![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-ioc | Structured version Visualization version GIF version |
Description: Define the set of open-below, closed-above intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
Ref | Expression |
---|---|
df-ioc | ⊢ (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cioc 13329 | . 2 class (,] | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | cxr 11251 | . . 3 class ℝ* | |
5 | 2 | cv 1540 | . . . . . 6 class 𝑥 |
6 | vz | . . . . . . 7 setvar 𝑧 | |
7 | 6 | cv 1540 | . . . . . 6 class 𝑧 |
8 | clt 11252 | . . . . . 6 class < | |
9 | 5, 7, 8 | wbr 5148 | . . . . 5 wff 𝑥 < 𝑧 |
10 | 3 | cv 1540 | . . . . . 6 class 𝑦 |
11 | cle 11253 | . . . . . 6 class ≤ | |
12 | 7, 10, 11 | wbr 5148 | . . . . 5 wff 𝑧 ≤ 𝑦 |
13 | 9, 12 | wa 396 | . . . 4 wff (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦) |
14 | 13, 6, 4 | crab 3432 | . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)} |
15 | 2, 3, 4, 4, 14 | cmpo 7413 | . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
16 | 1, 15 | wceq 1541 | 1 wff (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
Colors of variables: wff setvar class |
This definition is referenced by: iocval 13365 elioc1 13370 iocssxr 13412 iocssicc 13418 iocssioo 13420 ioounsn 13458 snunioc 13461 leordtval2 22936 iocpnfordt 22939 lecldbas 22943 pnfnei 22944 iocmnfcld 24505 xrtgioo 24542 ismbf3d 25395 dvloglem 26380 asindmre 36874 dvasin 36875 ioossioc 44504 eliocre 44521 lbioc 44525 |
Copyright terms: Public domain | W3C validator |