Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ovexi | Structured version Visualization version GIF version |
Description: The result of an operation is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
ovexi.1 | ⊢ 𝐴 = (𝐵𝐹𝐶) |
Ref | Expression |
---|---|
ovexi | ⊢ 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovexi.1 | . 2 ⊢ 𝐴 = (𝐵𝐹𝐶) | |
2 | ovex 7288 | . 2 ⊢ (𝐵𝐹𝐶) ∈ V | |
3 | 1, 2 | eqeltri 2835 | 1 ⊢ 𝐴 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 Vcvv 3422 (class class class)co 7255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-sn 4559 df-pr 4561 df-uni 4837 df-iota 6376 df-fv 6426 df-ov 7258 |
This theorem is referenced by: negex 11149 decex 12370 cshwsexa 14465 eulerthlem2 16411 subccatid 17477 funcres2c 17533 ressffth 17570 fuccofval 17592 fuchom 17594 fuchomOLD 17595 fuccatid 17603 xpccatid 17821 gsumress 18281 smndex1mgm 18461 eqgen 18724 orbsta 18834 sylow2blem1 19140 sylow2blem2 19141 frgpnabllem1 19389 znle 20652 znbas 20663 znzrhval 20666 relt 20732 retos 20735 frlmlbs 20914 lsslindf 20947 lsslinds 20948 uvcendim 20964 subrgmvr 21144 opsrle 21158 subrgascl 21184 evl1fval 21404 matgsum 21494 matmulr 21495 scmatghm 21590 marepvfval 21622 m2cpmmhm 21802 cpm2mfval 21806 cpmadumatpolylem2 21939 cldsubg 23170 nghmfval 23792 pi1bas 24107 dv11cn 25070 quotval 25357 pserdvlem2 25492 ang180lem3 25866 dchrptlem2 26318 usgrexmpllem 27530 nbusgrf1o1 27640 crctcshlem3 28085 2pthon3v 28209 konigsberglem5 28521 konigsberg 28522 bloval 29044 dpval 31066 qusdimsum 31611 satfv1fvfmla1 33285 2goelgoanfmla1 33286 satefvfmla1 33287 cdleme31snd 38327 c0exALT 40210 mnringmulrd 41728 subsalsal 43788 naryfvalixp 45863 naryfvalelfv 45866 rrxline 45968 inlinecirc02p 46021 inlinecirc02preu 46022 |
Copyright terms: Public domain | W3C validator |