| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-ioc | Structured version Visualization version GIF version | ||
| Description: Define the set of open-below, closed-above intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
| Ref | Expression |
|---|---|
| df-ioc | ⊢ (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cioc 13267 | . 2 class (,] | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | cxr 11167 | . . 3 class ℝ* | |
| 5 | 2 | cv 1539 | . . . . . 6 class 𝑥 |
| 6 | vz | . . . . . . 7 setvar 𝑧 | |
| 7 | 6 | cv 1539 | . . . . . 6 class 𝑧 |
| 8 | clt 11168 | . . . . . 6 class < | |
| 9 | 5, 7, 8 | wbr 5095 | . . . . 5 wff 𝑥 < 𝑧 |
| 10 | 3 | cv 1539 | . . . . . 6 class 𝑦 |
| 11 | cle 11169 | . . . . . 6 class ≤ | |
| 12 | 7, 10, 11 | wbr 5095 | . . . . 5 wff 𝑧 ≤ 𝑦 |
| 13 | 9, 12 | wa 395 | . . . 4 wff (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦) |
| 14 | 13, 6, 4 | crab 3396 | . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)} |
| 15 | 2, 3, 4, 4, 14 | cmpo 7355 | . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
| 16 | 1, 15 | wceq 1540 | 1 wff (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: iocval 13303 elioc1 13308 iocssxr 13352 iocssicc 13358 iocssioo 13360 ioounsn 13398 snunioc 13401 leordtval2 23115 iocpnfordt 23118 lecldbas 23122 pnfnei 23123 iocmnfcld 24672 xrtgioo 24711 ismbf3d 25571 dvloglem 26573 asindmre 37682 dvasin 37683 iocioodisjd 42293 ioossioc 45474 eliocre 45491 lbioc 45495 |
| Copyright terms: Public domain | W3C validator |