Step | Hyp | Ref
| Expression |
1 | | cdlemef46g.b |
. . . 4
β’ π΅ = (BaseβπΎ) |
2 | | cdlemef46g.l |
. . . 4
β’ β€ =
(leβπΎ) |
3 | | cdlemef46g.j |
. . . 4
β’ β¨ =
(joinβπΎ) |
4 | | cdlemef46g.m |
. . . 4
β’ β§ =
(meetβπΎ) |
5 | | cdlemef46g.a |
. . . 4
β’ π΄ = (AtomsβπΎ) |
6 | | cdlemef46g.h |
. . . 4
β’ π» = (LHypβπΎ) |
7 | | cdlemef46.v |
. . . 4
β’ π = ((π β¨ π) β§ π) |
8 | | cdlemef46.n |
. . . 4
β’ π = ((π£ β¨ π) β§ (π β¨ ((π β¨ π£) β§ π))) |
9 | | cdlemefs46.o |
. . . 4
β’ π = ((π β¨ π) β§ (π β¨ ((π’ β¨ π£) β§ π))) |
10 | | cdlemef46.g |
. . . 4
β’ πΊ = (π β π΅ β¦ if((π β π β§ Β¬ π β€ π), (β©π β π΅ βπ’ β π΄ ((Β¬ π’ β€ π β§ (π’ β¨ (π β§ π)) = π) β π = (if(π’ β€ (π β¨ π), (β©π β π΅ βπ£ β π΄ ((Β¬ π£ β€ π β§ Β¬ π£ β€ (π β¨ π)) β π = π)), β¦π’ / π£β¦π) β¨ (π β§ π)))), π)) |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | cdlemeg47b 39367 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π)) β§ Β¬ π β€ (π β¨ π)) β (πΊβπ) = β¦π / π£β¦π) |
12 | 11 | csbeq1d 3896 |
. 2
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π)) β§ Β¬ π β€ (π β¨ π)) β β¦(πΊβπ) / π‘β¦π· = β¦β¦π / π£β¦π / π‘β¦π·) |
13 | | simp1 1136 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π)) β§ Β¬ π β€ (π β¨ π)) β ((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π))) |
14 | | simp2l 1199 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π)) β§ Β¬ π β€ (π β¨ π)) β π β π) |
15 | | simp11 1203 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π)) β§ Β¬ π β€ (π β¨ π)) β (πΎ β HL β§ π β π»)) |
16 | | simp13 1205 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π)) β§ Β¬ π β€ (π β¨ π)) β (π β π΄ β§ Β¬ π β€ π)) |
17 | | simp12 1204 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π)) β§ Β¬ π β€ (π β¨ π)) β (π β π΄ β§ Β¬ π β€ π)) |
18 | | simp2r 1200 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π)) β§ Β¬ π β€ (π β¨ π)) β (π β π΄ β§ Β¬ π β€ π)) |
19 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | cdleme46fvaw 39360 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΄ β§ Β¬ π β€ π)) β ((πΊβπ) β π΄ β§ Β¬ (πΊβπ) β€ π)) |
20 | 15, 16, 17, 18, 19 | syl31anc 1373 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π)) β§ Β¬ π β€ (π β¨ π)) β ((πΊβπ) β π΄ β§ Β¬ (πΊβπ) β€ π)) |
21 | 3, 5 | cdleme46f2g2 39352 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π)) β§ Β¬ π β€ (π β¨ π)) β (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π)) β§ Β¬ π β€ (π β¨ π))) |
22 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | cdleme46frvlpq 39363 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π)) β§ Β¬ π β€ (π β¨ π)) β Β¬ (πΊβπ) β€ (π β¨ π)) |
23 | 21, 22 | syl 17 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π)) β§ Β¬ π β€ (π β¨ π)) β Β¬ (πΊβπ) β€ (π β¨ π)) |
24 | | simp11l 1284 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π)) β§ Β¬ π β€ (π β¨ π)) β πΎ β HL) |
25 | | simp12l 1286 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π)) β§ Β¬ π β€ (π β¨ π)) β π β π΄) |
26 | | simp13l 1288 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π)) β§ Β¬ π β€ (π β¨ π)) β π β π΄) |
27 | 3, 5 | hlatjcom 38226 |
. . . . . 6
β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β (π β¨ π) = (π β¨ π)) |
28 | 24, 25, 26, 27 | syl3anc 1371 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π)) β§ Β¬ π β€ (π β¨ π)) β (π β¨ π) = (π β¨ π)) |
29 | 28 | breq2d 5159 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π)) β§ Β¬ π β€ (π β¨ π)) β ((πΊβπ) β€ (π β¨ π) β (πΊβπ) β€ (π β¨ π))) |
30 | 23, 29 | mtbird 324 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π)) β§ Β¬ π β€ (π β¨ π)) β Β¬ (πΊβπ) β€ (π β¨ π)) |
31 | | cdlemef46g.u |
. . . 4
β’ π = ((π β¨ π) β§ π) |
32 | | cdlemef46g.d |
. . . 4
β’ π· = ((π‘ β¨ π) β§ (π β¨ ((π β¨ π‘) β§ π))) |
33 | | cdlemef46g.f |
. . . 4
β’ πΉ = (π₯ β π΅ β¦ if((π β π β§ Β¬ π₯ β€ π), (β©π§ β π΅ βπ β π΄ ((Β¬ π β€ π β§ (π β¨ (π₯ β§ π)) = π₯) β π§ = (if(π β€ (π β¨ π), (β©π¦ β π΅ βπ‘ β π΄ ((Β¬ π‘ β€ π β§ Β¬ π‘ β€ (π β¨ π)) β π¦ = πΈ)), β¦π / π‘β¦π·) β¨ (π₯ β§ π)))), π₯)) |
34 | 1, 2, 3, 4, 5, 6, 31, 32, 33 | cdlemefr45 39286 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ ((πΊβπ) β π΄ β§ Β¬ (πΊβπ) β€ π)) β§ Β¬ (πΊβπ) β€ (π β¨ π)) β (πΉβ(πΊβπ)) = β¦(πΊβπ) / π‘β¦π·) |
35 | 13, 14, 20, 30, 34 | syl121anc 1375 |
. 2
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π)) β§ Β¬ π β€ (π β¨ π)) β (πΉβ(πΊβπ)) = β¦(πΊβπ) / π‘β¦π·) |
36 | | simp2rl 1242 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π)) β§ Β¬ π β€ (π β¨ π)) β π β π΄) |
37 | | csbnestgw 4420 |
. . 3
β’ (π β π΄ β β¦π / π£β¦β¦π / π‘β¦π· = β¦β¦π / π£β¦π / π‘β¦π·) |
38 | 36, 37 | syl 17 |
. 2
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π)) β§ Β¬ π β€ (π β¨ π)) β β¦π / π£β¦β¦π / π‘β¦π· = β¦β¦π / π£β¦π / π‘β¦π·) |
39 | 12, 35, 38 | 3eqtr4d 2782 |
1
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π)) β§ Β¬ π β€ (π β¨ π)) β (πΉβ(πΊβπ)) = β¦π / π£β¦β¦π / π‘β¦π·) |