Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ovexi | Structured version Visualization version GIF version |
Description: The result of an operation is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
ovexi.1 | ⊢ 𝐴 = (𝐵𝐹𝐶) |
Ref | Expression |
---|---|
ovexi | ⊢ 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovexi.1 | . 2 ⊢ 𝐴 = (𝐵𝐹𝐶) | |
2 | ovex 7308 | . 2 ⊢ (𝐵𝐹𝐶) ∈ V | |
3 | 1, 2 | eqeltri 2835 | 1 ⊢ 𝐴 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 Vcvv 3432 (class class class)co 7275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-nul 5230 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-sn 4562 df-pr 4564 df-uni 4840 df-iota 6391 df-fv 6441 df-ov 7278 |
This theorem is referenced by: negex 11219 decex 12441 cshwsexa 14537 eulerthlem2 16483 subccatid 17561 funcres2c 17617 ressffth 17654 fuccofval 17676 fuchom 17678 fuchomOLD 17679 fuccatid 17687 xpccatid 17905 gsumress 18366 smndex1mgm 18546 eqgen 18809 orbsta 18919 sylow2blem1 19225 sylow2blem2 19226 frgpnabllem1 19474 znle 20740 znbas 20751 znzrhval 20754 relt 20820 retos 20823 frlmlbs 21004 lsslindf 21037 lsslinds 21038 uvcendim 21054 subrgmvr 21234 opsrle 21248 subrgascl 21274 evl1fval 21494 matgsum 21586 matmulr 21587 scmatghm 21682 marepvfval 21714 m2cpmmhm 21894 cpm2mfval 21898 cpmadumatpolylem2 22031 cldsubg 23262 nghmfval 23886 pi1bas 24201 dv11cn 25165 quotval 25452 pserdvlem2 25587 ang180lem3 25961 dchrptlem2 26413 usgrexmpllem 27627 nbusgrf1o1 27737 crctcshlem3 28184 2pthon3v 28308 konigsberglem5 28620 konigsberg 28621 bloval 29143 dpval 31164 qusdimsum 31709 satfv1fvfmla1 33385 2goelgoanfmla1 33386 satefvfmla1 33387 cdleme31snd 38400 c0exALT 40289 prjcrvfval 40468 prjcrvval 40469 mnringmulrd 41839 subsalsal 43898 naryfvalixp 45975 naryfvalelfv 45978 rrxline 46080 inlinecirc02p 46133 inlinecirc02preu 46134 |
Copyright terms: Public domain | W3C validator |