MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ioc Structured version   Visualization version   GIF version

Definition df-ioc 13388
Description: Define the set of open-below, closed-above intervals of extended reals. (Contributed by NM, 24-Dec-2006.)
Assertion
Ref Expression
df-ioc (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-ioc
StepHypRef Expression
1 cioc 13384 . 2 class (,]
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cxr 11291 . . 3 class *
52cv 1535 . . . . . 6 class 𝑥
6 vz . . . . . . 7 setvar 𝑧
76cv 1535 . . . . . 6 class 𝑧
8 clt 11292 . . . . . 6 class <
95, 7, 8wbr 5147 . . . . 5 wff 𝑥 < 𝑧
103cv 1535 . . . . . 6 class 𝑦
11 cle 11293 . . . . . 6 class
127, 10, 11wbr 5147 . . . . 5 wff 𝑧𝑦
139, 12wa 395 . . . 4 wff (𝑥 < 𝑧𝑧𝑦)
1413, 6, 4crab 3432 . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)}
152, 3, 4, 4, 14cmpo 7432 . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
161, 15wceq 1536 1 wff (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
Colors of variables: wff setvar class
This definition is referenced by:  iocval  13420  elioc1  13425  iocssxr  13467  iocssicc  13473  iocssioo  13475  ioounsn  13513  snunioc  13516  leordtval2  23235  iocpnfordt  23238  lecldbas  23242  pnfnei  23243  iocmnfcld  24804  xrtgioo  24841  ismbf3d  25702  dvloglem  26704  asindmre  37689  dvasin  37690  iocioodisjd  42333  ioossioc  45444  eliocre  45461  lbioc  45465
  Copyright terms: Public domain W3C validator