Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme31snd Structured version   Visualization version   GIF version

Theorem cdleme31snd 40387
Description: Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 1-Apr-2013.)
Hypotheses
Ref Expression
cdleme31snd.d 𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
cdleme31snd.n 𝑁 = ((𝑣 𝑉) (𝑃 ((𝑄 𝑣) 𝑊)))
cdleme31snd.e 𝐸 = ((𝑂 𝑈) (𝑄 ((𝑃 𝑂) 𝑊)))
cdleme31snd.o 𝑂 = ((𝑆 𝑉) (𝑃 ((𝑄 𝑆) 𝑊)))
Assertion
Ref Expression
cdleme31snd (𝑆𝐴𝑆 / 𝑣𝑁 / 𝑡𝐷 = 𝐸)
Distinct variable groups:   𝑣,𝐴   𝑣,𝐷   𝑣,𝑡,   𝑡, ,𝑣   𝑡,𝑂   𝑡,𝑃,𝑣   𝑡,𝑄,𝑣   𝑣,𝑆   𝑡,𝑈,𝑣   𝑣,𝑉   𝑡,𝑊,𝑣
Allowed substitution hints:   𝐴(𝑡)   𝐷(𝑡)   𝑆(𝑡)   𝐸(𝑣,𝑡)   𝑁(𝑣,𝑡)   𝑂(𝑣)   𝑉(𝑡)

Proof of Theorem cdleme31snd
StepHypRef Expression
1 csbnestgw 4390 . 2 (𝑆𝐴𝑆 / 𝑣𝑁 / 𝑡𝐷 = 𝑆 / 𝑣𝑁 / 𝑡𝐷)
2 cdleme31snd.n . . . . 5 𝑁 = ((𝑣 𝑉) (𝑃 ((𝑄 𝑣) 𝑊)))
3 cdleme31snd.o . . . . 5 𝑂 = ((𝑆 𝑉) (𝑃 ((𝑄 𝑆) 𝑊)))
42, 3cdleme31sc 40385 . . . 4 (𝑆𝐴𝑆 / 𝑣𝑁 = 𝑂)
54csbeq1d 3869 . . 3 (𝑆𝐴𝑆 / 𝑣𝑁 / 𝑡𝐷 = 𝑂 / 𝑡𝐷)
63ovexi 7424 . . . 4 𝑂 ∈ V
7 cdleme31snd.d . . . . 5 𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
8 cdleme31snd.e . . . . 5 𝐸 = ((𝑂 𝑈) (𝑄 ((𝑃 𝑂) 𝑊)))
97, 8cdleme31sc 40385 . . . 4 (𝑂 ∈ V → 𝑂 / 𝑡𝐷 = 𝐸)
106, 9ax-mp 5 . . 3 𝑂 / 𝑡𝐷 = 𝐸
115, 10eqtrdi 2781 . 2 (𝑆𝐴𝑆 / 𝑣𝑁 / 𝑡𝐷 = 𝐸)
121, 11eqtrd 2765 1 (𝑆𝐴𝑆 / 𝑣𝑁 / 𝑡𝐷 = 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3450  csb 3865  (class class class)co 7390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-nul 5264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-ov 7393
This theorem is referenced by:  cdlemeg46ngfr  40519
  Copyright terms: Public domain W3C validator