Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sqn5i | Structured version Visualization version GIF version |
Description: The square of a number ending in 5. This shortcut only works because 5 is half of 10. (Contributed by Steven Nguyen, 16-Sep-2022.) |
Ref | Expression |
---|---|
sqn5i.1 | ⊢ 𝐴 ∈ ℕ0 |
Ref | Expression |
---|---|
sqn5i | ⊢ (;𝐴5 · ;𝐴5) = ;;(𝐴 · (𝐴 + 1))25 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sqn5i.1 | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
2 | 0nn0 12105 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
3 | 1, 2 | deccl 12308 | . . . 4 ⊢ ;𝐴0 ∈ ℕ0 |
4 | 3 | nn0cni 12102 | . . 3 ⊢ ;𝐴0 ∈ ℂ |
5 | 5cn 11918 | . . 3 ⊢ 5 ∈ ℂ | |
6 | 5nn0 12110 | . . . 4 ⊢ 5 ∈ ℕ0 | |
7 | eqid 2737 | . . . 4 ⊢ ;𝐴0 = ;𝐴0 | |
8 | 5 | addid2i 11020 | . . . 4 ⊢ (0 + 5) = 5 |
9 | 1, 2, 6, 7, 8 | decaddi 12353 | . . 3 ⊢ (;𝐴0 + 5) = ;𝐴5 |
10 | eqid 2737 | . . . 4 ⊢ ;𝐴5 = ;𝐴5 | |
11 | eqid 2737 | . . . 4 ⊢ (𝐴 + 1) = (𝐴 + 1) | |
12 | 5p5e10 12364 | . . . 4 ⊢ (5 + 5) = ;10 | |
13 | 1, 6, 6, 10, 11, 12 | decaddci2 12355 | . . 3 ⊢ (;𝐴5 + 5) = ;(𝐴 + 1)0 |
14 | 4, 5, 9, 13 | sqmid3api 40018 | . 2 ⊢ (;𝐴5 · ;𝐴5) = ((;𝐴0 · ;(𝐴 + 1)0) + (5 · 5)) |
15 | 2nn0 12107 | . . 3 ⊢ 2 ∈ ℕ0 | |
16 | 5t5e25 12396 | . . 3 ⊢ (5 · 5) = ;25 | |
17 | peano2nn0 12130 | . . . . 5 ⊢ (𝐴 ∈ ℕ0 → (𝐴 + 1) ∈ ℕ0) | |
18 | 1, 17 | ax-mp 5 | . . . 4 ⊢ (𝐴 + 1) ∈ ℕ0 |
19 | 18, 2 | deccl 12308 | . . 3 ⊢ ;(𝐴 + 1)0 ∈ ℕ0 |
20 | 1, 18 | nn0mulcli 12128 | . . . 4 ⊢ (𝐴 · (𝐴 + 1)) ∈ ℕ0 |
21 | 1, 18, 2 | decmulnc 12360 | . . . . 5 ⊢ (𝐴 · ;(𝐴 + 1)0) = ;(𝐴 · (𝐴 + 1))(𝐴 · 0) |
22 | 1 | nn0cni 12102 | . . . . . . 7 ⊢ 𝐴 ∈ ℂ |
23 | 22 | mul01i 11022 | . . . . . 6 ⊢ (𝐴 · 0) = 0 |
24 | 23 | deceq2i 12301 | . . . . 5 ⊢ ;(𝐴 · (𝐴 + 1))(𝐴 · 0) = ;(𝐴 · (𝐴 + 1))0 |
25 | 21, 24 | eqtri 2765 | . . . 4 ⊢ (𝐴 · ;(𝐴 + 1)0) = ;(𝐴 · (𝐴 + 1))0 |
26 | 2cn 11905 | . . . . 5 ⊢ 2 ∈ ℂ | |
27 | 26 | addid2i 11020 | . . . 4 ⊢ (0 + 2) = 2 |
28 | 20, 2, 15, 25, 27 | decaddi 12353 | . . 3 ⊢ ((𝐴 · ;(𝐴 + 1)0) + 2) = ;(𝐴 · (𝐴 + 1))2 |
29 | 19 | nn0cni 12102 | . . . . . 6 ⊢ ;(𝐴 + 1)0 ∈ ℂ |
30 | 29 | mul02i 11021 | . . . . 5 ⊢ (0 · ;(𝐴 + 1)0) = 0 |
31 | 30 | oveq1i 7223 | . . . 4 ⊢ ((0 · ;(𝐴 + 1)0) + 5) = (0 + 5) |
32 | 31, 8 | eqtri 2765 | . . 3 ⊢ ((0 · ;(𝐴 + 1)0) + 5) = 5 |
33 | 1, 2, 15, 6, 7, 16, 19, 28, 32 | decma 12344 | . 2 ⊢ ((;𝐴0 · ;(𝐴 + 1)0) + (5 · 5)) = ;;(𝐴 · (𝐴 + 1))25 |
34 | 14, 33 | eqtri 2765 | 1 ⊢ (;𝐴5 · ;𝐴5) = ;;(𝐴 · (𝐴 + 1))25 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 ∈ wcel 2110 (class class class)co 7213 0cc0 10729 1c1 10730 + caddc 10732 · cmul 10734 2c2 11885 5c5 11888 ℕ0cn0 12090 ;cdc 12293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-ltxr 10872 df-sub 11064 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-7 11898 df-8 11899 df-9 11900 df-n0 12091 df-dec 12294 |
This theorem is referenced by: sqn5ii 40021 |
Copyright terms: Public domain | W3C validator |