| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme31snd | Structured version Visualization version GIF version | ||
| Description: Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 1-Apr-2013.) |
| Ref | Expression |
|---|---|
| cdleme31snd.d | ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) |
| cdleme31snd.n | ⊢ 𝑁 = ((𝑣 ∨ 𝑉) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑣) ∧ 𝑊))) |
| cdleme31snd.e | ⊢ 𝐸 = ((𝑂 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑂) ∧ 𝑊))) |
| cdleme31snd.o | ⊢ 𝑂 = ((𝑆 ∨ 𝑉) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑆) ∧ 𝑊))) |
| Ref | Expression |
|---|---|
| cdleme31snd | ⊢ (𝑆 ∈ 𝐴 → ⦋𝑆 / 𝑣⦌⦋𝑁 / 𝑡⦌𝐷 = 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbnestgw 4371 | . 2 ⊢ (𝑆 ∈ 𝐴 → ⦋𝑆 / 𝑣⦌⦋𝑁 / 𝑡⦌𝐷 = ⦋⦋𝑆 / 𝑣⦌𝑁 / 𝑡⦌𝐷) | |
| 2 | cdleme31snd.n | . . . . 5 ⊢ 𝑁 = ((𝑣 ∨ 𝑉) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑣) ∧ 𝑊))) | |
| 3 | cdleme31snd.o | . . . . 5 ⊢ 𝑂 = ((𝑆 ∨ 𝑉) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑆) ∧ 𝑊))) | |
| 4 | 2, 3 | cdleme31sc 40431 | . . . 4 ⊢ (𝑆 ∈ 𝐴 → ⦋𝑆 / 𝑣⦌𝑁 = 𝑂) |
| 5 | 4 | csbeq1d 3849 | . . 3 ⊢ (𝑆 ∈ 𝐴 → ⦋⦋𝑆 / 𝑣⦌𝑁 / 𝑡⦌𝐷 = ⦋𝑂 / 𝑡⦌𝐷) |
| 6 | 3 | ovexi 7380 | . . . 4 ⊢ 𝑂 ∈ V |
| 7 | cdleme31snd.d | . . . . 5 ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) | |
| 8 | cdleme31snd.e | . . . . 5 ⊢ 𝐸 = ((𝑂 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑂) ∧ 𝑊))) | |
| 9 | 7, 8 | cdleme31sc 40431 | . . . 4 ⊢ (𝑂 ∈ V → ⦋𝑂 / 𝑡⦌𝐷 = 𝐸) |
| 10 | 6, 9 | ax-mp 5 | . . 3 ⊢ ⦋𝑂 / 𝑡⦌𝐷 = 𝐸 |
| 11 | 5, 10 | eqtrdi 2782 | . 2 ⊢ (𝑆 ∈ 𝐴 → ⦋⦋𝑆 / 𝑣⦌𝑁 / 𝑡⦌𝐷 = 𝐸) |
| 12 | 1, 11 | eqtrd 2766 | 1 ⊢ (𝑆 ∈ 𝐴 → ⦋𝑆 / 𝑣⦌⦋𝑁 / 𝑡⦌𝐷 = 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⦋csb 3845 (class class class)co 7346 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-nul 5242 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 |
| This theorem is referenced by: cdlemeg46ngfr 40565 |
| Copyright terms: Public domain | W3C validator |