| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-ioc | Structured version Visualization version GIF version | ||
| Description: Define the set of open-below, closed-above intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
| Ref | Expression |
|---|---|
| df-ioc | ⊢ (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cioc 13361 | . 2 class (,] | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | cxr 11266 | . . 3 class ℝ* | |
| 5 | 2 | cv 1539 | . . . . . 6 class 𝑥 |
| 6 | vz | . . . . . . 7 setvar 𝑧 | |
| 7 | 6 | cv 1539 | . . . . . 6 class 𝑧 |
| 8 | clt 11267 | . . . . . 6 class < | |
| 9 | 5, 7, 8 | wbr 5119 | . . . . 5 wff 𝑥 < 𝑧 |
| 10 | 3 | cv 1539 | . . . . . 6 class 𝑦 |
| 11 | cle 11268 | . . . . . 6 class ≤ | |
| 12 | 7, 10, 11 | wbr 5119 | . . . . 5 wff 𝑧 ≤ 𝑦 |
| 13 | 9, 12 | wa 395 | . . . 4 wff (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦) |
| 14 | 13, 6, 4 | crab 3415 | . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)} |
| 15 | 2, 3, 4, 4, 14 | cmpo 7405 | . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
| 16 | 1, 15 | wceq 1540 | 1 wff (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: iocval 13397 elioc1 13402 iocssxr 13446 iocssicc 13452 iocssioo 13454 ioounsn 13492 snunioc 13495 leordtval2 23148 iocpnfordt 23151 lecldbas 23155 pnfnei 23156 iocmnfcld 24705 xrtgioo 24744 ismbf3d 25605 dvloglem 26607 asindmre 37673 dvasin 37674 iocioodisjd 42316 ioossioc 45469 eliocre 45486 lbioc 45490 |
| Copyright terms: Public domain | W3C validator |