Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme31snd | Structured version Visualization version GIF version |
Description: Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 1-Apr-2013.) |
Ref | Expression |
---|---|
cdleme31snd.d | ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) |
cdleme31snd.n | ⊢ 𝑁 = ((𝑣 ∨ 𝑉) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑣) ∧ 𝑊))) |
cdleme31snd.e | ⊢ 𝐸 = ((𝑂 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑂) ∧ 𝑊))) |
cdleme31snd.o | ⊢ 𝑂 = ((𝑆 ∨ 𝑉) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑆) ∧ 𝑊))) |
Ref | Expression |
---|---|
cdleme31snd | ⊢ (𝑆 ∈ 𝐴 → ⦋𝑆 / 𝑣⦌⦋𝑁 / 𝑡⦌𝐷 = 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbnestgw 4352 | . 2 ⊢ (𝑆 ∈ 𝐴 → ⦋𝑆 / 𝑣⦌⦋𝑁 / 𝑡⦌𝐷 = ⦋⦋𝑆 / 𝑣⦌𝑁 / 𝑡⦌𝐷) | |
2 | cdleme31snd.n | . . . . 5 ⊢ 𝑁 = ((𝑣 ∨ 𝑉) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑣) ∧ 𝑊))) | |
3 | cdleme31snd.o | . . . . 5 ⊢ 𝑂 = ((𝑆 ∨ 𝑉) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑆) ∧ 𝑊))) | |
4 | 2, 3 | cdleme31sc 38325 | . . . 4 ⊢ (𝑆 ∈ 𝐴 → ⦋𝑆 / 𝑣⦌𝑁 = 𝑂) |
5 | 4 | csbeq1d 3832 | . . 3 ⊢ (𝑆 ∈ 𝐴 → ⦋⦋𝑆 / 𝑣⦌𝑁 / 𝑡⦌𝐷 = ⦋𝑂 / 𝑡⦌𝐷) |
6 | 3 | ovexi 7289 | . . . 4 ⊢ 𝑂 ∈ V |
7 | cdleme31snd.d | . . . . 5 ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) | |
8 | cdleme31snd.e | . . . . 5 ⊢ 𝐸 = ((𝑂 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑂) ∧ 𝑊))) | |
9 | 7, 8 | cdleme31sc 38325 | . . . 4 ⊢ (𝑂 ∈ V → ⦋𝑂 / 𝑡⦌𝐷 = 𝐸) |
10 | 6, 9 | ax-mp 5 | . . 3 ⊢ ⦋𝑂 / 𝑡⦌𝐷 = 𝐸 |
11 | 5, 10 | eqtrdi 2795 | . 2 ⊢ (𝑆 ∈ 𝐴 → ⦋⦋𝑆 / 𝑣⦌𝑁 / 𝑡⦌𝐷 = 𝐸) |
12 | 1, 11 | eqtrd 2778 | 1 ⊢ (𝑆 ∈ 𝐴 → ⦋𝑆 / 𝑣⦌⦋𝑁 / 𝑡⦌𝐷 = 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ⦋csb 3828 (class class class)co 7255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 |
This theorem is referenced by: cdlemeg46ngfr 38459 |
Copyright terms: Public domain | W3C validator |