MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfdec10 Structured version   Visualization version   GIF version

Theorem dfdec10 12718
Description: Version of the definition of the "decimal constructor" using 10 instead of the symbol 10. Of course, this statement cannot be used as definition, because it uses the "decimal constructor". (Contributed by AV, 1-Aug-2021.)
Assertion
Ref Expression
dfdec10 𝐴𝐵 = ((10 · 𝐴) + 𝐵)

Proof of Theorem dfdec10
StepHypRef Expression
1 df-dec 12716 . 2 𝐴𝐵 = (((9 + 1) · 𝐴) + 𝐵)
2 9p1e10 12717 . . . 4 (9 + 1) = 10
32oveq1i 7429 . . 3 ((9 + 1) · 𝐴) = (10 · 𝐴)
43oveq1i 7429 . 2 (((9 + 1) · 𝐴) + 𝐵) = ((10 · 𝐴) + 𝐵)
51, 4eqtri 2753 1 𝐴𝐵 = ((10 · 𝐴) + 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  (class class class)co 7419  0cc0 11145  1c1 11146   + caddc 11148   · cmul 11150  9c9 12312  cdc 12715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-resscn 11202  ax-1cn 11203  ax-icn 11204  ax-addcl 11205  ax-addrcl 11206  ax-mulcl 11207  ax-mulrcl 11208  ax-mulcom 11209  ax-addass 11210  ax-mulass 11211  ax-distr 11212  ax-i2m1 11213  ax-1ne0 11214  ax-1rid 11215  ax-rnegex 11216  ax-rrecex 11217  ax-cnre 11218  ax-pre-lttri 11219  ax-pre-lttrn 11220  ax-pre-ltadd 11221
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-om 7872  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11287  df-mnf 11288  df-ltxr 11290  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-dec 12716
This theorem is referenced by:  decnncl  12735  dec0u  12736  dec0h  12737  decnncl2  12739  declt  12743  decltc  12744  decsuc  12746  decle  12749  declti  12753  decsucc  12756  dec10p  12758  decma  12766  decmac  12767  decma2c  12768  decadd  12769  decaddc  12770  decsubi  12778  decmul1c  12780  decmul2c  12781  decmul10add  12784  5t5e25  12818  6t6e36  12823  8t6e48  12834  9t11e99  12845  3dec  14269  bpoly4  16047  3dvdsdec  16320  dec2dvds  17051  dec5dvds  17052  dec5nprm  17054  dec2nprm  17055  decsplit1  17070  decsplit  17071  4001lem1  17129  dfdec100  32699  dpfrac1  32721  dpmul10  32724  dpmul100  32726  dp3mul10  32727  dpmul1000  32728  dpmul  32742  dpmul4  32743  decpmul  42016  1t10e1p1e11  46833  3exp4mod41  47098  41prothprmlem1  47099  41prothprm  47101  tgoldbachlt  47298
  Copyright terms: Public domain W3C validator