MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ioc Structured version   Visualization version   GIF version

Definition df-ioc 13093
Description: Define the set of open-below, closed-above intervals of extended reals. (Contributed by NM, 24-Dec-2006.)
Assertion
Ref Expression
df-ioc (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-ioc
StepHypRef Expression
1 cioc 13089 . 2 class (,]
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cxr 11017 . . 3 class *
52cv 1538 . . . . . 6 class 𝑥
6 vz . . . . . . 7 setvar 𝑧
76cv 1538 . . . . . 6 class 𝑧
8 clt 11018 . . . . . 6 class <
95, 7, 8wbr 5075 . . . . 5 wff 𝑥 < 𝑧
103cv 1538 . . . . . 6 class 𝑦
11 cle 11019 . . . . . 6 class
127, 10, 11wbr 5075 . . . . 5 wff 𝑧𝑦
139, 12wa 396 . . . 4 wff (𝑥 < 𝑧𝑧𝑦)
1413, 6, 4crab 3069 . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)}
152, 3, 4, 4, 14cmpo 7286 . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
161, 15wceq 1539 1 wff (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
Colors of variables: wff setvar class
This definition is referenced by:  iocval  13125  elioc1  13130  iocssxr  13172  iocssicc  13178  iocssioo  13180  ioounsn  13218  snunioc  13221  leordtval2  22372  iocpnfordt  22375  lecldbas  22379  pnfnei  22380  iocmnfcld  23941  xrtgioo  23978  ismbf3d  24827  dvloglem  25812  asindmre  35869  dvasin  35870  ioossioc  43037  eliocre  43054  lbioc  43058
  Copyright terms: Public domain W3C validator