MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ioc Structured version   Visualization version   GIF version

Definition df-ioc 13412
Description: Define the set of open-below, closed-above intervals of extended reals. (Contributed by NM, 24-Dec-2006.)
Assertion
Ref Expression
df-ioc (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-ioc
StepHypRef Expression
1 cioc 13408 . 2 class (,]
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cxr 11323 . . 3 class *
52cv 1536 . . . . . 6 class 𝑥
6 vz . . . . . . 7 setvar 𝑧
76cv 1536 . . . . . 6 class 𝑧
8 clt 11324 . . . . . 6 class <
95, 7, 8wbr 5166 . . . . 5 wff 𝑥 < 𝑧
103cv 1536 . . . . . 6 class 𝑦
11 cle 11325 . . . . . 6 class
127, 10, 11wbr 5166 . . . . 5 wff 𝑧𝑦
139, 12wa 395 . . . 4 wff (𝑥 < 𝑧𝑧𝑦)
1413, 6, 4crab 3443 . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)}
152, 3, 4, 4, 14cmpo 7450 . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
161, 15wceq 1537 1 wff (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
Colors of variables: wff setvar class
This definition is referenced by:  iocval  13444  elioc1  13449  iocssxr  13491  iocssicc  13497  iocssioo  13499  ioounsn  13537  snunioc  13540  leordtval2  23241  iocpnfordt  23244  lecldbas  23248  pnfnei  23249  iocmnfcld  24810  xrtgioo  24847  ismbf3d  25708  dvloglem  26708  asindmre  37663  dvasin  37664  ioossioc  45410  eliocre  45427  lbioc  45431
  Copyright terms: Public domain W3C validator