| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-ioc | Structured version Visualization version GIF version | ||
| Description: Define the set of open-below, closed-above intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
| Ref | Expression |
|---|---|
| df-ioc | ⊢ (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cioc 13355 | . 2 class (,] | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | cxr 11261 | . . 3 class ℝ* | |
| 5 | 2 | cv 1538 | . . . . . 6 class 𝑥 |
| 6 | vz | . . . . . . 7 setvar 𝑧 | |
| 7 | 6 | cv 1538 | . . . . . 6 class 𝑧 |
| 8 | clt 11262 | . . . . . 6 class < | |
| 9 | 5, 7, 8 | wbr 5117 | . . . . 5 wff 𝑥 < 𝑧 |
| 10 | 3 | cv 1538 | . . . . . 6 class 𝑦 |
| 11 | cle 11263 | . . . . . 6 class ≤ | |
| 12 | 7, 10, 11 | wbr 5117 | . . . . 5 wff 𝑧 ≤ 𝑦 |
| 13 | 9, 12 | wa 395 | . . . 4 wff (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦) |
| 14 | 13, 6, 4 | crab 3413 | . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)} |
| 15 | 2, 3, 4, 4, 14 | cmpo 7402 | . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
| 16 | 1, 15 | wceq 1539 | 1 wff (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: iocval 13391 elioc1 13396 iocssxr 13438 iocssicc 13444 iocssioo 13446 ioounsn 13484 snunioc 13487 leordtval2 23137 iocpnfordt 23140 lecldbas 23144 pnfnei 23145 iocmnfcld 24694 xrtgioo 24733 ismbf3d 25594 dvloglem 26595 asindmre 37656 dvasin 37657 iocioodisjd 42300 ioossioc 45455 eliocre 45472 lbioc 45476 |
| Copyright terms: Public domain | W3C validator |