![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-ioc | Structured version Visualization version GIF version |
Description: Define the set of open-below, closed-above intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
Ref | Expression |
---|---|
df-ioc | ⊢ (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cioc 13384 | . 2 class (,] | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | cxr 11291 | . . 3 class ℝ* | |
5 | 2 | cv 1535 | . . . . . 6 class 𝑥 |
6 | vz | . . . . . . 7 setvar 𝑧 | |
7 | 6 | cv 1535 | . . . . . 6 class 𝑧 |
8 | clt 11292 | . . . . . 6 class < | |
9 | 5, 7, 8 | wbr 5147 | . . . . 5 wff 𝑥 < 𝑧 |
10 | 3 | cv 1535 | . . . . . 6 class 𝑦 |
11 | cle 11293 | . . . . . 6 class ≤ | |
12 | 7, 10, 11 | wbr 5147 | . . . . 5 wff 𝑧 ≤ 𝑦 |
13 | 9, 12 | wa 395 | . . . 4 wff (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦) |
14 | 13, 6, 4 | crab 3432 | . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)} |
15 | 2, 3, 4, 4, 14 | cmpo 7432 | . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
16 | 1, 15 | wceq 1536 | 1 wff (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
Colors of variables: wff setvar class |
This definition is referenced by: iocval 13420 elioc1 13425 iocssxr 13467 iocssicc 13473 iocssioo 13475 ioounsn 13513 snunioc 13516 leordtval2 23235 iocpnfordt 23238 lecldbas 23242 pnfnei 23243 iocmnfcld 24804 xrtgioo 24841 ismbf3d 25702 dvloglem 26704 asindmre 37689 dvasin 37690 iocioodisjd 42333 ioossioc 45444 eliocre 45461 lbioc 45465 |
Copyright terms: Public domain | W3C validator |