MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ioc Structured version   Visualization version   GIF version

Definition df-ioc 13359
Description: Define the set of open-below, closed-above intervals of extended reals. (Contributed by NM, 24-Dec-2006.)
Assertion
Ref Expression
df-ioc (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-ioc
StepHypRef Expression
1 cioc 13355 . 2 class (,]
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cxr 11261 . . 3 class *
52cv 1538 . . . . . 6 class 𝑥
6 vz . . . . . . 7 setvar 𝑧
76cv 1538 . . . . . 6 class 𝑧
8 clt 11262 . . . . . 6 class <
95, 7, 8wbr 5117 . . . . 5 wff 𝑥 < 𝑧
103cv 1538 . . . . . 6 class 𝑦
11 cle 11263 . . . . . 6 class
127, 10, 11wbr 5117 . . . . 5 wff 𝑧𝑦
139, 12wa 395 . . . 4 wff (𝑥 < 𝑧𝑧𝑦)
1413, 6, 4crab 3413 . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)}
152, 3, 4, 4, 14cmpo 7402 . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
161, 15wceq 1539 1 wff (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
Colors of variables: wff setvar class
This definition is referenced by:  iocval  13391  elioc1  13396  iocssxr  13438  iocssicc  13444  iocssioo  13446  ioounsn  13484  snunioc  13487  leordtval2  23137  iocpnfordt  23140  lecldbas  23144  pnfnei  23145  iocmnfcld  24694  xrtgioo  24733  ismbf3d  25594  dvloglem  26595  asindmre  37656  dvasin  37657  iocioodisjd  42300  ioossioc  45455  eliocre  45472  lbioc  45476
  Copyright terms: Public domain W3C validator