Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme31snd | Structured version Visualization version GIF version |
Description: Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 1-Apr-2013.) |
Ref | Expression |
---|---|
cdleme31snd.d | ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) |
cdleme31snd.n | ⊢ 𝑁 = ((𝑣 ∨ 𝑉) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑣) ∧ 𝑊))) |
cdleme31snd.e | ⊢ 𝐸 = ((𝑂 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑂) ∧ 𝑊))) |
cdleme31snd.o | ⊢ 𝑂 = ((𝑆 ∨ 𝑉) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑆) ∧ 𝑊))) |
Ref | Expression |
---|---|
cdleme31snd | ⊢ (𝑆 ∈ 𝐴 → ⦋𝑆 / 𝑣⦌⦋𝑁 / 𝑡⦌𝐷 = 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbnestgw 4355 | . 2 ⊢ (𝑆 ∈ 𝐴 → ⦋𝑆 / 𝑣⦌⦋𝑁 / 𝑡⦌𝐷 = ⦋⦋𝑆 / 𝑣⦌𝑁 / 𝑡⦌𝐷) | |
2 | cdleme31snd.n | . . . . 5 ⊢ 𝑁 = ((𝑣 ∨ 𝑉) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑣) ∧ 𝑊))) | |
3 | cdleme31snd.o | . . . . 5 ⊢ 𝑂 = ((𝑆 ∨ 𝑉) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑆) ∧ 𝑊))) | |
4 | 2, 3 | cdleme31sc 38398 | . . . 4 ⊢ (𝑆 ∈ 𝐴 → ⦋𝑆 / 𝑣⦌𝑁 = 𝑂) |
5 | 4 | csbeq1d 3836 | . . 3 ⊢ (𝑆 ∈ 𝐴 → ⦋⦋𝑆 / 𝑣⦌𝑁 / 𝑡⦌𝐷 = ⦋𝑂 / 𝑡⦌𝐷) |
6 | 3 | ovexi 7309 | . . . 4 ⊢ 𝑂 ∈ V |
7 | cdleme31snd.d | . . . . 5 ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) | |
8 | cdleme31snd.e | . . . . 5 ⊢ 𝐸 = ((𝑂 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑂) ∧ 𝑊))) | |
9 | 7, 8 | cdleme31sc 38398 | . . . 4 ⊢ (𝑂 ∈ V → ⦋𝑂 / 𝑡⦌𝐷 = 𝐸) |
10 | 6, 9 | ax-mp 5 | . . 3 ⊢ ⦋𝑂 / 𝑡⦌𝐷 = 𝐸 |
11 | 5, 10 | eqtrdi 2794 | . 2 ⊢ (𝑆 ∈ 𝐴 → ⦋⦋𝑆 / 𝑣⦌𝑁 / 𝑡⦌𝐷 = 𝐸) |
12 | 1, 11 | eqtrd 2778 | 1 ⊢ (𝑆 ∈ 𝐴 → ⦋𝑆 / 𝑣⦌⦋𝑁 / 𝑡⦌𝐷 = 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ⦋csb 3832 (class class class)co 7275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-nul 5230 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 |
This theorem is referenced by: cdlemeg46ngfr 38532 |
Copyright terms: Public domain | W3C validator |