| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-ioc | Structured version Visualization version GIF version | ||
| Description: Define the set of open-below, closed-above intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
| Ref | Expression |
|---|---|
| df-ioc | ⊢ (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cioc 13238 | . 2 class (,] | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | cxr 11137 | . . 3 class ℝ* | |
| 5 | 2 | cv 1540 | . . . . . 6 class 𝑥 |
| 6 | vz | . . . . . . 7 setvar 𝑧 | |
| 7 | 6 | cv 1540 | . . . . . 6 class 𝑧 |
| 8 | clt 11138 | . . . . . 6 class < | |
| 9 | 5, 7, 8 | wbr 5089 | . . . . 5 wff 𝑥 < 𝑧 |
| 10 | 3 | cv 1540 | . . . . . 6 class 𝑦 |
| 11 | cle 11139 | . . . . . 6 class ≤ | |
| 12 | 7, 10, 11 | wbr 5089 | . . . . 5 wff 𝑧 ≤ 𝑦 |
| 13 | 9, 12 | wa 395 | . . . 4 wff (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦) |
| 14 | 13, 6, 4 | crab 3393 | . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)} |
| 15 | 2, 3, 4, 4, 14 | cmpo 7343 | . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
| 16 | 1, 15 | wceq 1541 | 1 wff (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: iocval 13274 elioc1 13279 iocssxr 13323 iocssicc 13329 iocssioo 13331 ioounsn 13369 snunioc 13372 leordtval2 23120 iocpnfordt 23123 lecldbas 23127 pnfnei 23128 iocmnfcld 24676 xrtgioo 24715 ismbf3d 25575 dvloglem 26577 asindmre 37722 dvasin 37723 iocioodisjd 42332 ioossioc 45511 eliocre 45528 lbioc 45532 |
| Copyright terms: Public domain | W3C validator |