| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sqn5i | Structured version Visualization version GIF version | ||
| Description: The square of a number ending in 5. This shortcut only works because 5 is half of 10. (Contributed by Steven Nguyen, 16-Sep-2022.) |
| Ref | Expression |
|---|---|
| sqn5i.1 | ⊢ 𝐴 ∈ ℕ0 |
| Ref | Expression |
|---|---|
| sqn5i | ⊢ (;𝐴5 · ;𝐴5) = ;;(𝐴 · (𝐴 + 1))25 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sqn5i.1 | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
| 2 | 0nn0 12399 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
| 3 | 1, 2 | deccl 12606 | . . . 4 ⊢ ;𝐴0 ∈ ℕ0 |
| 4 | 3 | nn0cni 12396 | . . 3 ⊢ ;𝐴0 ∈ ℂ |
| 5 | 5cn 12216 | . . 3 ⊢ 5 ∈ ℂ | |
| 6 | 5nn0 12404 | . . . 4 ⊢ 5 ∈ ℕ0 | |
| 7 | eqid 2729 | . . . 4 ⊢ ;𝐴0 = ;𝐴0 | |
| 8 | 5 | addlidi 11304 | . . . 4 ⊢ (0 + 5) = 5 |
| 9 | 1, 2, 6, 7, 8 | decaddi 12651 | . . 3 ⊢ (;𝐴0 + 5) = ;𝐴5 |
| 10 | eqid 2729 | . . . 4 ⊢ ;𝐴5 = ;𝐴5 | |
| 11 | eqid 2729 | . . . 4 ⊢ (𝐴 + 1) = (𝐴 + 1) | |
| 12 | 5p5e10 12662 | . . . 4 ⊢ (5 + 5) = ;10 | |
| 13 | 1, 6, 6, 10, 11, 12 | decaddci2 12653 | . . 3 ⊢ (;𝐴5 + 5) = ;(𝐴 + 1)0 |
| 14 | 4, 5, 9, 13 | sqmid3api 42260 | . 2 ⊢ (;𝐴5 · ;𝐴5) = ((;𝐴0 · ;(𝐴 + 1)0) + (5 · 5)) |
| 15 | 2nn0 12401 | . . 3 ⊢ 2 ∈ ℕ0 | |
| 16 | 5t5e25 12694 | . . 3 ⊢ (5 · 5) = ;25 | |
| 17 | peano2nn0 12424 | . . . . 5 ⊢ (𝐴 ∈ ℕ0 → (𝐴 + 1) ∈ ℕ0) | |
| 18 | 1, 17 | ax-mp 5 | . . . 4 ⊢ (𝐴 + 1) ∈ ℕ0 |
| 19 | 18, 2 | deccl 12606 | . . 3 ⊢ ;(𝐴 + 1)0 ∈ ℕ0 |
| 20 | 1, 18 | nn0mulcli 12422 | . . . 4 ⊢ (𝐴 · (𝐴 + 1)) ∈ ℕ0 |
| 21 | 1, 18, 2 | decmulnc 12658 | . . . . 5 ⊢ (𝐴 · ;(𝐴 + 1)0) = ;(𝐴 · (𝐴 + 1))(𝐴 · 0) |
| 22 | 1 | nn0cni 12396 | . . . . . . 7 ⊢ 𝐴 ∈ ℂ |
| 23 | 22 | mul01i 11306 | . . . . . 6 ⊢ (𝐴 · 0) = 0 |
| 24 | 23 | deceq2i 12599 | . . . . 5 ⊢ ;(𝐴 · (𝐴 + 1))(𝐴 · 0) = ;(𝐴 · (𝐴 + 1))0 |
| 25 | 21, 24 | eqtri 2752 | . . . 4 ⊢ (𝐴 · ;(𝐴 + 1)0) = ;(𝐴 · (𝐴 + 1))0 |
| 26 | 2cn 12203 | . . . . 5 ⊢ 2 ∈ ℂ | |
| 27 | 26 | addlidi 11304 | . . . 4 ⊢ (0 + 2) = 2 |
| 28 | 20, 2, 15, 25, 27 | decaddi 12651 | . . 3 ⊢ ((𝐴 · ;(𝐴 + 1)0) + 2) = ;(𝐴 · (𝐴 + 1))2 |
| 29 | 19 | nn0cni 12396 | . . . . . 6 ⊢ ;(𝐴 + 1)0 ∈ ℂ |
| 30 | 29 | mul02i 11305 | . . . . 5 ⊢ (0 · ;(𝐴 + 1)0) = 0 |
| 31 | 30 | oveq1i 7359 | . . . 4 ⊢ ((0 · ;(𝐴 + 1)0) + 5) = (0 + 5) |
| 32 | 31, 8 | eqtri 2752 | . . 3 ⊢ ((0 · ;(𝐴 + 1)0) + 5) = 5 |
| 33 | 1, 2, 15, 6, 7, 16, 19, 28, 32 | decma 12642 | . 2 ⊢ ((;𝐴0 · ;(𝐴 + 1)0) + (5 · 5)) = ;;(𝐴 · (𝐴 + 1))25 |
| 34 | 14, 33 | eqtri 2752 | 1 ⊢ (;𝐴5 · ;𝐴5) = ;;(𝐴 · (𝐴 + 1))25 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7349 0cc0 11009 1c1 11010 + caddc 11012 · cmul 11014 2c2 12183 5c5 12186 ℕ0cn0 12384 ;cdc 12591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-ltxr 11154 df-sub 11349 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-dec 12592 |
| This theorem is referenced by: sqn5ii 42263 |
| Copyright terms: Public domain | W3C validator |