MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ioc Structured version   Visualization version   GIF version

Definition df-ioc 13311
Description: Define the set of open-below, closed-above intervals of extended reals. (Contributed by NM, 24-Dec-2006.)
Assertion
Ref Expression
df-ioc (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-ioc
StepHypRef Expression
1 cioc 13307 . 2 class (,]
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cxr 11207 . . 3 class *
52cv 1539 . . . . . 6 class 𝑥
6 vz . . . . . . 7 setvar 𝑧
76cv 1539 . . . . . 6 class 𝑧
8 clt 11208 . . . . . 6 class <
95, 7, 8wbr 5107 . . . . 5 wff 𝑥 < 𝑧
103cv 1539 . . . . . 6 class 𝑦
11 cle 11209 . . . . . 6 class
127, 10, 11wbr 5107 . . . . 5 wff 𝑧𝑦
139, 12wa 395 . . . 4 wff (𝑥 < 𝑧𝑧𝑦)
1413, 6, 4crab 3405 . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)}
152, 3, 4, 4, 14cmpo 7389 . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
161, 15wceq 1540 1 wff (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
Colors of variables: wff setvar class
This definition is referenced by:  iocval  13343  elioc1  13348  iocssxr  13392  iocssicc  13398  iocssioo  13400  ioounsn  13438  snunioc  13441  leordtval2  23099  iocpnfordt  23102  lecldbas  23106  pnfnei  23107  iocmnfcld  24656  xrtgioo  24695  ismbf3d  25555  dvloglem  26557  asindmre  37697  dvasin  37698  iocioodisjd  42308  ioossioc  45490  eliocre  45507  lbioc  45511
  Copyright terms: Public domain W3C validator