| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-ioc | Structured version Visualization version GIF version | ||
| Description: Define the set of open-below, closed-above intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
| Ref | Expression |
|---|---|
| df-ioc | ⊢ (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cioc 13252 | . 2 class (,] | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | cxr 11151 | . . 3 class ℝ* | |
| 5 | 2 | cv 1540 | . . . . . 6 class 𝑥 |
| 6 | vz | . . . . . . 7 setvar 𝑧 | |
| 7 | 6 | cv 1540 | . . . . . 6 class 𝑧 |
| 8 | clt 11152 | . . . . . 6 class < | |
| 9 | 5, 7, 8 | wbr 5093 | . . . . 5 wff 𝑥 < 𝑧 |
| 10 | 3 | cv 1540 | . . . . . 6 class 𝑦 |
| 11 | cle 11153 | . . . . . 6 class ≤ | |
| 12 | 7, 10, 11 | wbr 5093 | . . . . 5 wff 𝑧 ≤ 𝑦 |
| 13 | 9, 12 | wa 395 | . . . 4 wff (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦) |
| 14 | 13, 6, 4 | crab 3395 | . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)} |
| 15 | 2, 3, 4, 4, 14 | cmpo 7354 | . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
| 16 | 1, 15 | wceq 1541 | 1 wff (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: iocval 13288 elioc1 13293 iocssxr 13337 iocssicc 13343 iocssioo 13345 ioounsn 13383 snunioc 13386 leordtval2 23133 iocpnfordt 23136 lecldbas 23140 pnfnei 23141 iocmnfcld 24689 xrtgioo 24728 ismbf3d 25588 dvloglem 26590 asindmre 37749 dvasin 37750 iocioodisjd 42419 ioossioc 45597 eliocre 45614 lbioc 45618 |
| Copyright terms: Public domain | W3C validator |