| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sqn5i | Structured version Visualization version GIF version | ||
| Description: The square of a number ending in 5. This shortcut only works because 5 is half of 10. (Contributed by Steven Nguyen, 16-Sep-2022.) |
| Ref | Expression |
|---|---|
| sqn5i.1 | ⊢ 𝐴 ∈ ℕ0 |
| Ref | Expression |
|---|---|
| sqn5i | ⊢ (;𝐴5 · ;𝐴5) = ;;(𝐴 · (𝐴 + 1))25 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sqn5i.1 | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
| 2 | 0nn0 12433 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
| 3 | 1, 2 | deccl 12640 | . . . 4 ⊢ ;𝐴0 ∈ ℕ0 |
| 4 | 3 | nn0cni 12430 | . . 3 ⊢ ;𝐴0 ∈ ℂ |
| 5 | 5cn 12250 | . . 3 ⊢ 5 ∈ ℂ | |
| 6 | 5nn0 12438 | . . . 4 ⊢ 5 ∈ ℕ0 | |
| 7 | eqid 2729 | . . . 4 ⊢ ;𝐴0 = ;𝐴0 | |
| 8 | 5 | addlidi 11338 | . . . 4 ⊢ (0 + 5) = 5 |
| 9 | 1, 2, 6, 7, 8 | decaddi 12685 | . . 3 ⊢ (;𝐴0 + 5) = ;𝐴5 |
| 10 | eqid 2729 | . . . 4 ⊢ ;𝐴5 = ;𝐴5 | |
| 11 | eqid 2729 | . . . 4 ⊢ (𝐴 + 1) = (𝐴 + 1) | |
| 12 | 5p5e10 12696 | . . . 4 ⊢ (5 + 5) = ;10 | |
| 13 | 1, 6, 6, 10, 11, 12 | decaddci2 12687 | . . 3 ⊢ (;𝐴5 + 5) = ;(𝐴 + 1)0 |
| 14 | 4, 5, 9, 13 | sqmid3api 42264 | . 2 ⊢ (;𝐴5 · ;𝐴5) = ((;𝐴0 · ;(𝐴 + 1)0) + (5 · 5)) |
| 15 | 2nn0 12435 | . . 3 ⊢ 2 ∈ ℕ0 | |
| 16 | 5t5e25 12728 | . . 3 ⊢ (5 · 5) = ;25 | |
| 17 | peano2nn0 12458 | . . . . 5 ⊢ (𝐴 ∈ ℕ0 → (𝐴 + 1) ∈ ℕ0) | |
| 18 | 1, 17 | ax-mp 5 | . . . 4 ⊢ (𝐴 + 1) ∈ ℕ0 |
| 19 | 18, 2 | deccl 12640 | . . 3 ⊢ ;(𝐴 + 1)0 ∈ ℕ0 |
| 20 | 1, 18 | nn0mulcli 12456 | . . . 4 ⊢ (𝐴 · (𝐴 + 1)) ∈ ℕ0 |
| 21 | 1, 18, 2 | decmulnc 12692 | . . . . 5 ⊢ (𝐴 · ;(𝐴 + 1)0) = ;(𝐴 · (𝐴 + 1))(𝐴 · 0) |
| 22 | 1 | nn0cni 12430 | . . . . . . 7 ⊢ 𝐴 ∈ ℂ |
| 23 | 22 | mul01i 11340 | . . . . . 6 ⊢ (𝐴 · 0) = 0 |
| 24 | 23 | deceq2i 12633 | . . . . 5 ⊢ ;(𝐴 · (𝐴 + 1))(𝐴 · 0) = ;(𝐴 · (𝐴 + 1))0 |
| 25 | 21, 24 | eqtri 2752 | . . . 4 ⊢ (𝐴 · ;(𝐴 + 1)0) = ;(𝐴 · (𝐴 + 1))0 |
| 26 | 2cn 12237 | . . . . 5 ⊢ 2 ∈ ℂ | |
| 27 | 26 | addlidi 11338 | . . . 4 ⊢ (0 + 2) = 2 |
| 28 | 20, 2, 15, 25, 27 | decaddi 12685 | . . 3 ⊢ ((𝐴 · ;(𝐴 + 1)0) + 2) = ;(𝐴 · (𝐴 + 1))2 |
| 29 | 19 | nn0cni 12430 | . . . . . 6 ⊢ ;(𝐴 + 1)0 ∈ ℂ |
| 30 | 29 | mul02i 11339 | . . . . 5 ⊢ (0 · ;(𝐴 + 1)0) = 0 |
| 31 | 30 | oveq1i 7379 | . . . 4 ⊢ ((0 · ;(𝐴 + 1)0) + 5) = (0 + 5) |
| 32 | 31, 8 | eqtri 2752 | . . 3 ⊢ ((0 · ;(𝐴 + 1)0) + 5) = 5 |
| 33 | 1, 2, 15, 6, 7, 16, 19, 28, 32 | decma 12676 | . 2 ⊢ ((;𝐴0 · ;(𝐴 + 1)0) + (5 · 5)) = ;;(𝐴 · (𝐴 + 1))25 |
| 34 | 14, 33 | eqtri 2752 | 1 ⊢ (;𝐴5 · ;𝐴5) = ;;(𝐴 · (𝐴 + 1))25 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7369 0cc0 11044 1c1 11045 + caddc 11047 · cmul 11049 2c2 12217 5c5 12220 ℕ0cn0 12418 ;cdc 12625 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-ltxr 11189 df-sub 11383 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-dec 12626 |
| This theorem is referenced by: sqn5ii 42267 |
| Copyright terms: Public domain | W3C validator |