| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | nfv 1914 | . . . . . . . . 9
⊢
Ⅎ𝑗(𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) | 
| 2 |  | nfcsb1v 3923 | . . . . . . . . . 10
⊢
Ⅎ𝑗⦋𝑦 / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) | 
| 3 |  | nfcv 2905 | . . . . . . . . . 10
⊢
Ⅎ𝑗(1...𝑁) | 
| 4 |  | nfcv 2905 | . . . . . . . . . 10
⊢
Ⅎ𝑗(0...𝐾) | 
| 5 | 2, 3, 4 | nff 6732 | . . . . . . . . 9
⊢
Ⅎ𝑗⦋𝑦 / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝐾) | 
| 6 | 1, 5 | nfim 1896 | . . . . . . . 8
⊢
Ⅎ𝑗((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ⦋𝑦 / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝐾)) | 
| 7 |  | eleq1 2829 | . . . . . . . . . 10
⊢ (𝑗 = 𝑦 → (𝑗 ∈ (0...(𝑁 − 1)) ↔ 𝑦 ∈ (0...(𝑁 − 1)))) | 
| 8 | 7 | anbi2d 630 | . . . . . . . . 9
⊢ (𝑗 = 𝑦 → ((𝜑 ∧ 𝑗 ∈ (0...(𝑁 − 1))) ↔ (𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))))) | 
| 9 |  | csbeq1a 3913 | . . . . . . . . . 10
⊢ (𝑗 = 𝑦 → (𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋𝑦 / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) | 
| 10 | 9 | feq1d 6720 | . . . . . . . . 9
⊢ (𝑗 = 𝑦 → ((𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝐾) ↔ ⦋𝑦 / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝐾))) | 
| 11 | 8, 10 | imbi12d 344 | . . . . . . . 8
⊢ (𝑗 = 𝑦 → (((𝜑 ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝐾)) ↔ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ⦋𝑦 / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝐾)))) | 
| 12 |  | poimir.0 | . . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑁 ∈ ℕ) | 
| 13 | 12 | nncnd 12282 | . . . . . . . . . . . . 13
⊢ (𝜑 → 𝑁 ∈ ℂ) | 
| 14 |  | npcan1 11688 | . . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁) | 
| 15 | 13, 14 | syl 17 | . . . . . . . . . . . 12
⊢ (𝜑 → ((𝑁 − 1) + 1) = 𝑁) | 
| 16 | 12 | nnzd 12640 | . . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑁 ∈ ℤ) | 
| 17 |  | peano2zm 12660 | . . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈
ℤ) | 
| 18 | 16, 17 | syl 17 | . . . . . . . . . . . . 13
⊢ (𝜑 → (𝑁 − 1) ∈ ℤ) | 
| 19 |  | uzid 12893 | . . . . . . . . . . . . 13
⊢ ((𝑁 − 1) ∈ ℤ
→ (𝑁 − 1) ∈
(ℤ≥‘(𝑁 − 1))) | 
| 20 |  | peano2uz 12943 | . . . . . . . . . . . . 13
⊢ ((𝑁 − 1) ∈
(ℤ≥‘(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑁 − 1))) | 
| 21 | 18, 19, 20 | 3syl 18 | . . . . . . . . . . . 12
⊢ (𝜑 → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑁 − 1))) | 
| 22 | 15, 21 | eqeltrrd 2842 | . . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝑁 − 1))) | 
| 23 |  | fzss2 13604 | . . . . . . . . . . 11
⊢ (𝑁 ∈
(ℤ≥‘(𝑁 − 1)) → (0...(𝑁 − 1)) ⊆ (0...𝑁)) | 
| 24 | 22, 23 | syl 17 | . . . . . . . . . 10
⊢ (𝜑 → (0...(𝑁 − 1)) ⊆ (0...𝑁)) | 
| 25 | 24 | sselda 3983 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝑗 ∈ (0...𝑁)) | 
| 26 |  | elun 4153 | . . . . . . . . . . . . 13
⊢ (𝑦 ∈ ({1} ∪ {0}) ↔
(𝑦 ∈ {1} ∨ 𝑦 ∈ {0})) | 
| 27 |  | fzofzp1 13803 | . . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (0..^𝐾) → (𝑥 + 1) ∈ (0...𝐾)) | 
| 28 |  | elsni 4643 | . . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ {1} → 𝑦 = 1) | 
| 29 | 28 | oveq2d 7447 | . . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ {1} → (𝑥 + 𝑦) = (𝑥 + 1)) | 
| 30 | 29 | eleq1d 2826 | . . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ {1} → ((𝑥 + 𝑦) ∈ (0...𝐾) ↔ (𝑥 + 1) ∈ (0...𝐾))) | 
| 31 | 27, 30 | syl5ibrcom 247 | . . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (0..^𝐾) → (𝑦 ∈ {1} → (𝑥 + 𝑦) ∈ (0...𝐾))) | 
| 32 |  | elfzoelz 13699 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ (0..^𝐾) → 𝑥 ∈ ℤ) | 
| 33 | 32 | zcnd 12723 | . . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ (0..^𝐾) → 𝑥 ∈ ℂ) | 
| 34 | 33 | addridd 11461 | . . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (0..^𝐾) → (𝑥 + 0) = 𝑥) | 
| 35 |  | elfzofz 13715 | . . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (0..^𝐾) → 𝑥 ∈ (0...𝐾)) | 
| 36 | 34, 35 | eqeltrd 2841 | . . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (0..^𝐾) → (𝑥 + 0) ∈ (0...𝐾)) | 
| 37 |  | elsni 4643 | . . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ {0} → 𝑦 = 0) | 
| 38 | 37 | oveq2d 7447 | . . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ {0} → (𝑥 + 𝑦) = (𝑥 + 0)) | 
| 39 | 38 | eleq1d 2826 | . . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ {0} → ((𝑥 + 𝑦) ∈ (0...𝐾) ↔ (𝑥 + 0) ∈ (0...𝐾))) | 
| 40 | 36, 39 | syl5ibrcom 247 | . . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (0..^𝐾) → (𝑦 ∈ {0} → (𝑥 + 𝑦) ∈ (0...𝐾))) | 
| 41 | 31, 40 | jaod 860 | . . . . . . . . . . . . 13
⊢ (𝑥 ∈ (0..^𝐾) → ((𝑦 ∈ {1} ∨ 𝑦 ∈ {0}) → (𝑥 + 𝑦) ∈ (0...𝐾))) | 
| 42 | 26, 41 | biimtrid 242 | . . . . . . . . . . . 12
⊢ (𝑥 ∈ (0..^𝐾) → (𝑦 ∈ ({1} ∪ {0}) → (𝑥 + 𝑦) ∈ (0...𝐾))) | 
| 43 | 42 | imp 406 | . . . . . . . . . . 11
⊢ ((𝑥 ∈ (0..^𝐾) ∧ 𝑦 ∈ ({1} ∪ {0})) → (𝑥 + 𝑦) ∈ (0...𝐾)) | 
| 44 | 43 | adantl 481 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ (𝑥 ∈ (0..^𝐾) ∧ 𝑦 ∈ ({1} ∪ {0}))) → (𝑥 + 𝑦) ∈ (0...𝐾)) | 
| 45 |  | poimirlem25.3 | . . . . . . . . . . 11
⊢ (𝜑 → 𝑇:(1...𝑁)⟶(0..^𝐾)) | 
| 46 | 45 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → 𝑇:(1...𝑁)⟶(0..^𝐾)) | 
| 47 |  | 1ex 11257 | . . . . . . . . . . . . . 14
⊢ 1 ∈
V | 
| 48 | 47 | fconst 6794 | . . . . . . . . . . . . 13
⊢ ((𝑈 “ (1...𝑗)) × {1}):(𝑈 “ (1...𝑗))⟶{1} | 
| 49 |  | c0ex 11255 | . . . . . . . . . . . . . 14
⊢ 0 ∈
V | 
| 50 | 49 | fconst 6794 | . . . . . . . . . . . . 13
⊢ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}):(𝑈 “ ((𝑗 + 1)...𝑁))⟶{0} | 
| 51 | 48, 50 | pm3.2i 470 | . . . . . . . . . . . 12
⊢ (((𝑈 “ (1...𝑗)) × {1}):(𝑈 “ (1...𝑗))⟶{1} ∧ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}):(𝑈 “ ((𝑗 + 1)...𝑁))⟶{0}) | 
| 52 |  | poimirlem25.4 | . . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑈:(1...𝑁)–1-1-onto→(1...𝑁)) | 
| 53 |  | dff1o3 6854 | . . . . . . . . . . . . . . 15
⊢ (𝑈:(1...𝑁)–1-1-onto→(1...𝑁) ↔ (𝑈:(1...𝑁)–onto→(1...𝑁) ∧ Fun ◡𝑈)) | 
| 54 | 53 | simprbi 496 | . . . . . . . . . . . . . 14
⊢ (𝑈:(1...𝑁)–1-1-onto→(1...𝑁) → Fun ◡𝑈) | 
| 55 |  | imain 6651 | . . . . . . . . . . . . . 14
⊢ (Fun
◡𝑈 → (𝑈 “ ((1...𝑗) ∩ ((𝑗 + 1)...𝑁))) = ((𝑈 “ (1...𝑗)) ∩ (𝑈 “ ((𝑗 + 1)...𝑁)))) | 
| 56 | 52, 54, 55 | 3syl 18 | . . . . . . . . . . . . 13
⊢ (𝜑 → (𝑈 “ ((1...𝑗) ∩ ((𝑗 + 1)...𝑁))) = ((𝑈 “ (1...𝑗)) ∩ (𝑈 “ ((𝑗 + 1)...𝑁)))) | 
| 57 |  | elfznn0 13660 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ (0...𝑁) → 𝑗 ∈ ℕ0) | 
| 58 | 57 | nn0red 12588 | . . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ (0...𝑁) → 𝑗 ∈ ℝ) | 
| 59 | 58 | ltp1d 12198 | . . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (0...𝑁) → 𝑗 < (𝑗 + 1)) | 
| 60 |  | fzdisj 13591 | . . . . . . . . . . . . . . . 16
⊢ (𝑗 < (𝑗 + 1) → ((1...𝑗) ∩ ((𝑗 + 1)...𝑁)) = ∅) | 
| 61 | 59, 60 | syl 17 | . . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ (0...𝑁) → ((1...𝑗) ∩ ((𝑗 + 1)...𝑁)) = ∅) | 
| 62 | 61 | imaeq2d 6078 | . . . . . . . . . . . . . 14
⊢ (𝑗 ∈ (0...𝑁) → (𝑈 “ ((1...𝑗) ∩ ((𝑗 + 1)...𝑁))) = (𝑈 “ ∅)) | 
| 63 |  | ima0 6095 | . . . . . . . . . . . . . 14
⊢ (𝑈 “ ∅) =
∅ | 
| 64 | 62, 63 | eqtrdi 2793 | . . . . . . . . . . . . 13
⊢ (𝑗 ∈ (0...𝑁) → (𝑈 “ ((1...𝑗) ∩ ((𝑗 + 1)...𝑁))) = ∅) | 
| 65 | 56, 64 | sylan9req 2798 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑈 “ (1...𝑗)) ∩ (𝑈 “ ((𝑗 + 1)...𝑁))) = ∅) | 
| 66 |  | fun 6770 | . . . . . . . . . . . 12
⊢
(((((𝑈 “
(1...𝑗)) ×
{1}):(𝑈 “ (1...𝑗))⟶{1} ∧ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}):(𝑈 “ ((𝑗 + 1)...𝑁))⟶{0}) ∧ ((𝑈 “ (1...𝑗)) ∩ (𝑈 “ ((𝑗 + 1)...𝑁))) = ∅) → (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})):((𝑈 “ (1...𝑗)) ∪ (𝑈 “ ((𝑗 + 1)...𝑁)))⟶({1} ∪ {0})) | 
| 67 | 51, 65, 66 | sylancr 587 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})):((𝑈 “ (1...𝑗)) ∪ (𝑈 “ ((𝑗 + 1)...𝑁)))⟶({1} ∪ {0})) | 
| 68 |  | nn0p1nn 12565 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ ℕ0
→ (𝑗 + 1) ∈
ℕ) | 
| 69 | 57, 68 | syl 17 | . . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ (0...𝑁) → (𝑗 + 1) ∈ ℕ) | 
| 70 |  | nnuz 12921 | . . . . . . . . . . . . . . . . 17
⊢ ℕ =
(ℤ≥‘1) | 
| 71 | 69, 70 | eleqtrdi 2851 | . . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (0...𝑁) → (𝑗 + 1) ∈
(ℤ≥‘1)) | 
| 72 |  | elfzuz3 13561 | . . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (0...𝑁) → 𝑁 ∈ (ℤ≥‘𝑗)) | 
| 73 |  | fzsplit2 13589 | . . . . . . . . . . . . . . . 16
⊢ (((𝑗 + 1) ∈
(ℤ≥‘1) ∧ 𝑁 ∈ (ℤ≥‘𝑗)) → (1...𝑁) = ((1...𝑗) ∪ ((𝑗 + 1)...𝑁))) | 
| 74 | 71, 72, 73 | syl2anc 584 | . . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ (0...𝑁) → (1...𝑁) = ((1...𝑗) ∪ ((𝑗 + 1)...𝑁))) | 
| 75 | 74 | imaeq2d 6078 | . . . . . . . . . . . . . 14
⊢ (𝑗 ∈ (0...𝑁) → (𝑈 “ (1...𝑁)) = (𝑈 “ ((1...𝑗) ∪ ((𝑗 + 1)...𝑁)))) | 
| 76 |  | imaundi 6169 | . . . . . . . . . . . . . 14
⊢ (𝑈 “ ((1...𝑗) ∪ ((𝑗 + 1)...𝑁))) = ((𝑈 “ (1...𝑗)) ∪ (𝑈 “ ((𝑗 + 1)...𝑁))) | 
| 77 | 75, 76 | eqtr2di 2794 | . . . . . . . . . . . . 13
⊢ (𝑗 ∈ (0...𝑁) → ((𝑈 “ (1...𝑗)) ∪ (𝑈 “ ((𝑗 + 1)...𝑁))) = (𝑈 “ (1...𝑁))) | 
| 78 |  | f1ofo 6855 | . . . . . . . . . . . . . 14
⊢ (𝑈:(1...𝑁)–1-1-onto→(1...𝑁) → 𝑈:(1...𝑁)–onto→(1...𝑁)) | 
| 79 |  | foima 6825 | . . . . . . . . . . . . . 14
⊢ (𝑈:(1...𝑁)–onto→(1...𝑁) → (𝑈 “ (1...𝑁)) = (1...𝑁)) | 
| 80 | 52, 78, 79 | 3syl 18 | . . . . . . . . . . . . 13
⊢ (𝜑 → (𝑈 “ (1...𝑁)) = (1...𝑁)) | 
| 81 | 77, 80 | sylan9eqr 2799 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑈 “ (1...𝑗)) ∪ (𝑈 “ ((𝑗 + 1)...𝑁))) = (1...𝑁)) | 
| 82 | 81 | feq2d 6722 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})):((𝑈 “ (1...𝑗)) ∪ (𝑈 “ ((𝑗 + 1)...𝑁)))⟶({1} ∪ {0}) ↔ (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})):(1...𝑁)⟶({1} ∪ {0}))) | 
| 83 | 67, 82 | mpbid 232 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})):(1...𝑁)⟶({1} ∪ {0})) | 
| 84 |  | ovex 7464 | . . . . . . . . . . 11
⊢
(1...𝑁) ∈
V | 
| 85 | 84 | a1i 11 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (1...𝑁) ∈ V) | 
| 86 |  | inidm 4227 | . . . . . . . . . 10
⊢
((1...𝑁) ∩
(1...𝑁)) = (1...𝑁) | 
| 87 | 44, 46, 83, 85, 85, 86 | off 7715 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝐾)) | 
| 88 | 25, 87 | syldan 591 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝐾)) | 
| 89 | 6, 11, 88 | chvarfv 2240 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ⦋𝑦 / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝐾)) | 
| 90 |  | fzp1elp1 13617 | . . . . . . . . 9
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (𝑦 + 1) ∈ (0...((𝑁 − 1) + 1))) | 
| 91 | 15 | oveq2d 7447 | . . . . . . . . . . 11
⊢ (𝜑 → (0...((𝑁 − 1) + 1)) = (0...𝑁)) | 
| 92 | 91 | eleq2d 2827 | . . . . . . . . . 10
⊢ (𝜑 → ((𝑦 + 1) ∈ (0...((𝑁 − 1) + 1)) ↔ (𝑦 + 1) ∈ (0...𝑁))) | 
| 93 | 92 | biimpa 476 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 + 1) ∈ (0...((𝑁 − 1) + 1))) → (𝑦 + 1) ∈ (0...𝑁)) | 
| 94 | 90, 93 | sylan2 593 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑦 + 1) ∈ (0...𝑁)) | 
| 95 |  | nfv 1914 | . . . . . . . . . 10
⊢
Ⅎ𝑗(𝜑 ∧ (𝑦 + 1) ∈ (0...𝑁)) | 
| 96 |  | nfcsb1v 3923 | . . . . . . . . . . 11
⊢
Ⅎ𝑗⦋(𝑦 + 1) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) | 
| 97 | 96, 3, 4 | nff 6732 | . . . . . . . . . 10
⊢
Ⅎ𝑗⦋(𝑦 + 1) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝐾) | 
| 98 | 95, 97 | nfim 1896 | . . . . . . . . 9
⊢
Ⅎ𝑗((𝜑 ∧ (𝑦 + 1) ∈ (0...𝑁)) → ⦋(𝑦 + 1) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝐾)) | 
| 99 |  | ovex 7464 | . . . . . . . . 9
⊢ (𝑦 + 1) ∈ V | 
| 100 |  | eleq1 2829 | . . . . . . . . . . 11
⊢ (𝑗 = (𝑦 + 1) → (𝑗 ∈ (0...𝑁) ↔ (𝑦 + 1) ∈ (0...𝑁))) | 
| 101 | 100 | anbi2d 630 | . . . . . . . . . 10
⊢ (𝑗 = (𝑦 + 1) → ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ↔ (𝜑 ∧ (𝑦 + 1) ∈ (0...𝑁)))) | 
| 102 |  | csbeq1a 3913 | . . . . . . . . . . 11
⊢ (𝑗 = (𝑦 + 1) → (𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋(𝑦 + 1) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) | 
| 103 | 102 | feq1d 6720 | . . . . . . . . . 10
⊢ (𝑗 = (𝑦 + 1) → ((𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝐾) ↔ ⦋(𝑦 + 1) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝐾))) | 
| 104 | 101, 103 | imbi12d 344 | . . . . . . . . 9
⊢ (𝑗 = (𝑦 + 1) → (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝐾)) ↔ ((𝜑 ∧ (𝑦 + 1) ∈ (0...𝑁)) → ⦋(𝑦 + 1) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝐾)))) | 
| 105 | 98, 99, 104, 87 | vtoclf 3564 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 + 1) ∈ (0...𝑁)) → ⦋(𝑦 + 1) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝐾)) | 
| 106 | 94, 105 | syldan 591 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ⦋(𝑦 + 1) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝐾)) | 
| 107 |  | csbeq1 3902 | . . . . . . . . 9
⊢ (𝑦 = if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) → ⦋𝑦 / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) | 
| 108 | 107 | feq1d 6720 | . . . . . . . 8
⊢ (𝑦 = if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) → (⦋𝑦 / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝐾) ↔ ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝐾))) | 
| 109 |  | csbeq1 3902 | . . . . . . . . 9
⊢ ((𝑦 + 1) = if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) → ⦋(𝑦 + 1) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) | 
| 110 | 109 | feq1d 6720 | . . . . . . . 8
⊢ ((𝑦 + 1) = if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) → (⦋(𝑦 + 1) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝐾) ↔ ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝐾))) | 
| 111 | 108, 110 | ifboth 4565 | . . . . . . 7
⊢
((⦋𝑦 /
𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝐾) ∧ ⦋(𝑦 + 1) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝐾)) → ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝐾)) | 
| 112 | 89, 106, 111 | syl2anc 584 | . . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝐾)) | 
| 113 |  | ovex 7464 | . . . . . . 7
⊢
(0...𝐾) ∈
V | 
| 114 | 113, 84 | elmap 8911 | . . . . . 6
⊢
(⦋if(𝑦
< 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) ∈ ((0...𝐾) ↑m (1...𝑁)) ↔
⦋if(𝑦 <
𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝐾)) | 
| 115 | 112, 114 | sylibr 234 | . . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) ∈ ((0...𝐾) ↑m (1...𝑁))) | 
| 116 | 115 | fmpttd 7135 | . . . 4
⊢ (𝜑 → (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))):(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁))) | 
| 117 |  | ovex 7464 | . . . . 5
⊢
((0...𝐾)
↑m (1...𝑁))
∈ V | 
| 118 |  | ovex 7464 | . . . . 5
⊢
(0...(𝑁 − 1))
∈ V | 
| 119 | 117, 118 | elmap 8911 | . . . 4
⊢ ((𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) ∈ (((0...𝐾) ↑m (1...𝑁)) ↑m
(0...(𝑁 − 1))) ↔
(𝑦 ∈ (0...(𝑁 − 1)) ↦
⦋if(𝑦 <
𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))):(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁))) | 
| 120 | 116, 119 | sylibr 234 | . . 3
⊢ (𝜑 → (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) ∈ (((0...𝐾) ↑m (1...𝑁)) ↑m
(0...(𝑁 −
1)))) | 
| 121 |  | rneq 5947 | . . . . . . . 8
⊢ (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) → ran 𝑥 = ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))) | 
| 122 | 121 | mpteq1d 5237 | . . . . . . 7
⊢ (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) → (𝑝 ∈ ran 𝑥 ↦ 𝐵) = (𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) ↦ 𝐵)) | 
| 123 | 122 | rneqd 5949 | . . . . . 6
⊢ (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) → ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) = ran (𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) ↦ 𝐵)) | 
| 124 | 123 | sseq2d 4016 | . . . . 5
⊢ (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) → ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ↔ (0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) ↦ 𝐵))) | 
| 125 | 121 | rexeqdv 3327 | . . . . 5
⊢ (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) → (∃𝑝 ∈ ran 𝑥(𝑝‘𝑁) ≠ 0 ↔ ∃𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))(𝑝‘𝑁) ≠ 0)) | 
| 126 | 124, 125 | anbi12d 632 | . . . 4
⊢ (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) → (((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑁) ≠ 0) ↔ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) ↦ 𝐵) ∧ ∃𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))(𝑝‘𝑁) ≠ 0))) | 
| 127 | 126 | ceqsrexv 3655 | . . 3
⊢ ((𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) ∈ (((0...𝐾) ↑m (1...𝑁)) ↑m
(0...(𝑁 − 1))) →
(∃𝑥 ∈
(((0...𝐾)
↑m (1...𝑁))
↑m (0...(𝑁
− 1)))(𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑁) ≠ 0)) ↔ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) ↦ 𝐵) ∧ ∃𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))(𝑝‘𝑁) ≠ 0))) | 
| 128 | 120, 127 | syl 17 | . 2
⊢ (𝜑 → (∃𝑥 ∈ (((0...𝐾) ↑m (1...𝑁)) ↑m (0...(𝑁 − 1)))(𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑁) ≠ 0)) ↔ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) ↦ 𝐵) ∧ ∃𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))(𝑝‘𝑁) ≠ 0))) | 
| 129 |  | dfss3 3972 | . . . 4
⊢
((0...(𝑁 − 1))
⊆ ran (𝑝 ∈ ran
(𝑦 ∈ (0...(𝑁 − 1)) ↦
⦋if(𝑦 <
𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) ↦ 𝐵) ↔ ∀𝑖 ∈ (0...(𝑁 − 1))𝑖 ∈ ran (𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) ↦ 𝐵)) | 
| 130 |  | ovex 7464 | . . . . . . . . . . . . 13
⊢
((1st ‘𝑠) ∘f + ((((2nd
‘𝑠) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑠)
“ ((𝑗 + 1)...𝑁)) × {0}))) ∈
V | 
| 131 |  | poimirlem28.1 | . . . . . . . . . . . . 13
⊢ (𝑝 = ((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) → 𝐵 = 𝐶) | 
| 132 | 130, 131 | csbie 3934 | . . . . . . . . . . . 12
⊢
⦋((1st ‘𝑠) ∘f + ((((2nd
‘𝑠) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑠)
“ ((𝑗 + 1)...𝑁)) × {0}))) / 𝑝⦌𝐵 = 𝐶 | 
| 133 | 132 | csbeq2i 3907 | . . . . . . . . . . 11
⊢
⦋〈𝑇, 𝑈〉 / 𝑠⦌⦋((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) / 𝑝⦌𝐵 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 | 
| 134 |  | opex 5469 | . . . . . . . . . . . . 13
⊢
〈𝑇, 𝑈〉 ∈ V | 
| 135 | 134 | a1i 11 | . . . . . . . . . . . 12
⊢ (𝜑 → 〈𝑇, 𝑈〉 ∈ V) | 
| 136 |  | fveq2 6906 | . . . . . . . . . . . . . . 15
⊢ (𝑠 = 〈𝑇, 𝑈〉 → (1st ‘𝑠) = (1st
‘〈𝑇, 𝑈〉)) | 
| 137 |  | fex 7246 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑇:(1...𝑁)⟶(0..^𝐾) ∧ (1...𝑁) ∈ V) → 𝑇 ∈ V) | 
| 138 | 45, 84, 137 | sylancl 586 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑇 ∈ V) | 
| 139 |  | f1oexrnex 7949 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑈:(1...𝑁)–1-1-onto→(1...𝑁) ∧ (1...𝑁) ∈ V) → 𝑈 ∈ V) | 
| 140 | 52, 84, 139 | sylancl 586 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑈 ∈ V) | 
| 141 |  | op1stg 8026 | . . . . . . . . . . . . . . . 16
⊢ ((𝑇 ∈ V ∧ 𝑈 ∈ V) →
(1st ‘〈𝑇, 𝑈〉) = 𝑇) | 
| 142 | 138, 140,
141 | syl2anc 584 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → (1st
‘〈𝑇, 𝑈〉) = 𝑇) | 
| 143 | 136, 142 | sylan9eqr 2799 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑠 = 〈𝑇, 𝑈〉) → (1st ‘𝑠) = 𝑇) | 
| 144 |  | fveq2 6906 | . . . . . . . . . . . . . . . 16
⊢ (𝑠 = 〈𝑇, 𝑈〉 → (2nd ‘𝑠) = (2nd
‘〈𝑇, 𝑈〉)) | 
| 145 |  | op2ndg 8027 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑇 ∈ V ∧ 𝑈 ∈ V) →
(2nd ‘〈𝑇, 𝑈〉) = 𝑈) | 
| 146 | 138, 140,
145 | syl2anc 584 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → (2nd
‘〈𝑇, 𝑈〉) = 𝑈) | 
| 147 | 144, 146 | sylan9eqr 2799 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑠 = 〈𝑇, 𝑈〉) → (2nd ‘𝑠) = 𝑈) | 
| 148 |  | imaeq1 6073 | . . . . . . . . . . . . . . . . 17
⊢
((2nd ‘𝑠) = 𝑈 → ((2nd ‘𝑠) “ (1...𝑗)) = (𝑈 “ (1...𝑗))) | 
| 149 | 148 | xpeq1d 5714 | . . . . . . . . . . . . . . . 16
⊢
((2nd ‘𝑠) = 𝑈 → (((2nd ‘𝑠) “ (1...𝑗)) × {1}) = ((𝑈 “ (1...𝑗)) × {1})) | 
| 150 |  | imaeq1 6073 | . . . . . . . . . . . . . . . . 17
⊢
((2nd ‘𝑠) = 𝑈 → ((2nd ‘𝑠) “ ((𝑗 + 1)...𝑁)) = (𝑈 “ ((𝑗 + 1)...𝑁))) | 
| 151 | 150 | xpeq1d 5714 | . . . . . . . . . . . . . . . 16
⊢
((2nd ‘𝑠) = 𝑈 → (((2nd ‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}) = ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})) | 
| 152 | 149, 151 | uneq12d 4169 | . . . . . . . . . . . . . . 15
⊢
((2nd ‘𝑠) = 𝑈 → ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑠)
“ ((𝑗 + 1)...𝑁)) × {0})) = (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) | 
| 153 | 147, 152 | syl 17 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑠 = 〈𝑇, 𝑈〉) → ((((2nd
‘𝑠) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑠)
“ ((𝑗 + 1)...𝑁)) × {0})) = (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) | 
| 154 | 143, 153 | oveq12d 7449 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑠 = 〈𝑇, 𝑈〉) → ((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) | 
| 155 | 154 | csbeq1d 3903 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 = 〈𝑇, 𝑈〉) →
⦋((1st ‘𝑠) ∘f + ((((2nd
‘𝑠) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑠)
“ ((𝑗 + 1)...𝑁)) × {0}))) / 𝑝⦌𝐵 = ⦋(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) / 𝑝⦌𝐵) | 
| 156 | 135, 155 | csbied 3935 | . . . . . . . . . . 11
⊢ (𝜑 → ⦋〈𝑇, 𝑈〉 / 𝑠⦌⦋((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) / 𝑝⦌𝐵 = ⦋(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) / 𝑝⦌𝐵) | 
| 157 | 133, 156 | eqtr3id 2791 | . . . . . . . . . 10
⊢ (𝜑 → ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) / 𝑝⦌𝐵) | 
| 158 | 157 | csbeq2dv 3906 | . . . . . . . . 9
⊢ (𝜑 → ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌⦋(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) / 𝑝⦌𝐵) | 
| 159 | 158 | eqeq2d 2748 | . . . . . . . 8
⊢ (𝜑 → (𝑖 = ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ 𝑖 = ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌⦋(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) / 𝑝⦌𝐵)) | 
| 160 | 159 | rexbidv 3179 | . . . . . . 7
⊢ (𝜑 → (∃𝑦 ∈ (0...(𝑁 − 1))𝑖 = ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ ∃𝑦 ∈ (0...(𝑁 − 1))𝑖 = ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌⦋(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) / 𝑝⦌𝐵)) | 
| 161 |  | vex 3484 | . . . . . . . . 9
⊢ 𝑖 ∈ V | 
| 162 |  | eqid 2737 | . . . . . . . . . 10
⊢ (𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) ↦ 𝐵) = (𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) ↦ 𝐵) | 
| 163 | 162 | elrnmpt 5969 | . . . . . . . . 9
⊢ (𝑖 ∈ V → (𝑖 ∈ ran (𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) ↦ 𝐵) ↔ ∃𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))𝑖 = 𝐵)) | 
| 164 | 161, 163 | ax-mp 5 | . . . . . . . 8
⊢ (𝑖 ∈ ran (𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) ↦ 𝐵) ↔ ∃𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))𝑖 = 𝐵) | 
| 165 |  | nfv 1914 | . . . . . . . . 9
⊢
Ⅎ𝑘 𝑖 = 𝐵 | 
| 166 |  | nfcsb1v 3923 | . . . . . . . . . 10
⊢
Ⅎ𝑝⦋𝑘 / 𝑝⦌𝐵 | 
| 167 | 166 | nfeq2 2923 | . . . . . . . . 9
⊢
Ⅎ𝑝 𝑖 = ⦋𝑘 / 𝑝⦌𝐵 | 
| 168 |  | csbeq1a 3913 | . . . . . . . . . 10
⊢ (𝑝 = 𝑘 → 𝐵 = ⦋𝑘 / 𝑝⦌𝐵) | 
| 169 | 168 | eqeq2d 2748 | . . . . . . . . 9
⊢ (𝑝 = 𝑘 → (𝑖 = 𝐵 ↔ 𝑖 = ⦋𝑘 / 𝑝⦌𝐵)) | 
| 170 | 165, 167,
169 | cbvrexw 3307 | . . . . . . . 8
⊢
(∃𝑝 ∈ ran
(𝑦 ∈ (0...(𝑁 − 1)) ↦
⦋if(𝑦 <
𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))𝑖 = 𝐵 ↔ ∃𝑘 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))𝑖 = ⦋𝑘 / 𝑝⦌𝐵) | 
| 171 |  | ovex 7464 | . . . . . . . . . . 11
⊢ (𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) ∈ V | 
| 172 | 171 | csbex 5311 | . . . . . . . . . 10
⊢
⦋if(𝑦
< 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) ∈ V | 
| 173 | 172 | rgenw 3065 | . . . . . . . . 9
⊢
∀𝑦 ∈
(0...(𝑁 −
1))⦋if(𝑦 <
𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) ∈ V | 
| 174 |  | eqid 2737 | . . . . . . . . . 10
⊢ (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) | 
| 175 |  | csbeq1 3902 | . . . . . . . . . . . 12
⊢ (𝑘 = ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) →
⦋𝑘 / 𝑝⦌𝐵 = ⦋⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) / 𝑝⦌𝐵) | 
| 176 |  | vex 3484 | . . . . . . . . . . . . . 14
⊢ 𝑦 ∈ V | 
| 177 | 176, 99 | ifex 4576 | . . . . . . . . . . . . 13
⊢ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) ∈ V | 
| 178 |  | csbnestgw 4424 | . . . . . . . . . . . . 13
⊢ (if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) ∈ V →
⦋if(𝑦 <
𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌⦋(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) / 𝑝⦌𝐵 = ⦋⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) / 𝑝⦌𝐵) | 
| 179 | 177, 178 | ax-mp 5 | . . . . . . . . . . . 12
⊢
⦋if(𝑦
< 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌⦋(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) / 𝑝⦌𝐵 = ⦋⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) / 𝑝⦌𝐵 | 
| 180 | 175, 179 | eqtr4di 2795 | . . . . . . . . . . 11
⊢ (𝑘 = ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) →
⦋𝑘 / 𝑝⦌𝐵 = ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌⦋(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) / 𝑝⦌𝐵) | 
| 181 | 180 | eqeq2d 2748 | . . . . . . . . . 10
⊢ (𝑘 = ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) → (𝑖 = ⦋𝑘 / 𝑝⦌𝐵 ↔ 𝑖 = ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌⦋(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) / 𝑝⦌𝐵)) | 
| 182 | 174, 181 | rexrnmptw 7115 | . . . . . . . . 9
⊢
(∀𝑦 ∈
(0...(𝑁 −
1))⦋if(𝑦 <
𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) ∈ V →
(∃𝑘 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))𝑖 = ⦋𝑘 / 𝑝⦌𝐵 ↔ ∃𝑦 ∈ (0...(𝑁 − 1))𝑖 = ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌⦋(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) / 𝑝⦌𝐵)) | 
| 183 | 173, 182 | ax-mp 5 | . . . . . . . 8
⊢
(∃𝑘 ∈ ran
(𝑦 ∈ (0...(𝑁 − 1)) ↦
⦋if(𝑦 <
𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))𝑖 = ⦋𝑘 / 𝑝⦌𝐵 ↔ ∃𝑦 ∈ (0...(𝑁 − 1))𝑖 = ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌⦋(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) / 𝑝⦌𝐵) | 
| 184 | 164, 170,
183 | 3bitri 297 | . . . . . . 7
⊢ (𝑖 ∈ ran (𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) ↦ 𝐵) ↔ ∃𝑦 ∈ (0...(𝑁 − 1))𝑖 = ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌⦋(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) / 𝑝⦌𝐵) | 
| 185 | 160, 184 | bitr4di 289 | . . . . . 6
⊢ (𝜑 → (∃𝑦 ∈ (0...(𝑁 − 1))𝑖 = ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ 𝑖 ∈ ran (𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) ↦ 𝐵))) | 
| 186 | 24 | sselda 3983 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 ∈ (0...𝑁)) | 
| 187 | 186 | adantr 480 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < 𝑉) → 𝑦 ∈ (0...𝑁)) | 
| 188 |  | elfzelz 13564 | . . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ∈ ℤ) | 
| 189 | 188 | zred 12722 | . . . . . . . . . . . . 13
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ∈ ℝ) | 
| 190 | 189 | adantl 481 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 ∈ ℝ) | 
| 191 |  | ltne 11358 | . . . . . . . . . . . . 13
⊢ ((𝑦 ∈ ℝ ∧ 𝑦 < 𝑉) → 𝑉 ≠ 𝑦) | 
| 192 | 191 | necomd 2996 | . . . . . . . . . . . 12
⊢ ((𝑦 ∈ ℝ ∧ 𝑦 < 𝑉) → 𝑦 ≠ 𝑉) | 
| 193 | 190, 192 | sylan 580 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < 𝑉) → 𝑦 ≠ 𝑉) | 
| 194 |  | eldifsn 4786 | . . . . . . . . . . 11
⊢ (𝑦 ∈ ((0...𝑁) ∖ {𝑉}) ↔ (𝑦 ∈ (0...𝑁) ∧ 𝑦 ≠ 𝑉)) | 
| 195 | 187, 193,
194 | sylanbrc 583 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑦 < 𝑉) → 𝑦 ∈ ((0...𝑁) ∖ {𝑉})) | 
| 196 | 94 | adantr 480 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ ¬ 𝑦 < 𝑉) → (𝑦 + 1) ∈ (0...𝑁)) | 
| 197 |  | poimirlem24.5 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑉 ∈ (0...𝑁)) | 
| 198 | 197 | elfzelzd 13565 | . . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑉 ∈ ℤ) | 
| 199 | 198 | zred 12722 | . . . . . . . . . . . . 13
⊢ (𝜑 → 𝑉 ∈ ℝ) | 
| 200 | 199 | ad2antrr 726 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ ¬ 𝑦 < 𝑉) → 𝑉 ∈ ℝ) | 
| 201 |  | zre 12617 | . . . . . . . . . . . . . . . 16
⊢ (𝑉 ∈ ℤ → 𝑉 ∈
ℝ) | 
| 202 |  | zre 12617 | . . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ ℤ → 𝑦 ∈
ℝ) | 
| 203 |  | lenlt 11339 | . . . . . . . . . . . . . . . 16
⊢ ((𝑉 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑉 ≤ 𝑦 ↔ ¬ 𝑦 < 𝑉)) | 
| 204 | 201, 202,
203 | syl2an 596 | . . . . . . . . . . . . . . 15
⊢ ((𝑉 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑉 ≤ 𝑦 ↔ ¬ 𝑦 < 𝑉)) | 
| 205 |  | zleltp1 12668 | . . . . . . . . . . . . . . 15
⊢ ((𝑉 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑉 ≤ 𝑦 ↔ 𝑉 < (𝑦 + 1))) | 
| 206 | 204, 205 | bitr3d 281 | . . . . . . . . . . . . . 14
⊢ ((𝑉 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (¬
𝑦 < 𝑉 ↔ 𝑉 < (𝑦 + 1))) | 
| 207 | 198, 188,
206 | syl2an 596 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (¬ 𝑦 < 𝑉 ↔ 𝑉 < (𝑦 + 1))) | 
| 208 | 207 | biimpa 476 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ ¬ 𝑦 < 𝑉) → 𝑉 < (𝑦 + 1)) | 
| 209 | 200, 208 | gtned 11396 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ ¬ 𝑦 < 𝑉) → (𝑦 + 1) ≠ 𝑉) | 
| 210 |  | eldifsn 4786 | . . . . . . . . . . 11
⊢ ((𝑦 + 1) ∈ ((0...𝑁) ∖ {𝑉}) ↔ ((𝑦 + 1) ∈ (0...𝑁) ∧ (𝑦 + 1) ≠ 𝑉)) | 
| 211 | 196, 209,
210 | sylanbrc 583 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ ¬ 𝑦 < 𝑉) → (𝑦 + 1) ∈ ((0...𝑁) ∖ {𝑉})) | 
| 212 | 195, 211 | ifclda 4561 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) ∈ ((0...𝑁) ∖ {𝑉})) | 
| 213 |  | nfcsb1v 3923 | . . . . . . . . . . . 12
⊢
Ⅎ𝑗⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 | 
| 214 | 213 | nfeq2 2923 | . . . . . . . . . . 11
⊢
Ⅎ𝑗 𝑖 = ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 | 
| 215 |  | csbeq1a 3913 | . . . . . . . . . . . 12
⊢ (𝑗 = if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) → ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) | 
| 216 | 215 | eqeq2d 2748 | . . . . . . . . . . 11
⊢ (𝑗 = if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) → (𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ 𝑖 = ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) | 
| 217 | 214, 216 | rspce 3611 | . . . . . . . . . 10
⊢
((if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) ∈ ((0...𝑁) ∖ {𝑉}) ∧ 𝑖 = ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) → ∃𝑗 ∈ ((0...𝑁) ∖ {𝑉})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) | 
| 218 | 217 | ex 412 | . . . . . . . . 9
⊢ (if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) ∈ ((0...𝑁) ∖ {𝑉}) → (𝑖 = ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 → ∃𝑗 ∈ ((0...𝑁) ∖ {𝑉})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) | 
| 219 | 212, 218 | syl 17 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑖 = ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 → ∃𝑗 ∈ ((0...𝑁) ∖ {𝑉})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) | 
| 220 | 219 | rexlimdva 3155 | . . . . . . 7
⊢ (𝜑 → (∃𝑦 ∈ (0...(𝑁 − 1))𝑖 = ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 → ∃𝑗 ∈ ((0...𝑁) ∖ {𝑉})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) | 
| 221 |  | nfv 1914 | . . . . . . . 8
⊢
Ⅎ𝑗𝜑 | 
| 222 |  | nfcv 2905 | . . . . . . . . 9
⊢
Ⅎ𝑗(0...(𝑁 − 1)) | 
| 223 | 222, 214 | nfrexw 3313 | . . . . . . . 8
⊢
Ⅎ𝑗∃𝑦 ∈ (0...(𝑁 − 1))𝑖 = ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 | 
| 224 |  | eldifi 4131 | . . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ ((0...𝑁) ∖ {𝑉}) → 𝑗 ∈ (0...𝑁)) | 
| 225 | 224, 57 | syl 17 | . . . . . . . . . . . . . 14
⊢ (𝑗 ∈ ((0...𝑁) ∖ {𝑉}) → 𝑗 ∈ ℕ0) | 
| 226 | 225 | nn0ge0d 12590 | . . . . . . . . . . . . 13
⊢ (𝑗 ∈ ((0...𝑁) ∖ {𝑉}) → 0 ≤ 𝑗) | 
| 227 | 226 | ad2antlr 727 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ 𝑗 < 𝑉) → 0 ≤ 𝑗) | 
| 228 | 225 | nn0red 12588 | . . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ ((0...𝑁) ∖ {𝑉}) → 𝑗 ∈ ℝ) | 
| 229 | 228 | ad2antlr 727 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ 𝑗 < 𝑉) → 𝑗 ∈ ℝ) | 
| 230 | 199 | ad2antrr 726 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ 𝑗 < 𝑉) → 𝑉 ∈ ℝ) | 
| 231 | 16 | zred 12722 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑁 ∈ ℝ) | 
| 232 | 231 | ad2antrr 726 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ 𝑗 < 𝑉) → 𝑁 ∈ ℝ) | 
| 233 |  | simpr 484 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ 𝑗 < 𝑉) → 𝑗 < 𝑉) | 
| 234 |  | elfzle2 13568 | . . . . . . . . . . . . . . . 16
⊢ (𝑉 ∈ (0...𝑁) → 𝑉 ≤ 𝑁) | 
| 235 | 197, 234 | syl 17 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑉 ≤ 𝑁) | 
| 236 | 235 | ad2antrr 726 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ 𝑗 < 𝑉) → 𝑉 ≤ 𝑁) | 
| 237 | 229, 230,
232, 233, 236 | ltletrd 11421 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ 𝑗 < 𝑉) → 𝑗 < 𝑁) | 
| 238 | 224 | elfzelzd 13565 | . . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ ((0...𝑁) ∖ {𝑉}) → 𝑗 ∈ ℤ) | 
| 239 |  | zltlem1 12670 | . . . . . . . . . . . . . . 15
⊢ ((𝑗 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑗 < 𝑁 ↔ 𝑗 ≤ (𝑁 − 1))) | 
| 240 | 238, 16, 239 | syl2anr 597 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ((0...𝑁) ∖ {𝑉})) → (𝑗 < 𝑁 ↔ 𝑗 ≤ (𝑁 − 1))) | 
| 241 | 240 | adantr 480 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ 𝑗 < 𝑉) → (𝑗 < 𝑁 ↔ 𝑗 ≤ (𝑁 − 1))) | 
| 242 | 237, 241 | mpbid 232 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ 𝑗 < 𝑉) → 𝑗 ≤ (𝑁 − 1)) | 
| 243 |  | 0z 12624 | . . . . . . . . . . . . . . 15
⊢ 0 ∈
ℤ | 
| 244 |  | elfz 13553 | . . . . . . . . . . . . . . 15
⊢ ((𝑗 ∈ ℤ ∧ 0 ∈
ℤ ∧ (𝑁 − 1)
∈ ℤ) → (𝑗
∈ (0...(𝑁 − 1))
↔ (0 ≤ 𝑗 ∧
𝑗 ≤ (𝑁 − 1)))) | 
| 245 | 243, 244 | mp3an2 1451 | . . . . . . . . . . . . . 14
⊢ ((𝑗 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ)
→ (𝑗 ∈
(0...(𝑁 − 1)) ↔
(0 ≤ 𝑗 ∧ 𝑗 ≤ (𝑁 − 1)))) | 
| 246 | 238, 18, 245 | syl2anr 597 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ((0...𝑁) ∖ {𝑉})) → (𝑗 ∈ (0...(𝑁 − 1)) ↔ (0 ≤ 𝑗 ∧ 𝑗 ≤ (𝑁 − 1)))) | 
| 247 | 246 | adantr 480 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ 𝑗 < 𝑉) → (𝑗 ∈ (0...(𝑁 − 1)) ↔ (0 ≤ 𝑗 ∧ 𝑗 ≤ (𝑁 − 1)))) | 
| 248 | 227, 242,
247 | mpbir2and 713 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ 𝑗 < 𝑉) → 𝑗 ∈ (0...(𝑁 − 1))) | 
| 249 |  | 0red 11264 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ ¬ 𝑗 < 𝑉) → 0 ∈ ℝ) | 
| 250 | 199 | ad2antrr 726 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ ¬ 𝑗 < 𝑉) → 𝑉 ∈ ℝ) | 
| 251 | 228 | ad2antlr 727 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ ¬ 𝑗 < 𝑉) → 𝑗 ∈ ℝ) | 
| 252 |  | elfzle1 13567 | . . . . . . . . . . . . . . . . 17
⊢ (𝑉 ∈ (0...𝑁) → 0 ≤ 𝑉) | 
| 253 | 197, 252 | syl 17 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → 0 ≤ 𝑉) | 
| 254 | 253 | ad2antrr 726 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ ¬ 𝑗 < 𝑉) → 0 ≤ 𝑉) | 
| 255 |  | lenlt 11339 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑉 ∈ ℝ ∧ 𝑗 ∈ ℝ) → (𝑉 ≤ 𝑗 ↔ ¬ 𝑗 < 𝑉)) | 
| 256 | 199, 228,
255 | syl2an 596 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ((0...𝑁) ∖ {𝑉})) → (𝑉 ≤ 𝑗 ↔ ¬ 𝑗 < 𝑉)) | 
| 257 | 256 | biimpar 477 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ ¬ 𝑗 < 𝑉) → 𝑉 ≤ 𝑗) | 
| 258 |  | eldifsni 4790 | . . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ ((0...𝑁) ∖ {𝑉}) → 𝑗 ≠ 𝑉) | 
| 259 | 258 | ad2antlr 727 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ ¬ 𝑗 < 𝑉) → 𝑗 ≠ 𝑉) | 
| 260 |  | ltlen 11362 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑉 ∈ ℝ ∧ 𝑗 ∈ ℝ) → (𝑉 < 𝑗 ↔ (𝑉 ≤ 𝑗 ∧ 𝑗 ≠ 𝑉))) | 
| 261 | 199, 228,
260 | syl2an 596 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ((0...𝑁) ∖ {𝑉})) → (𝑉 < 𝑗 ↔ (𝑉 ≤ 𝑗 ∧ 𝑗 ≠ 𝑉))) | 
| 262 | 261 | adantr 480 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ ¬ 𝑗 < 𝑉) → (𝑉 < 𝑗 ↔ (𝑉 ≤ 𝑗 ∧ 𝑗 ≠ 𝑉))) | 
| 263 | 257, 259,
262 | mpbir2and 713 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ ¬ 𝑗 < 𝑉) → 𝑉 < 𝑗) | 
| 264 | 249, 250,
251, 254, 263 | lelttrd 11419 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ ¬ 𝑗 < 𝑉) → 0 < 𝑗) | 
| 265 |  | zgt0ge1 12672 | . . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ ℤ → (0 <
𝑗 ↔ 1 ≤ 𝑗)) | 
| 266 | 238, 265 | syl 17 | . . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ ((0...𝑁) ∖ {𝑉}) → (0 < 𝑗 ↔ 1 ≤ 𝑗)) | 
| 267 | 266 | ad2antlr 727 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ ¬ 𝑗 < 𝑉) → (0 < 𝑗 ↔ 1 ≤ 𝑗)) | 
| 268 | 264, 267 | mpbid 232 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ ¬ 𝑗 < 𝑉) → 1 ≤ 𝑗) | 
| 269 |  | elfzle2 13568 | . . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ (0...𝑁) → 𝑗 ≤ 𝑁) | 
| 270 | 224, 269 | syl 17 | . . . . . . . . . . . . . 14
⊢ (𝑗 ∈ ((0...𝑁) ∖ {𝑉}) → 𝑗 ≤ 𝑁) | 
| 271 | 270 | ad2antlr 727 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ ¬ 𝑗 < 𝑉) → 𝑗 ≤ 𝑁) | 
| 272 |  | 1z 12647 | . . . . . . . . . . . . . . . 16
⊢ 1 ∈
ℤ | 
| 273 |  | elfz 13553 | . . . . . . . . . . . . . . . 16
⊢ ((𝑗 ∈ ℤ ∧ 1 ∈
ℤ ∧ 𝑁 ∈
ℤ) → (𝑗 ∈
(1...𝑁) ↔ (1 ≤
𝑗 ∧ 𝑗 ≤ 𝑁))) | 
| 274 | 272, 273 | mp3an2 1451 | . . . . . . . . . . . . . . 15
⊢ ((𝑗 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑗 ∈ (1...𝑁) ↔ (1 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁))) | 
| 275 | 238, 16, 274 | syl2anr 597 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ((0...𝑁) ∖ {𝑉})) → (𝑗 ∈ (1...𝑁) ↔ (1 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁))) | 
| 276 | 275 | adantr 480 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ ¬ 𝑗 < 𝑉) → (𝑗 ∈ (1...𝑁) ↔ (1 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁))) | 
| 277 | 268, 271,
276 | mpbir2and 713 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ ¬ 𝑗 < 𝑉) → 𝑗 ∈ (1...𝑁)) | 
| 278 |  | elfzmlbm 13678 | . . . . . . . . . . . 12
⊢ (𝑗 ∈ (1...𝑁) → (𝑗 − 1) ∈ (0...(𝑁 − 1))) | 
| 279 | 277, 278 | syl 17 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ ¬ 𝑗 < 𝑉) → (𝑗 − 1) ∈ (0...(𝑁 − 1))) | 
| 280 | 248, 279 | ifclda 4561 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ((0...𝑁) ∖ {𝑉})) → if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) ∈ (0...(𝑁 − 1))) | 
| 281 |  | breq1 5146 | . . . . . . . . . . . . . . . 16
⊢ (𝑗 = if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) → (𝑗 < 𝑉 ↔ if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) < 𝑉)) | 
| 282 |  | id 22 | . . . . . . . . . . . . . . . 16
⊢ (𝑗 = if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) → 𝑗 = if(𝑗 < 𝑉, 𝑗, (𝑗 − 1))) | 
| 283 |  | oveq1 7438 | . . . . . . . . . . . . . . . 16
⊢ (𝑗 = if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) → (𝑗 + 1) = (if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) + 1)) | 
| 284 | 281, 282,
283 | ifbieq12d 4554 | . . . . . . . . . . . . . . 15
⊢ (𝑗 = if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) → if(𝑗 < 𝑉, 𝑗, (𝑗 + 1)) = if(if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) < 𝑉, if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)), (if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) + 1))) | 
| 285 | 284 | eqeq2d 2748 | . . . . . . . . . . . . . 14
⊢ (𝑗 = if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) → (𝑗 = if(𝑗 < 𝑉, 𝑗, (𝑗 + 1)) ↔ 𝑗 = if(if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) < 𝑉, if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)), (if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) + 1)))) | 
| 286 |  | breq1 5146 | . . . . . . . . . . . . . . . 16
⊢ ((𝑗 − 1) = if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) → ((𝑗 − 1) < 𝑉 ↔ if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) < 𝑉)) | 
| 287 |  | id 22 | . . . . . . . . . . . . . . . 16
⊢ ((𝑗 − 1) = if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) → (𝑗 − 1) = if(𝑗 < 𝑉, 𝑗, (𝑗 − 1))) | 
| 288 |  | oveq1 7438 | . . . . . . . . . . . . . . . 16
⊢ ((𝑗 − 1) = if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) → ((𝑗 − 1) + 1) = (if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) + 1)) | 
| 289 | 286, 287,
288 | ifbieq12d 4554 | . . . . . . . . . . . . . . 15
⊢ ((𝑗 − 1) = if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) → if((𝑗 − 1) < 𝑉, (𝑗 − 1), ((𝑗 − 1) + 1)) = if(if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) < 𝑉, if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)), (if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) + 1))) | 
| 290 | 289 | eqeq2d 2748 | . . . . . . . . . . . . . 14
⊢ ((𝑗 − 1) = if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) → (𝑗 = if((𝑗 − 1) < 𝑉, (𝑗 − 1), ((𝑗 − 1) + 1)) ↔ 𝑗 = if(if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) < 𝑉, if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)), (if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) + 1)))) | 
| 291 |  | iftrue 4531 | . . . . . . . . . . . . . . . 16
⊢ (𝑗 < 𝑉 → if(𝑗 < 𝑉, 𝑗, (𝑗 + 1)) = 𝑗) | 
| 292 | 291 | eqcomd 2743 | . . . . . . . . . . . . . . 15
⊢ (𝑗 < 𝑉 → 𝑗 = if(𝑗 < 𝑉, 𝑗, (𝑗 + 1))) | 
| 293 | 292 | adantl 481 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ 𝑗 < 𝑉) → 𝑗 = if(𝑗 < 𝑉, 𝑗, (𝑗 + 1))) | 
| 294 |  | zlem1lt 12669 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑗 ∈ ℤ ∧ 𝑉 ∈ ℤ) → (𝑗 ≤ 𝑉 ↔ (𝑗 − 1) < 𝑉)) | 
| 295 | 238, 198,
294 | syl2anr 597 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ ((0...𝑁) ∖ {𝑉})) → (𝑗 ≤ 𝑉 ↔ (𝑗 − 1) < 𝑉)) | 
| 296 | 258 | necomd 2996 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ ((0...𝑁) ∖ {𝑉}) → 𝑉 ≠ 𝑗) | 
| 297 | 296 | adantl 481 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ ((0...𝑁) ∖ {𝑉})) → 𝑉 ≠ 𝑗) | 
| 298 |  | ltlen 11362 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑗 ∈ ℝ ∧ 𝑉 ∈ ℝ) → (𝑗 < 𝑉 ↔ (𝑗 ≤ 𝑉 ∧ 𝑉 ≠ 𝑗))) | 
| 299 | 228, 199,
298 | syl2anr 597 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ ((0...𝑁) ∖ {𝑉})) → (𝑗 < 𝑉 ↔ (𝑗 ≤ 𝑉 ∧ 𝑉 ≠ 𝑗))) | 
| 300 | 299 | biimprd 248 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ ((0...𝑁) ∖ {𝑉})) → ((𝑗 ≤ 𝑉 ∧ 𝑉 ≠ 𝑗) → 𝑗 < 𝑉)) | 
| 301 | 297, 300 | mpan2d 694 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ ((0...𝑁) ∖ {𝑉})) → (𝑗 ≤ 𝑉 → 𝑗 < 𝑉)) | 
| 302 | 295, 301 | sylbird 260 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ((0...𝑁) ∖ {𝑉})) → ((𝑗 − 1) < 𝑉 → 𝑗 < 𝑉)) | 
| 303 | 302 | con3dimp 408 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ ¬ 𝑗 < 𝑉) → ¬ (𝑗 − 1) < 𝑉) | 
| 304 | 303 | iffalsed 4536 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ ¬ 𝑗 < 𝑉) → if((𝑗 − 1) < 𝑉, (𝑗 − 1), ((𝑗 − 1) + 1)) = ((𝑗 − 1) + 1)) | 
| 305 | 225 | nn0cnd 12589 | . . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ ((0...𝑁) ∖ {𝑉}) → 𝑗 ∈ ℂ) | 
| 306 |  | npcan1 11688 | . . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ ℂ → ((𝑗 − 1) + 1) = 𝑗) | 
| 307 | 305, 306 | syl 17 | . . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ ((0...𝑁) ∖ {𝑉}) → ((𝑗 − 1) + 1) = 𝑗) | 
| 308 | 307 | ad2antlr 727 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ ¬ 𝑗 < 𝑉) → ((𝑗 − 1) + 1) = 𝑗) | 
| 309 | 304, 308 | eqtr2d 2778 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ((0...𝑁) ∖ {𝑉})) ∧ ¬ 𝑗 < 𝑉) → 𝑗 = if((𝑗 − 1) < 𝑉, (𝑗 − 1), ((𝑗 − 1) + 1))) | 
| 310 | 285, 290,
293, 309 | ifbothda 4564 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ((0...𝑁) ∖ {𝑉})) → 𝑗 = if(if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) < 𝑉, if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)), (if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) + 1))) | 
| 311 |  | csbeq1a 3913 | . . . . . . . . . . . . 13
⊢ (𝑗 = if(if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) < 𝑉, if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)), (if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) + 1)) →
⦋〈𝑇,
𝑈〉 / 𝑠⦌𝐶 = ⦋if(if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) < 𝑉, if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)), (if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) + 1)) / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) | 
| 312 | 310, 311 | syl 17 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ((0...𝑁) ∖ {𝑉})) → ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋if(if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) < 𝑉, if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)), (if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) + 1)) / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) | 
| 313 | 312 | eqeq2d 2748 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ((0...𝑁) ∖ {𝑉})) → (𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ 𝑖 = ⦋if(if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) < 𝑉, if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)), (if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) + 1)) / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) | 
| 314 | 313 | biimpd 229 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ((0...𝑁) ∖ {𝑉})) → (𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 → 𝑖 = ⦋if(if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) < 𝑉, if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)), (if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) + 1)) / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) | 
| 315 |  | breq1 5146 | . . . . . . . . . . . . . 14
⊢ (𝑦 = if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) → (𝑦 < 𝑉 ↔ if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) < 𝑉)) | 
| 316 |  | id 22 | . . . . . . . . . . . . . 14
⊢ (𝑦 = if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) → 𝑦 = if(𝑗 < 𝑉, 𝑗, (𝑗 − 1))) | 
| 317 |  | oveq1 7438 | . . . . . . . . . . . . . 14
⊢ (𝑦 = if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) → (𝑦 + 1) = (if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) + 1)) | 
| 318 | 315, 316,
317 | ifbieq12d 4554 | . . . . . . . . . . . . 13
⊢ (𝑦 = if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) → if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) = if(if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) < 𝑉, if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)), (if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) + 1))) | 
| 319 | 318 | csbeq1d 3903 | . . . . . . . . . . . 12
⊢ (𝑦 = if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) → ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋if(if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) < 𝑉, if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)), (if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) + 1)) / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) | 
| 320 | 319 | eqeq2d 2748 | . . . . . . . . . . 11
⊢ (𝑦 = if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) → (𝑖 = ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ 𝑖 = ⦋if(if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) < 𝑉, if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)), (if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) + 1)) / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) | 
| 321 | 320 | rspcev 3622 | . . . . . . . . . 10
⊢
((if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) ∈ (0...(𝑁 − 1)) ∧ 𝑖 = ⦋if(if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) < 𝑉, if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)), (if(𝑗 < 𝑉, 𝑗, (𝑗 − 1)) + 1)) / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) → ∃𝑦 ∈ (0...(𝑁 − 1))𝑖 = ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) | 
| 322 | 280, 314,
321 | syl6an 684 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ((0...𝑁) ∖ {𝑉})) → (𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 → ∃𝑦 ∈ (0...(𝑁 − 1))𝑖 = ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) | 
| 323 | 322 | ex 412 | . . . . . . . 8
⊢ (𝜑 → (𝑗 ∈ ((0...𝑁) ∖ {𝑉}) → (𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 → ∃𝑦 ∈ (0...(𝑁 − 1))𝑖 = ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶))) | 
| 324 | 221, 223,
323 | rexlimd 3266 | . . . . . . 7
⊢ (𝜑 → (∃𝑗 ∈ ((0...𝑁) ∖ {𝑉})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 → ∃𝑦 ∈ (0...(𝑁 − 1))𝑖 = ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) | 
| 325 | 220, 324 | impbid 212 | . . . . . 6
⊢ (𝜑 → (∃𝑦 ∈ (0...(𝑁 − 1))𝑖 = ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ ∃𝑗 ∈ ((0...𝑁) ∖ {𝑉})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) | 
| 326 | 185, 325 | bitr3d 281 | . . . . 5
⊢ (𝜑 → (𝑖 ∈ ran (𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) ↦ 𝐵) ↔ ∃𝑗 ∈ ((0...𝑁) ∖ {𝑉})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) | 
| 327 | 326 | ralbidv 3178 | . . . 4
⊢ (𝜑 → (∀𝑖 ∈ (0...(𝑁 − 1))𝑖 ∈ ran (𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) ↦ 𝐵) ↔ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑉})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) | 
| 328 | 129, 327 | bitrid 283 | . . 3
⊢ (𝜑 → ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) ↦ 𝐵) ↔ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑉})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) | 
| 329 | 328 | anbi1d 631 | . 2
⊢ (𝜑 → (((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) ↦ 𝐵) ∧ ∃𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))(𝑝‘𝑁) ≠ 0) ↔ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑉})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∧ ∃𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))(𝑝‘𝑁) ≠ 0))) | 
| 330 | 12, 45, 52, 197 | poimirlem23 37650 | . . 3
⊢ (𝜑 → (∃𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))(𝑝‘𝑁) ≠ 0 ↔ ¬ (𝑉 = 𝑁 ∧ ((𝑇‘𝑁) = 0 ∧ (𝑈‘𝑁) = 𝑁)))) | 
| 331 | 330 | anbi2d 630 | . 2
⊢ (𝜑 → ((∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑉})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∧ ∃𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))(𝑝‘𝑁) ≠ 0) ↔ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑉})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∧ ¬ (𝑉 = 𝑁 ∧ ((𝑇‘𝑁) = 0 ∧ (𝑈‘𝑁) = 𝑁))))) | 
| 332 | 128, 329,
331 | 3bitrd 305 | 1
⊢ (𝜑 → (∃𝑥 ∈ (((0...𝐾) ↑m (1...𝑁)) ↑m (0...(𝑁 − 1)))(𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑁) ≠ 0)) ↔ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑉})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∧ ¬ (𝑉 = 𝑁 ∧ ((𝑇‘𝑁) = 0 ∧ (𝑈‘𝑁) = 𝑁))))) |