![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sqn5i | Structured version Visualization version GIF version |
Description: The square of a number ending in 5. This shortcut only works because 5 is half of 10. (Contributed by Steven Nguyen, 16-Sep-2022.) |
Ref | Expression |
---|---|
sqn5i.1 | ⊢ 𝐴 ∈ ℕ0 |
Ref | Expression |
---|---|
sqn5i | ⊢ (;𝐴5 · ;𝐴5) = ;;(𝐴 · (𝐴 + 1))25 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sqn5i.1 | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
2 | 0nn0 12568 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
3 | 1, 2 | deccl 12773 | . . . 4 ⊢ ;𝐴0 ∈ ℕ0 |
4 | 3 | nn0cni 12565 | . . 3 ⊢ ;𝐴0 ∈ ℂ |
5 | 5cn 12381 | . . 3 ⊢ 5 ∈ ℂ | |
6 | 5nn0 12573 | . . . 4 ⊢ 5 ∈ ℕ0 | |
7 | eqid 2740 | . . . 4 ⊢ ;𝐴0 = ;𝐴0 | |
8 | 5 | addlidi 11478 | . . . 4 ⊢ (0 + 5) = 5 |
9 | 1, 2, 6, 7, 8 | decaddi 12818 | . . 3 ⊢ (;𝐴0 + 5) = ;𝐴5 |
10 | eqid 2740 | . . . 4 ⊢ ;𝐴5 = ;𝐴5 | |
11 | eqid 2740 | . . . 4 ⊢ (𝐴 + 1) = (𝐴 + 1) | |
12 | 5p5e10 12829 | . . . 4 ⊢ (5 + 5) = ;10 | |
13 | 1, 6, 6, 10, 11, 12 | decaddci2 12820 | . . 3 ⊢ (;𝐴5 + 5) = ;(𝐴 + 1)0 |
14 | 4, 5, 9, 13 | sqmid3api 42272 | . 2 ⊢ (;𝐴5 · ;𝐴5) = ((;𝐴0 · ;(𝐴 + 1)0) + (5 · 5)) |
15 | 2nn0 12570 | . . 3 ⊢ 2 ∈ ℕ0 | |
16 | 5t5e25 12861 | . . 3 ⊢ (5 · 5) = ;25 | |
17 | peano2nn0 12593 | . . . . 5 ⊢ (𝐴 ∈ ℕ0 → (𝐴 + 1) ∈ ℕ0) | |
18 | 1, 17 | ax-mp 5 | . . . 4 ⊢ (𝐴 + 1) ∈ ℕ0 |
19 | 18, 2 | deccl 12773 | . . 3 ⊢ ;(𝐴 + 1)0 ∈ ℕ0 |
20 | 1, 18 | nn0mulcli 12591 | . . . 4 ⊢ (𝐴 · (𝐴 + 1)) ∈ ℕ0 |
21 | 1, 18, 2 | decmulnc 12825 | . . . . 5 ⊢ (𝐴 · ;(𝐴 + 1)0) = ;(𝐴 · (𝐴 + 1))(𝐴 · 0) |
22 | 1 | nn0cni 12565 | . . . . . . 7 ⊢ 𝐴 ∈ ℂ |
23 | 22 | mul01i 11480 | . . . . . 6 ⊢ (𝐴 · 0) = 0 |
24 | 23 | deceq2i 12766 | . . . . 5 ⊢ ;(𝐴 · (𝐴 + 1))(𝐴 · 0) = ;(𝐴 · (𝐴 + 1))0 |
25 | 21, 24 | eqtri 2768 | . . . 4 ⊢ (𝐴 · ;(𝐴 + 1)0) = ;(𝐴 · (𝐴 + 1))0 |
26 | 2cn 12368 | . . . . 5 ⊢ 2 ∈ ℂ | |
27 | 26 | addlidi 11478 | . . . 4 ⊢ (0 + 2) = 2 |
28 | 20, 2, 15, 25, 27 | decaddi 12818 | . . 3 ⊢ ((𝐴 · ;(𝐴 + 1)0) + 2) = ;(𝐴 · (𝐴 + 1))2 |
29 | 19 | nn0cni 12565 | . . . . . 6 ⊢ ;(𝐴 + 1)0 ∈ ℂ |
30 | 29 | mul02i 11479 | . . . . 5 ⊢ (0 · ;(𝐴 + 1)0) = 0 |
31 | 30 | oveq1i 7458 | . . . 4 ⊢ ((0 · ;(𝐴 + 1)0) + 5) = (0 + 5) |
32 | 31, 8 | eqtri 2768 | . . 3 ⊢ ((0 · ;(𝐴 + 1)0) + 5) = 5 |
33 | 1, 2, 15, 6, 7, 16, 19, 28, 32 | decma 12809 | . 2 ⊢ ((;𝐴0 · ;(𝐴 + 1)0) + (5 · 5)) = ;;(𝐴 · (𝐴 + 1))25 |
34 | 14, 33 | eqtri 2768 | 1 ⊢ (;𝐴5 · ;𝐴5) = ;;(𝐴 · (𝐴 + 1))25 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 (class class class)co 7448 0cc0 11184 1c1 11185 + caddc 11187 · cmul 11189 2c2 12348 5c5 12351 ℕ0cn0 12553 ;cdc 12758 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 df-sub 11522 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-dec 12759 |
This theorem is referenced by: sqn5ii 42275 |
Copyright terms: Public domain | W3C validator |