MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ioc Structured version   Visualization version   GIF version

Definition df-ioc 13333
Description: Define the set of open-below, closed-above intervals of extended reals. (Contributed by NM, 24-Dec-2006.)
Assertion
Ref Expression
df-ioc (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-ioc
StepHypRef Expression
1 cioc 13329 . 2 class (,]
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cxr 11251 . . 3 class *
52cv 1540 . . . . . 6 class 𝑥
6 vz . . . . . . 7 setvar 𝑧
76cv 1540 . . . . . 6 class 𝑧
8 clt 11252 . . . . . 6 class <
95, 7, 8wbr 5148 . . . . 5 wff 𝑥 < 𝑧
103cv 1540 . . . . . 6 class 𝑦
11 cle 11253 . . . . . 6 class
127, 10, 11wbr 5148 . . . . 5 wff 𝑧𝑦
139, 12wa 396 . . . 4 wff (𝑥 < 𝑧𝑧𝑦)
1413, 6, 4crab 3432 . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)}
152, 3, 4, 4, 14cmpo 7413 . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
161, 15wceq 1541 1 wff (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
Colors of variables: wff setvar class
This definition is referenced by:  iocval  13365  elioc1  13370  iocssxr  13412  iocssicc  13418  iocssioo  13420  ioounsn  13458  snunioc  13461  leordtval2  22936  iocpnfordt  22939  lecldbas  22943  pnfnei  22944  iocmnfcld  24505  xrtgioo  24542  ismbf3d  25395  dvloglem  26380  asindmre  36874  dvasin  36875  ioossioc  44504  eliocre  44521  lbioc  44525
  Copyright terms: Public domain W3C validator