MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ioc Structured version   Visualization version   GIF version

Definition df-ioc 13256
Description: Define the set of open-below, closed-above intervals of extended reals. (Contributed by NM, 24-Dec-2006.)
Assertion
Ref Expression
df-ioc (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-ioc
StepHypRef Expression
1 cioc 13252 . 2 class (,]
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cxr 11151 . . 3 class *
52cv 1540 . . . . . 6 class 𝑥
6 vz . . . . . . 7 setvar 𝑧
76cv 1540 . . . . . 6 class 𝑧
8 clt 11152 . . . . . 6 class <
95, 7, 8wbr 5093 . . . . 5 wff 𝑥 < 𝑧
103cv 1540 . . . . . 6 class 𝑦
11 cle 11153 . . . . . 6 class
127, 10, 11wbr 5093 . . . . 5 wff 𝑧𝑦
139, 12wa 395 . . . 4 wff (𝑥 < 𝑧𝑧𝑦)
1413, 6, 4crab 3395 . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)}
152, 3, 4, 4, 14cmpo 7354 . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
161, 15wceq 1541 1 wff (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
Colors of variables: wff setvar class
This definition is referenced by:  iocval  13288  elioc1  13293  iocssxr  13337  iocssicc  13343  iocssioo  13345  ioounsn  13383  snunioc  13386  leordtval2  23133  iocpnfordt  23136  lecldbas  23140  pnfnei  23141  iocmnfcld  24689  xrtgioo  24728  ismbf3d  25588  dvloglem  26590  asindmre  37749  dvasin  37750  iocioodisjd  42419  ioossioc  45597  eliocre  45614  lbioc  45618
  Copyright terms: Public domain W3C validator