MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2reu4 Structured version   Visualization version   GIF version

Theorem 2reu4 4413
Description: Definition of double restricted existential uniqueness ("exactly one 𝑥 and exactly one 𝑦"), analogous to 2eu4 2657. (Contributed by Alexander van der Vekens, 1-Jul-2017.)
Assertion
Ref Expression
2reu4 ((∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵𝑥𝐴 𝜑) ↔ (∃𝑥𝐴𝑦𝐵 𝜑 ∧ ∃𝑧𝐴𝑤𝐵𝑥𝐴𝑦𝐵 (𝜑 → (𝑥 = 𝑧𝑦 = 𝑤))))
Distinct variable groups:   𝑧,𝑤,𝜑   𝑥,𝑤,𝑦,𝐴,𝑧   𝑤,𝐵,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem 2reu4
StepHypRef Expression
1 reurex 3329 . . . 4 (∃!𝑥𝐴𝑦𝐵 𝜑 → ∃𝑥𝐴𝑦𝐵 𝜑)
2 rexn0 4397 . . . 4 (∃𝑥𝐴𝑦𝐵 𝜑𝐴 ≠ ∅)
31, 2syl 17 . . 3 (∃!𝑥𝐴𝑦𝐵 𝜑𝐴 ≠ ∅)
4 reurex 3329 . . . 4 (∃!𝑦𝐵𝑥𝐴 𝜑 → ∃𝑦𝐵𝑥𝐴 𝜑)
5 rexn0 4397 . . . 4 (∃𝑦𝐵𝑥𝐴 𝜑𝐵 ≠ ∅)
64, 5syl 17 . . 3 (∃!𝑦𝐵𝑥𝐴 𝜑𝐵 ≠ ∅)
73, 6anim12i 616 . 2 ((∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵𝑥𝐴 𝜑) → (𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅))
8 ne0i 4223 . . . . . 6 (𝑥𝐴𝐴 ≠ ∅)
9 ne0i 4223 . . . . . 6 (𝑦𝐵𝐵 ≠ ∅)
108, 9anim12i 616 . . . . 5 ((𝑥𝐴𝑦𝐵) → (𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅))
1110a1d 25 . . . 4 ((𝑥𝐴𝑦𝐵) → (𝜑 → (𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅)))
1211rexlimivv 3202 . . 3 (∃𝑥𝐴𝑦𝐵 𝜑 → (𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅))
1312adantr 484 . 2 ((∃𝑥𝐴𝑦𝐵 𝜑 ∧ ∃𝑧𝐴𝑤𝐵𝑥𝐴𝑦𝐵 (𝜑 → (𝑥 = 𝑧𝑦 = 𝑤))) → (𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅))
14 2reu4lem 4412 . 2 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → ((∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵𝑥𝐴 𝜑) ↔ (∃𝑥𝐴𝑦𝐵 𝜑 ∧ ∃𝑧𝐴𝑤𝐵𝑥𝐴𝑦𝐵 (𝜑 → (𝑥 = 𝑧𝑦 = 𝑤)))))
157, 13, 14pm5.21nii 383 1 ((∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵𝑥𝐴 𝜑) ↔ (∃𝑥𝐴𝑦𝐵 𝜑 ∧ ∃𝑧𝐴𝑤𝐵𝑥𝐴𝑦𝐵 (𝜑 → (𝑥 = 𝑧𝑦 = 𝑤))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wcel 2114  wne 2934  wral 3053  wrex 3054  ∃!wreu 3055  c0 4211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-dif 3846  df-nul 4212
This theorem is referenced by:  opreu2reurex  6126  opreu2reuALT  30399
  Copyright terms: Public domain W3C validator