Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfdec10 | Structured version Visualization version GIF version |
Description: Version of the definition of the "decimal constructor" using ;10 instead of the symbol 10. Of course, this statement cannot be used as definition, because it uses the "decimal constructor". (Contributed by AV, 1-Aug-2021.) |
Ref | Expression |
---|---|
dfdec10 | ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dec 12367 | . 2 ⊢ ;𝐴𝐵 = (((9 + 1) · 𝐴) + 𝐵) | |
2 | 9p1e10 12368 | . . . 4 ⊢ (9 + 1) = ;10 | |
3 | 2 | oveq1i 7265 | . . 3 ⊢ ((9 + 1) · 𝐴) = (;10 · 𝐴) |
4 | 3 | oveq1i 7265 | . 2 ⊢ (((9 + 1) · 𝐴) + 𝐵) = ((;10 · 𝐴) + 𝐵) |
5 | 1, 4 | eqtri 2766 | 1 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7255 0cc0 10802 1c1 10803 + caddc 10805 · cmul 10807 9c9 11965 ;cdc 12366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-dec 12367 |
This theorem is referenced by: decnncl 12386 dec0u 12387 dec0h 12388 decnncl2 12390 declt 12394 decltc 12395 decsuc 12397 decle 12400 declti 12404 decsucc 12407 dec10p 12409 decma 12417 decmac 12418 decma2c 12419 decadd 12420 decaddc 12421 decsubi 12429 decmul1c 12431 decmul2c 12432 decmul10add 12435 5t5e25 12469 6t6e36 12474 8t6e48 12485 9t11e99 12496 3dec 13908 bpoly4 15697 3dvdsdec 15969 dec2dvds 16692 dec5dvds 16693 dec5nprm 16695 dec2nprm 16696 decsplit1 16711 decsplit 16712 4001lem1 16770 dfdec100 31046 dpfrac1 31068 dpmul10 31071 dpmul100 31073 dp3mul10 31074 dpmul1000 31075 dpmul 31089 dpmul4 31090 decpmul 40237 1t10e1p1e11 44690 3exp4mod41 44956 41prothprmlem1 44957 41prothprm 44959 tgoldbachlt 45156 |
Copyright terms: Public domain | W3C validator |