Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sqn5i Structured version   Visualization version   GIF version

Theorem sqn5i 40234
Description: The square of a number ending in 5. This shortcut only works because 5 is half of 10. (Contributed by Steven Nguyen, 16-Sep-2022.)
Hypothesis
Ref Expression
sqn5i.1 𝐴 ∈ ℕ0
Assertion
Ref Expression
sqn5i (𝐴5 · 𝐴5) = (𝐴 · (𝐴 + 1))25

Proof of Theorem sqn5i
StepHypRef Expression
1 sqn5i.1 . . . . 5 𝐴 ∈ ℕ0
2 0nn0 12178 . . . . 5 0 ∈ ℕ0
31, 2deccl 12381 . . . 4 𝐴0 ∈ ℕ0
43nn0cni 12175 . . 3 𝐴0 ∈ ℂ
5 5cn 11991 . . 3 5 ∈ ℂ
6 5nn0 12183 . . . 4 5 ∈ ℕ0
7 eqid 2738 . . . 4 𝐴0 = 𝐴0
85addid2i 11093 . . . 4 (0 + 5) = 5
91, 2, 6, 7, 8decaddi 12426 . . 3 (𝐴0 + 5) = 𝐴5
10 eqid 2738 . . . 4 𝐴5 = 𝐴5
11 eqid 2738 . . . 4 (𝐴 + 1) = (𝐴 + 1)
12 5p5e10 12437 . . . 4 (5 + 5) = 10
131, 6, 6, 10, 11, 12decaddci2 12428 . . 3 (𝐴5 + 5) = (𝐴 + 1)0
144, 5, 9, 13sqmid3api 40232 . 2 (𝐴5 · 𝐴5) = ((𝐴0 · (𝐴 + 1)0) + (5 · 5))
15 2nn0 12180 . . 3 2 ∈ ℕ0
16 5t5e25 12469 . . 3 (5 · 5) = 25
17 peano2nn0 12203 . . . . 5 (𝐴 ∈ ℕ0 → (𝐴 + 1) ∈ ℕ0)
181, 17ax-mp 5 . . . 4 (𝐴 + 1) ∈ ℕ0
1918, 2deccl 12381 . . 3 (𝐴 + 1)0 ∈ ℕ0
201, 18nn0mulcli 12201 . . . 4 (𝐴 · (𝐴 + 1)) ∈ ℕ0
211, 18, 2decmulnc 12433 . . . . 5 (𝐴 · (𝐴 + 1)0) = (𝐴 · (𝐴 + 1))(𝐴 · 0)
221nn0cni 12175 . . . . . . 7 𝐴 ∈ ℂ
2322mul01i 11095 . . . . . 6 (𝐴 · 0) = 0
2423deceq2i 12374 . . . . 5 (𝐴 · (𝐴 + 1))(𝐴 · 0) = (𝐴 · (𝐴 + 1))0
2521, 24eqtri 2766 . . . 4 (𝐴 · (𝐴 + 1)0) = (𝐴 · (𝐴 + 1))0
26 2cn 11978 . . . . 5 2 ∈ ℂ
2726addid2i 11093 . . . 4 (0 + 2) = 2
2820, 2, 15, 25, 27decaddi 12426 . . 3 ((𝐴 · (𝐴 + 1)0) + 2) = (𝐴 · (𝐴 + 1))2
2919nn0cni 12175 . . . . . 6 (𝐴 + 1)0 ∈ ℂ
3029mul02i 11094 . . . . 5 (0 · (𝐴 + 1)0) = 0
3130oveq1i 7265 . . . 4 ((0 · (𝐴 + 1)0) + 5) = (0 + 5)
3231, 8eqtri 2766 . . 3 ((0 · (𝐴 + 1)0) + 5) = 5
331, 2, 15, 6, 7, 16, 19, 28, 32decma 12417 . 2 ((𝐴0 · (𝐴 + 1)0) + (5 · 5)) = (𝐴 · (𝐴 + 1))25
3414, 33eqtri 2766 1 (𝐴5 · 𝐴5) = (𝐴 · (𝐴 + 1))25
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  (class class class)co 7255  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  2c2 11958  5c5 11961  0cn0 12163  cdc 12366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-ltxr 10945  df-sub 11137  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-dec 12367
This theorem is referenced by:  sqn5ii  40235
  Copyright terms: Public domain W3C validator