Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sqn5i Structured version   Visualization version   GIF version

Theorem sqn5i 42274
Description: The square of a number ending in 5. This shortcut only works because 5 is half of 10. (Contributed by Steven Nguyen, 16-Sep-2022.)
Hypothesis
Ref Expression
sqn5i.1 𝐴 ∈ ℕ0
Assertion
Ref Expression
sqn5i (𝐴5 · 𝐴5) = (𝐴 · (𝐴 + 1))25

Proof of Theorem sqn5i
StepHypRef Expression
1 sqn5i.1 . . . . 5 𝐴 ∈ ℕ0
2 0nn0 12568 . . . . 5 0 ∈ ℕ0
31, 2deccl 12773 . . . 4 𝐴0 ∈ ℕ0
43nn0cni 12565 . . 3 𝐴0 ∈ ℂ
5 5cn 12381 . . 3 5 ∈ ℂ
6 5nn0 12573 . . . 4 5 ∈ ℕ0
7 eqid 2740 . . . 4 𝐴0 = 𝐴0
85addlidi 11478 . . . 4 (0 + 5) = 5
91, 2, 6, 7, 8decaddi 12818 . . 3 (𝐴0 + 5) = 𝐴5
10 eqid 2740 . . . 4 𝐴5 = 𝐴5
11 eqid 2740 . . . 4 (𝐴 + 1) = (𝐴 + 1)
12 5p5e10 12829 . . . 4 (5 + 5) = 10
131, 6, 6, 10, 11, 12decaddci2 12820 . . 3 (𝐴5 + 5) = (𝐴 + 1)0
144, 5, 9, 13sqmid3api 42272 . 2 (𝐴5 · 𝐴5) = ((𝐴0 · (𝐴 + 1)0) + (5 · 5))
15 2nn0 12570 . . 3 2 ∈ ℕ0
16 5t5e25 12861 . . 3 (5 · 5) = 25
17 peano2nn0 12593 . . . . 5 (𝐴 ∈ ℕ0 → (𝐴 + 1) ∈ ℕ0)
181, 17ax-mp 5 . . . 4 (𝐴 + 1) ∈ ℕ0
1918, 2deccl 12773 . . 3 (𝐴 + 1)0 ∈ ℕ0
201, 18nn0mulcli 12591 . . . 4 (𝐴 · (𝐴 + 1)) ∈ ℕ0
211, 18, 2decmulnc 12825 . . . . 5 (𝐴 · (𝐴 + 1)0) = (𝐴 · (𝐴 + 1))(𝐴 · 0)
221nn0cni 12565 . . . . . . 7 𝐴 ∈ ℂ
2322mul01i 11480 . . . . . 6 (𝐴 · 0) = 0
2423deceq2i 12766 . . . . 5 (𝐴 · (𝐴 + 1))(𝐴 · 0) = (𝐴 · (𝐴 + 1))0
2521, 24eqtri 2768 . . . 4 (𝐴 · (𝐴 + 1)0) = (𝐴 · (𝐴 + 1))0
26 2cn 12368 . . . . 5 2 ∈ ℂ
2726addlidi 11478 . . . 4 (0 + 2) = 2
2820, 2, 15, 25, 27decaddi 12818 . . 3 ((𝐴 · (𝐴 + 1)0) + 2) = (𝐴 · (𝐴 + 1))2
2919nn0cni 12565 . . . . . 6 (𝐴 + 1)0 ∈ ℂ
3029mul02i 11479 . . . . 5 (0 · (𝐴 + 1)0) = 0
3130oveq1i 7458 . . . 4 ((0 · (𝐴 + 1)0) + 5) = (0 + 5)
3231, 8eqtri 2768 . . 3 ((0 · (𝐴 + 1)0) + 5) = 5
331, 2, 15, 6, 7, 16, 19, 28, 32decma 12809 . 2 ((𝐴0 · (𝐴 + 1)0) + (5 · 5)) = (𝐴 · (𝐴 + 1))25
3414, 33eqtri 2768 1 (𝐴5 · 𝐴5) = (𝐴 · (𝐴 + 1))25
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108  (class class class)co 7448  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  2c2 12348  5c5 12351  0cn0 12553  cdc 12758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-ltxr 11329  df-sub 11522  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-dec 12759
This theorem is referenced by:  sqn5ii  42275
  Copyright terms: Public domain W3C validator