝐵 ∖ 𝐶) = ∅) | 
| 21 | 16, 19, 20 | 3eqtr4rd 2787 | . 2
⊢ (¬
𝐴 ∈ V →
⦋𝐴 / 𝑥⦌(𝐵 ∖ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ∖ ⦋𝐴 / 𝑥⦌𝐶)) | 
| 22 | 14, 21 | pm2.61i 182 | 1
⊢
⦋𝐴 /
𝑥⦌(𝐵 ∖ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ∖ ⦋𝐴 / 𝑥⦌𝐶) |