| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sqn5i | Structured version Visualization version GIF version | ||
| Description: The square of a number ending in 5. This shortcut only works because 5 is half of 10. (Contributed by Steven Nguyen, 16-Sep-2022.) |
| Ref | Expression |
|---|---|
| sqn5i.1 | ⊢ 𝐴 ∈ ℕ0 |
| Ref | Expression |
|---|---|
| sqn5i | ⊢ (;𝐴5 · ;𝐴5) = ;;(𝐴 · (𝐴 + 1))25 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sqn5i.1 | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
| 2 | 0nn0 12396 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
| 3 | 1, 2 | deccl 12603 | . . . 4 ⊢ ;𝐴0 ∈ ℕ0 |
| 4 | 3 | nn0cni 12393 | . . 3 ⊢ ;𝐴0 ∈ ℂ |
| 5 | 5cn 12213 | . . 3 ⊢ 5 ∈ ℂ | |
| 6 | 5nn0 12401 | . . . 4 ⊢ 5 ∈ ℕ0 | |
| 7 | eqid 2731 | . . . 4 ⊢ ;𝐴0 = ;𝐴0 | |
| 8 | 5 | addlidi 11301 | . . . 4 ⊢ (0 + 5) = 5 |
| 9 | 1, 2, 6, 7, 8 | decaddi 12648 | . . 3 ⊢ (;𝐴0 + 5) = ;𝐴5 |
| 10 | eqid 2731 | . . . 4 ⊢ ;𝐴5 = ;𝐴5 | |
| 11 | eqid 2731 | . . . 4 ⊢ (𝐴 + 1) = (𝐴 + 1) | |
| 12 | 5p5e10 12659 | . . . 4 ⊢ (5 + 5) = ;10 | |
| 13 | 1, 6, 6, 10, 11, 12 | decaddci2 12650 | . . 3 ⊢ (;𝐴5 + 5) = ;(𝐴 + 1)0 |
| 14 | 4, 5, 9, 13 | sqmid3api 42386 | . 2 ⊢ (;𝐴5 · ;𝐴5) = ((;𝐴0 · ;(𝐴 + 1)0) + (5 · 5)) |
| 15 | 2nn0 12398 | . . 3 ⊢ 2 ∈ ℕ0 | |
| 16 | 5t5e25 12691 | . . 3 ⊢ (5 · 5) = ;25 | |
| 17 | peano2nn0 12421 | . . . . 5 ⊢ (𝐴 ∈ ℕ0 → (𝐴 + 1) ∈ ℕ0) | |
| 18 | 1, 17 | ax-mp 5 | . . . 4 ⊢ (𝐴 + 1) ∈ ℕ0 |
| 19 | 18, 2 | deccl 12603 | . . 3 ⊢ ;(𝐴 + 1)0 ∈ ℕ0 |
| 20 | 1, 18 | nn0mulcli 12419 | . . . 4 ⊢ (𝐴 · (𝐴 + 1)) ∈ ℕ0 |
| 21 | 1, 18, 2 | decmulnc 12655 | . . . . 5 ⊢ (𝐴 · ;(𝐴 + 1)0) = ;(𝐴 · (𝐴 + 1))(𝐴 · 0) |
| 22 | 1 | nn0cni 12393 | . . . . . . 7 ⊢ 𝐴 ∈ ℂ |
| 23 | 22 | mul01i 11303 | . . . . . 6 ⊢ (𝐴 · 0) = 0 |
| 24 | 23 | deceq2i 12596 | . . . . 5 ⊢ ;(𝐴 · (𝐴 + 1))(𝐴 · 0) = ;(𝐴 · (𝐴 + 1))0 |
| 25 | 21, 24 | eqtri 2754 | . . . 4 ⊢ (𝐴 · ;(𝐴 + 1)0) = ;(𝐴 · (𝐴 + 1))0 |
| 26 | 2cn 12200 | . . . . 5 ⊢ 2 ∈ ℂ | |
| 27 | 26 | addlidi 11301 | . . . 4 ⊢ (0 + 2) = 2 |
| 28 | 20, 2, 15, 25, 27 | decaddi 12648 | . . 3 ⊢ ((𝐴 · ;(𝐴 + 1)0) + 2) = ;(𝐴 · (𝐴 + 1))2 |
| 29 | 19 | nn0cni 12393 | . . . . . 6 ⊢ ;(𝐴 + 1)0 ∈ ℂ |
| 30 | 29 | mul02i 11302 | . . . . 5 ⊢ (0 · ;(𝐴 + 1)0) = 0 |
| 31 | 30 | oveq1i 7356 | . . . 4 ⊢ ((0 · ;(𝐴 + 1)0) + 5) = (0 + 5) |
| 32 | 31, 8 | eqtri 2754 | . . 3 ⊢ ((0 · ;(𝐴 + 1)0) + 5) = 5 |
| 33 | 1, 2, 15, 6, 7, 16, 19, 28, 32 | decma 12639 | . 2 ⊢ ((;𝐴0 · ;(𝐴 + 1)0) + (5 · 5)) = ;;(𝐴 · (𝐴 + 1))25 |
| 34 | 14, 33 | eqtri 2754 | 1 ⊢ (;𝐴5 · ;𝐴5) = ;;(𝐴 · (𝐴 + 1))25 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 (class class class)co 7346 0cc0 11006 1c1 11007 + caddc 11009 · cmul 11011 2c2 12180 5c5 12183 ℕ0cn0 12381 ;cdc 12588 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-ltxr 11151 df-sub 11346 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-dec 12589 |
| This theorem is referenced by: sqn5ii 42389 |
| Copyright terms: Public domain | W3C validator |