![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iocval | Structured version Visualization version GIF version |
Description: Value of the open-below, closed-above interval function. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
iocval | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴(,]𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 ≤ 𝐵)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ioc 13367 | . 2 ⊢ (,] = (𝑦 ∈ ℝ*, 𝑧 ∈ ℝ* ↦ {𝑥 ∈ ℝ* ∣ (𝑦 < 𝑥 ∧ 𝑥 ≤ 𝑧)}) | |
2 | 1 | ixxval 13370 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴(,]𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 ≤ 𝐵)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 {crab 3428 class class class wbr 5150 (class class class)co 7424 ℝ*cxr 11283 < clt 11284 ≤ cle 11285 (,]cioc 13363 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pr 5431 ax-un 7744 ax-cnex 11200 ax-resscn 11201 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3473 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-br 5151 df-opab 5213 df-id 5578 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-iota 6503 df-fun 6553 df-fv 6559 df-ov 7427 df-oprab 7428 df-mpo 7429 df-xr 11288 df-ioc 13367 |
This theorem is referenced by: ioc0 13409 orvclteel 34097 |
Copyright terms: Public domain | W3C validator |