![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-ioc | Structured version Visualization version GIF version |
Description: Define the set of open-below, closed-above intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
Ref | Expression |
---|---|
df-ioc | ⊢ (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cioc 13357 | . 2 class (,] | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | cxr 11277 | . . 3 class ℝ* | |
5 | 2 | cv 1532 | . . . . . 6 class 𝑥 |
6 | vz | . . . . . . 7 setvar 𝑧 | |
7 | 6 | cv 1532 | . . . . . 6 class 𝑧 |
8 | clt 11278 | . . . . . 6 class < | |
9 | 5, 7, 8 | wbr 5148 | . . . . 5 wff 𝑥 < 𝑧 |
10 | 3 | cv 1532 | . . . . . 6 class 𝑦 |
11 | cle 11279 | . . . . . 6 class ≤ | |
12 | 7, 10, 11 | wbr 5148 | . . . . 5 wff 𝑧 ≤ 𝑦 |
13 | 9, 12 | wa 394 | . . . 4 wff (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦) |
14 | 13, 6, 4 | crab 3419 | . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)} |
15 | 2, 3, 4, 4, 14 | cmpo 7419 | . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
16 | 1, 15 | wceq 1533 | 1 wff (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
Colors of variables: wff setvar class |
This definition is referenced by: iocval 13393 elioc1 13398 iocssxr 13440 iocssicc 13446 iocssioo 13448 ioounsn 13486 snunioc 13489 leordtval2 23146 iocpnfordt 23149 lecldbas 23153 pnfnei 23154 iocmnfcld 24715 xrtgioo 24752 ismbf3d 25613 dvloglem 26612 asindmre 37246 dvasin 37247 ioossioc 44940 eliocre 44957 lbioc 44961 |
Copyright terms: Public domain | W3C validator |