| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme31snd | Structured version Visualization version GIF version | ||
| Description: Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 1-Apr-2013.) |
| Ref | Expression |
|---|---|
| cdleme31snd.d | ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) |
| cdleme31snd.n | ⊢ 𝑁 = ((𝑣 ∨ 𝑉) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑣) ∧ 𝑊))) |
| cdleme31snd.e | ⊢ 𝐸 = ((𝑂 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑂) ∧ 𝑊))) |
| cdleme31snd.o | ⊢ 𝑂 = ((𝑆 ∨ 𝑉) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑆) ∧ 𝑊))) |
| Ref | Expression |
|---|---|
| cdleme31snd | ⊢ (𝑆 ∈ 𝐴 → ⦋𝑆 / 𝑣⦌⦋𝑁 / 𝑡⦌𝐷 = 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbnestgw 4424 | . 2 ⊢ (𝑆 ∈ 𝐴 → ⦋𝑆 / 𝑣⦌⦋𝑁 / 𝑡⦌𝐷 = ⦋⦋𝑆 / 𝑣⦌𝑁 / 𝑡⦌𝐷) | |
| 2 | cdleme31snd.n | . . . . 5 ⊢ 𝑁 = ((𝑣 ∨ 𝑉) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑣) ∧ 𝑊))) | |
| 3 | cdleme31snd.o | . . . . 5 ⊢ 𝑂 = ((𝑆 ∨ 𝑉) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑆) ∧ 𝑊))) | |
| 4 | 2, 3 | cdleme31sc 40386 | . . . 4 ⊢ (𝑆 ∈ 𝐴 → ⦋𝑆 / 𝑣⦌𝑁 = 𝑂) |
| 5 | 4 | csbeq1d 3903 | . . 3 ⊢ (𝑆 ∈ 𝐴 → ⦋⦋𝑆 / 𝑣⦌𝑁 / 𝑡⦌𝐷 = ⦋𝑂 / 𝑡⦌𝐷) |
| 6 | 3 | ovexi 7465 | . . . 4 ⊢ 𝑂 ∈ V |
| 7 | cdleme31snd.d | . . . . 5 ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) | |
| 8 | cdleme31snd.e | . . . . 5 ⊢ 𝐸 = ((𝑂 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑂) ∧ 𝑊))) | |
| 9 | 7, 8 | cdleme31sc 40386 | . . . 4 ⊢ (𝑂 ∈ V → ⦋𝑂 / 𝑡⦌𝐷 = 𝐸) |
| 10 | 6, 9 | ax-mp 5 | . . 3 ⊢ ⦋𝑂 / 𝑡⦌𝐷 = 𝐸 |
| 11 | 5, 10 | eqtrdi 2793 | . 2 ⊢ (𝑆 ∈ 𝐴 → ⦋⦋𝑆 / 𝑣⦌𝑁 / 𝑡⦌𝐷 = 𝐸) |
| 12 | 1, 11 | eqtrd 2777 | 1 ⊢ (𝑆 ∈ 𝐴 → ⦋𝑆 / 𝑣⦌⦋𝑁 / 𝑡⦌𝐷 = 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Vcvv 3480 ⦋csb 3899 (class class class)co 7431 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-nul 5306 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-iota 6514 df-fv 6569 df-ov 7434 |
| This theorem is referenced by: cdlemeg46ngfr 40520 |
| Copyright terms: Public domain | W3C validator |