Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sqn5i | Structured version Visualization version GIF version |
Description: The square of a number ending in 5. This shortcut only works because 5 is half of 10. (Contributed by Steven Nguyen, 16-Sep-2022.) |
Ref | Expression |
---|---|
sqn5i.1 | ⊢ 𝐴 ∈ ℕ0 |
Ref | Expression |
---|---|
sqn5i | ⊢ (;𝐴5 · ;𝐴5) = ;;(𝐴 · (𝐴 + 1))25 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sqn5i.1 | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
2 | 0nn0 12349 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
3 | 1, 2 | deccl 12553 | . . . 4 ⊢ ;𝐴0 ∈ ℕ0 |
4 | 3 | nn0cni 12346 | . . 3 ⊢ ;𝐴0 ∈ ℂ |
5 | 5cn 12162 | . . 3 ⊢ 5 ∈ ℂ | |
6 | 5nn0 12354 | . . . 4 ⊢ 5 ∈ ℕ0 | |
7 | eqid 2736 | . . . 4 ⊢ ;𝐴0 = ;𝐴0 | |
8 | 5 | addid2i 11264 | . . . 4 ⊢ (0 + 5) = 5 |
9 | 1, 2, 6, 7, 8 | decaddi 12598 | . . 3 ⊢ (;𝐴0 + 5) = ;𝐴5 |
10 | eqid 2736 | . . . 4 ⊢ ;𝐴5 = ;𝐴5 | |
11 | eqid 2736 | . . . 4 ⊢ (𝐴 + 1) = (𝐴 + 1) | |
12 | 5p5e10 12609 | . . . 4 ⊢ (5 + 5) = ;10 | |
13 | 1, 6, 6, 10, 11, 12 | decaddci2 12600 | . . 3 ⊢ (;𝐴5 + 5) = ;(𝐴 + 1)0 |
14 | 4, 5, 9, 13 | sqmid3api 40579 | . 2 ⊢ (;𝐴5 · ;𝐴5) = ((;𝐴0 · ;(𝐴 + 1)0) + (5 · 5)) |
15 | 2nn0 12351 | . . 3 ⊢ 2 ∈ ℕ0 | |
16 | 5t5e25 12641 | . . 3 ⊢ (5 · 5) = ;25 | |
17 | peano2nn0 12374 | . . . . 5 ⊢ (𝐴 ∈ ℕ0 → (𝐴 + 1) ∈ ℕ0) | |
18 | 1, 17 | ax-mp 5 | . . . 4 ⊢ (𝐴 + 1) ∈ ℕ0 |
19 | 18, 2 | deccl 12553 | . . 3 ⊢ ;(𝐴 + 1)0 ∈ ℕ0 |
20 | 1, 18 | nn0mulcli 12372 | . . . 4 ⊢ (𝐴 · (𝐴 + 1)) ∈ ℕ0 |
21 | 1, 18, 2 | decmulnc 12605 | . . . . 5 ⊢ (𝐴 · ;(𝐴 + 1)0) = ;(𝐴 · (𝐴 + 1))(𝐴 · 0) |
22 | 1 | nn0cni 12346 | . . . . . . 7 ⊢ 𝐴 ∈ ℂ |
23 | 22 | mul01i 11266 | . . . . . 6 ⊢ (𝐴 · 0) = 0 |
24 | 23 | deceq2i 12546 | . . . . 5 ⊢ ;(𝐴 · (𝐴 + 1))(𝐴 · 0) = ;(𝐴 · (𝐴 + 1))0 |
25 | 21, 24 | eqtri 2764 | . . . 4 ⊢ (𝐴 · ;(𝐴 + 1)0) = ;(𝐴 · (𝐴 + 1))0 |
26 | 2cn 12149 | . . . . 5 ⊢ 2 ∈ ℂ | |
27 | 26 | addid2i 11264 | . . . 4 ⊢ (0 + 2) = 2 |
28 | 20, 2, 15, 25, 27 | decaddi 12598 | . . 3 ⊢ ((𝐴 · ;(𝐴 + 1)0) + 2) = ;(𝐴 · (𝐴 + 1))2 |
29 | 19 | nn0cni 12346 | . . . . . 6 ⊢ ;(𝐴 + 1)0 ∈ ℂ |
30 | 29 | mul02i 11265 | . . . . 5 ⊢ (0 · ;(𝐴 + 1)0) = 0 |
31 | 30 | oveq1i 7347 | . . . 4 ⊢ ((0 · ;(𝐴 + 1)0) + 5) = (0 + 5) |
32 | 31, 8 | eqtri 2764 | . . 3 ⊢ ((0 · ;(𝐴 + 1)0) + 5) = 5 |
33 | 1, 2, 15, 6, 7, 16, 19, 28, 32 | decma 12589 | . 2 ⊢ ((;𝐴0 · ;(𝐴 + 1)0) + (5 · 5)) = ;;(𝐴 · (𝐴 + 1))25 |
34 | 14, 33 | eqtri 2764 | 1 ⊢ (;𝐴5 · ;𝐴5) = ;;(𝐴 · (𝐴 + 1))25 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 (class class class)co 7337 0cc0 10972 1c1 10973 + caddc 10975 · cmul 10977 2c2 12129 5c5 12132 ℕ0cn0 12334 ;cdc 12538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-pnf 11112 df-mnf 11113 df-ltxr 11115 df-sub 11308 df-nn 12075 df-2 12137 df-3 12138 df-4 12139 df-5 12140 df-6 12141 df-7 12142 df-8 12143 df-9 12144 df-n0 12335 df-dec 12539 |
This theorem is referenced by: sqn5ii 40582 |
Copyright terms: Public domain | W3C validator |