MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ioc Structured version   Visualization version   GIF version

Definition df-ioc 13353
Description: Define the set of open-below, closed-above intervals of extended reals. (Contributed by NM, 24-Dec-2006.)
Assertion
Ref Expression
df-ioc (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-ioc
StepHypRef Expression
1 cioc 13349 . 2 class (,]
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cxr 11269 . . 3 class *
52cv 1533 . . . . . 6 class 𝑥
6 vz . . . . . . 7 setvar 𝑧
76cv 1533 . . . . . 6 class 𝑧
8 clt 11270 . . . . . 6 class <
95, 7, 8wbr 5142 . . . . 5 wff 𝑥 < 𝑧
103cv 1533 . . . . . 6 class 𝑦
11 cle 11271 . . . . . 6 class
127, 10, 11wbr 5142 . . . . 5 wff 𝑧𝑦
139, 12wa 395 . . . 4 wff (𝑥 < 𝑧𝑧𝑦)
1413, 6, 4crab 3427 . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)}
152, 3, 4, 4, 14cmpo 7416 . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
161, 15wceq 1534 1 wff (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
Colors of variables: wff setvar class
This definition is referenced by:  iocval  13385  elioc1  13390  iocssxr  13432  iocssicc  13438  iocssioo  13440  ioounsn  13478  snunioc  13481  leordtval2  23103  iocpnfordt  23106  lecldbas  23110  pnfnei  23111  iocmnfcld  24672  xrtgioo  24709  ismbf3d  25570  dvloglem  26569  asindmre  37111  dvasin  37112  ioossioc  44800  eliocre  44817  lbioc  44821
  Copyright terms: Public domain W3C validator