Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-ioc | Structured version Visualization version GIF version |
Description: Define the set of open-below, closed-above intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
Ref | Expression |
---|---|
df-ioc | ⊢ (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cioc 13089 | . 2 class (,] | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | cxr 11017 | . . 3 class ℝ* | |
5 | 2 | cv 1538 | . . . . . 6 class 𝑥 |
6 | vz | . . . . . . 7 setvar 𝑧 | |
7 | 6 | cv 1538 | . . . . . 6 class 𝑧 |
8 | clt 11018 | . . . . . 6 class < | |
9 | 5, 7, 8 | wbr 5075 | . . . . 5 wff 𝑥 < 𝑧 |
10 | 3 | cv 1538 | . . . . . 6 class 𝑦 |
11 | cle 11019 | . . . . . 6 class ≤ | |
12 | 7, 10, 11 | wbr 5075 | . . . . 5 wff 𝑧 ≤ 𝑦 |
13 | 9, 12 | wa 396 | . . . 4 wff (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦) |
14 | 13, 6, 4 | crab 3069 | . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)} |
15 | 2, 3, 4, 4, 14 | cmpo 7286 | . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
16 | 1, 15 | wceq 1539 | 1 wff (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
Colors of variables: wff setvar class |
This definition is referenced by: iocval 13125 elioc1 13130 iocssxr 13172 iocssicc 13178 iocssioo 13180 ioounsn 13218 snunioc 13221 leordtval2 22372 iocpnfordt 22375 lecldbas 22379 pnfnei 22380 iocmnfcld 23941 xrtgioo 23978 ismbf3d 24827 dvloglem 25812 asindmre 35869 dvasin 35870 ioossioc 43037 eliocre 43054 lbioc 43058 |
Copyright terms: Public domain | W3C validator |