![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-ioc | Structured version Visualization version GIF version |
Description: Define the set of open-below, closed-above intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
Ref | Expression |
---|---|
df-ioc | ⊢ (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cioc 13349 | . 2 class (,] | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | cxr 11269 | . . 3 class ℝ* | |
5 | 2 | cv 1533 | . . . . . 6 class 𝑥 |
6 | vz | . . . . . . 7 setvar 𝑧 | |
7 | 6 | cv 1533 | . . . . . 6 class 𝑧 |
8 | clt 11270 | . . . . . 6 class < | |
9 | 5, 7, 8 | wbr 5142 | . . . . 5 wff 𝑥 < 𝑧 |
10 | 3 | cv 1533 | . . . . . 6 class 𝑦 |
11 | cle 11271 | . . . . . 6 class ≤ | |
12 | 7, 10, 11 | wbr 5142 | . . . . 5 wff 𝑧 ≤ 𝑦 |
13 | 9, 12 | wa 395 | . . . 4 wff (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦) |
14 | 13, 6, 4 | crab 3427 | . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)} |
15 | 2, 3, 4, 4, 14 | cmpo 7416 | . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
16 | 1, 15 | wceq 1534 | 1 wff (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
Colors of variables: wff setvar class |
This definition is referenced by: iocval 13385 elioc1 13390 iocssxr 13432 iocssicc 13438 iocssioo 13440 ioounsn 13478 snunioc 13481 leordtval2 23103 iocpnfordt 23106 lecldbas 23110 pnfnei 23111 iocmnfcld 24672 xrtgioo 24709 ismbf3d 25570 dvloglem 26569 asindmre 37111 dvasin 37112 ioossioc 44800 eliocre 44817 lbioc 44821 |
Copyright terms: Public domain | W3C validator |