![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfdec10 | Structured version Visualization version GIF version |
Description: Version of the definition of the "decimal constructor" using ;10 instead of the symbol 10. Of course, this statement cannot be used as definition, because it uses the "decimal constructor". (Contributed by AV, 1-Aug-2021.) |
Ref | Expression |
---|---|
dfdec10 | ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dec 12677 | . 2 ⊢ ;𝐴𝐵 = (((9 + 1) · 𝐴) + 𝐵) | |
2 | 9p1e10 12678 | . . . 4 ⊢ (9 + 1) = ;10 | |
3 | 2 | oveq1i 7418 | . . 3 ⊢ ((9 + 1) · 𝐴) = (;10 · 𝐴) |
4 | 3 | oveq1i 7418 | . 2 ⊢ (((9 + 1) · 𝐴) + 𝐵) = ((;10 · 𝐴) + 𝐵) |
5 | 1, 4 | eqtri 2760 | 1 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 (class class class)co 7408 0cc0 11109 1c1 11110 + caddc 11112 · cmul 11114 9c9 12273 ;cdc 12676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-ltxr 11252 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-dec 12677 |
This theorem is referenced by: decnncl 12696 dec0u 12697 dec0h 12698 decnncl2 12700 declt 12704 decltc 12705 decsuc 12707 decle 12710 declti 12714 decsucc 12717 dec10p 12719 decma 12727 decmac 12728 decma2c 12729 decadd 12730 decaddc 12731 decsubi 12739 decmul1c 12741 decmul2c 12742 decmul10add 12745 5t5e25 12779 6t6e36 12784 8t6e48 12795 9t11e99 12806 3dec 14225 bpoly4 16002 3dvdsdec 16274 dec2dvds 16995 dec5dvds 16996 dec5nprm 16998 dec2nprm 16999 decsplit1 17014 decsplit 17015 4001lem1 17073 dfdec100 32031 dpfrac1 32053 dpmul10 32056 dpmul100 32058 dp3mul10 32059 dpmul1000 32060 dpmul 32074 dpmul4 32075 decpmul 41202 1t10e1p1e11 46008 3exp4mod41 46274 41prothprmlem1 46275 41prothprm 46277 tgoldbachlt 46474 |
Copyright terms: Public domain | W3C validator |