| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-ioc | Structured version Visualization version GIF version | ||
| Description: Define the set of open-below, closed-above intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
| Ref | Expression |
|---|---|
| df-ioc | ⊢ (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cioc 13307 | . 2 class (,] | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | cxr 11207 | . . 3 class ℝ* | |
| 5 | 2 | cv 1539 | . . . . . 6 class 𝑥 |
| 6 | vz | . . . . . . 7 setvar 𝑧 | |
| 7 | 6 | cv 1539 | . . . . . 6 class 𝑧 |
| 8 | clt 11208 | . . . . . 6 class < | |
| 9 | 5, 7, 8 | wbr 5107 | . . . . 5 wff 𝑥 < 𝑧 |
| 10 | 3 | cv 1539 | . . . . . 6 class 𝑦 |
| 11 | cle 11209 | . . . . . 6 class ≤ | |
| 12 | 7, 10, 11 | wbr 5107 | . . . . 5 wff 𝑧 ≤ 𝑦 |
| 13 | 9, 12 | wa 395 | . . . 4 wff (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦) |
| 14 | 13, 6, 4 | crab 3405 | . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)} |
| 15 | 2, 3, 4, 4, 14 | cmpo 7389 | . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
| 16 | 1, 15 | wceq 1540 | 1 wff (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: iocval 13343 elioc1 13348 iocssxr 13392 iocssicc 13398 iocssioo 13400 ioounsn 13438 snunioc 13441 leordtval2 23099 iocpnfordt 23102 lecldbas 23106 pnfnei 23107 iocmnfcld 24656 xrtgioo 24695 ismbf3d 25555 dvloglem 26557 asindmre 37697 dvasin 37698 iocioodisjd 42308 ioossioc 45490 eliocre 45507 lbioc 45511 |
| Copyright terms: Public domain | W3C validator |