![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-ioc | Structured version Visualization version GIF version |
Description: Define the set of open-below, closed-above intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
Ref | Expression |
---|---|
df-ioc | ⊢ (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cioc 13408 | . 2 class (,] | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | cxr 11323 | . . 3 class ℝ* | |
5 | 2 | cv 1536 | . . . . . 6 class 𝑥 |
6 | vz | . . . . . . 7 setvar 𝑧 | |
7 | 6 | cv 1536 | . . . . . 6 class 𝑧 |
8 | clt 11324 | . . . . . 6 class < | |
9 | 5, 7, 8 | wbr 5166 | . . . . 5 wff 𝑥 < 𝑧 |
10 | 3 | cv 1536 | . . . . . 6 class 𝑦 |
11 | cle 11325 | . . . . . 6 class ≤ | |
12 | 7, 10, 11 | wbr 5166 | . . . . 5 wff 𝑧 ≤ 𝑦 |
13 | 9, 12 | wa 395 | . . . 4 wff (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦) |
14 | 13, 6, 4 | crab 3443 | . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)} |
15 | 2, 3, 4, 4, 14 | cmpo 7450 | . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
16 | 1, 15 | wceq 1537 | 1 wff (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
Colors of variables: wff setvar class |
This definition is referenced by: iocval 13444 elioc1 13449 iocssxr 13491 iocssicc 13497 iocssioo 13499 ioounsn 13537 snunioc 13540 leordtval2 23241 iocpnfordt 23244 lecldbas 23248 pnfnei 23249 iocmnfcld 24810 xrtgioo 24847 ismbf3d 25708 dvloglem 26708 asindmre 37663 dvasin 37664 ioossioc 45410 eliocre 45427 lbioc 45431 |
Copyright terms: Public domain | W3C validator |