![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfdec10 | Structured version Visualization version GIF version |
Description: Version of the definition of the "decimal constructor" using ;10 instead of the symbol 10. Of course, this statement cannot be used as definition, because it uses the "decimal constructor". (Contributed by AV, 1-Aug-2021.) |
Ref | Expression |
---|---|
dfdec10 | ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dec 11906 | . 2 ⊢ ;𝐴𝐵 = (((9 + 1) · 𝐴) + 𝐵) | |
2 | 9p1e10 11907 | . . . 4 ⊢ (9 + 1) = ;10 | |
3 | 2 | oveq1i 6980 | . . 3 ⊢ ((9 + 1) · 𝐴) = (;10 · 𝐴) |
4 | 3 | oveq1i 6980 | . 2 ⊢ (((9 + 1) · 𝐴) + 𝐵) = ((;10 · 𝐴) + 𝐵) |
5 | 1, 4 | eqtri 2796 | 1 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1507 (class class class)co 6970 0cc0 10329 1c1 10330 + caddc 10332 · cmul 10334 9c9 11496 ;cdc 11905 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-resscn 10386 ax-1cn 10387 ax-icn 10388 ax-addcl 10389 ax-addrcl 10390 ax-mulcl 10391 ax-mulrcl 10392 ax-mulcom 10393 ax-addass 10394 ax-mulass 10395 ax-distr 10396 ax-i2m1 10397 ax-1ne0 10398 ax-1rid 10399 ax-rnegex 10400 ax-rrecex 10401 ax-cnre 10402 ax-pre-lttri 10403 ax-pre-lttrn 10404 ax-pre-ltadd 10405 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-pss 3839 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5306 df-eprel 5311 df-po 5320 df-so 5321 df-fr 5360 df-we 5362 df-xp 5407 df-rel 5408 df-cnv 5409 df-co 5410 df-dm 5411 df-rn 5412 df-res 5413 df-ima 5414 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-ov 6973 df-om 7391 df-wrecs 7744 df-recs 7806 df-rdg 7844 df-er 8083 df-en 8301 df-dom 8302 df-sdom 8303 df-pnf 10470 df-mnf 10471 df-ltxr 10473 df-nn 11434 df-2 11497 df-3 11498 df-4 11499 df-5 11500 df-6 11501 df-7 11502 df-8 11503 df-9 11504 df-dec 11906 |
This theorem is referenced by: decnncl 11926 dec0u 11927 dec0h 11928 decnncl2 11930 declt 11934 decltc 11935 decsuc 11937 decle 11940 declti 11944 decsucc 11947 dec10p 11949 decma 11957 decmac 11958 decma2c 11959 decadd 11960 decaddc 11961 decsubi 11969 decmul1OLD 11971 decmul1c 11972 decmul2c 11973 decmul10add 11976 5t5e25 12010 6t6e36 12015 8t6e48 12026 9t11e99 12037 3dec 13435 bpoly4 15267 3dvdsdec 15535 dec2dvds 16249 dec5dvds 16250 dec5nprm 16252 dec2nprm 16253 decsplit1 16268 decsplit 16269 4001lem1 16324 dfdec100 30293 dpfrac1 30315 dpmul10 30318 dpmul100 30320 dp3mul10 30321 dpmul1000 30322 dpmul 30336 dpmul4 30337 decpmul 38606 1t10e1p1e11 42916 3exp4mod41 43149 41prothprmlem1 43150 41prothprm 43152 tgoldbachlt 43349 |
Copyright terms: Public domain | W3C validator |