MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ioc Structured version   Visualization version   GIF version

Definition df-ioc 13361
Description: Define the set of open-below, closed-above intervals of extended reals. (Contributed by NM, 24-Dec-2006.)
Assertion
Ref Expression
df-ioc (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-ioc
StepHypRef Expression
1 cioc 13357 . 2 class (,]
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cxr 11277 . . 3 class *
52cv 1532 . . . . . 6 class 𝑥
6 vz . . . . . . 7 setvar 𝑧
76cv 1532 . . . . . 6 class 𝑧
8 clt 11278 . . . . . 6 class <
95, 7, 8wbr 5148 . . . . 5 wff 𝑥 < 𝑧
103cv 1532 . . . . . 6 class 𝑦
11 cle 11279 . . . . . 6 class
127, 10, 11wbr 5148 . . . . 5 wff 𝑧𝑦
139, 12wa 394 . . . 4 wff (𝑥 < 𝑧𝑧𝑦)
1413, 6, 4crab 3419 . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)}
152, 3, 4, 4, 14cmpo 7419 . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
161, 15wceq 1533 1 wff (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
Colors of variables: wff setvar class
This definition is referenced by:  iocval  13393  elioc1  13398  iocssxr  13440  iocssicc  13446  iocssioo  13448  ioounsn  13486  snunioc  13489  leordtval2  23146  iocpnfordt  23149  lecldbas  23153  pnfnei  23154  iocmnfcld  24715  xrtgioo  24752  ismbf3d  25613  dvloglem  26612  asindmre  37246  dvasin  37247  ioossioc  44940  eliocre  44957  lbioc  44961
  Copyright terms: Public domain W3C validator