| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2737 |
. . . 4
⊢ ran
(𝑦 ∈
ℝ* ↦ (𝑦(,]+∞)) = ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) |
| 2 | | eqid 2737 |
. . . 4
⊢ ran
(𝑦 ∈
ℝ* ↦ (-∞[,)𝑦)) = ran (𝑦 ∈ ℝ* ↦
(-∞[,)𝑦)) |
| 3 | 1, 2 | leordtval2 23220 |
. . 3
⊢
(ordTop‘ ≤ ) = (topGen‘(fi‘(ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ*
↦ (-∞[,)𝑦))))) |
| 4 | | fvex 6919 |
. . . 4
⊢
(fi‘ran 𝐹)
∈ V |
| 5 | | fvex 6919 |
. . . . . 6
⊢
(ordTop‘ ≤ ) ∈ V |
| 6 | | lecldbas.1 |
. . . . . . . 8
⊢ 𝐹 = (𝑥 ∈ ran [,] ↦ (ℝ*
∖ 𝑥)) |
| 7 | | iccf 13488 |
. . . . . . . . . . 11
⊢
[,]:(ℝ* × ℝ*)⟶𝒫
ℝ* |
| 8 | | ffn 6736 |
. . . . . . . . . . 11
⊢
([,]:(ℝ* × ℝ*)⟶𝒫
ℝ* → [,] Fn (ℝ* ×
ℝ*)) |
| 9 | 7, 8 | ax-mp 5 |
. . . . . . . . . 10
⊢ [,] Fn
(ℝ* × ℝ*) |
| 10 | | ovelrn 7609 |
. . . . . . . . . 10
⊢ ([,] Fn
(ℝ* × ℝ*) → (𝑥 ∈ ran [,] ↔ ∃𝑎 ∈ ℝ*
∃𝑏 ∈
ℝ* 𝑥 =
(𝑎[,]𝑏))) |
| 11 | 9, 10 | ax-mp 5 |
. . . . . . . . 9
⊢ (𝑥 ∈ ran [,] ↔
∃𝑎 ∈
ℝ* ∃𝑏 ∈ ℝ* 𝑥 = (𝑎[,]𝑏)) |
| 12 | | difeq2 4120 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑎[,]𝑏) → (ℝ* ∖ 𝑥) = (ℝ* ∖
(𝑎[,]𝑏))) |
| 13 | | iccordt 23222 |
. . . . . . . . . . . . 13
⊢ (𝑎[,]𝑏) ∈ (Clsd‘(ordTop‘ ≤
)) |
| 14 | | letopuni 23215 |
. . . . . . . . . . . . . 14
⊢
ℝ* = ∪ (ordTop‘ ≤
) |
| 15 | 14 | cldopn 23039 |
. . . . . . . . . . . . 13
⊢ ((𝑎[,]𝑏) ∈ (Clsd‘(ordTop‘ ≤ ))
→ (ℝ* ∖ (𝑎[,]𝑏)) ∈ (ordTop‘ ≤
)) |
| 16 | 13, 15 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
(ℝ* ∖ (𝑎[,]𝑏)) ∈ (ordTop‘ ≤
) |
| 17 | 12, 16 | eqeltrdi 2849 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑎[,]𝑏) → (ℝ* ∖ 𝑥) ∈ (ordTop‘ ≤
)) |
| 18 | 17 | rexlimivw 3151 |
. . . . . . . . . 10
⊢
(∃𝑏 ∈
ℝ* 𝑥 =
(𝑎[,]𝑏) → (ℝ* ∖ 𝑥) ∈ (ordTop‘ ≤
)) |
| 19 | 18 | rexlimivw 3151 |
. . . . . . . . 9
⊢
(∃𝑎 ∈
ℝ* ∃𝑏 ∈ ℝ* 𝑥 = (𝑎[,]𝑏) → (ℝ* ∖ 𝑥) ∈ (ordTop‘ ≤
)) |
| 20 | 11, 19 | sylbi 217 |
. . . . . . . 8
⊢ (𝑥 ∈ ran [,] →
(ℝ* ∖ 𝑥) ∈ (ordTop‘ ≤
)) |
| 21 | 6, 20 | fmpti 7132 |
. . . . . . 7
⊢ 𝐹:ran [,]⟶(ordTop‘
≤ ) |
| 22 | | frn 6743 |
. . . . . . 7
⊢ (𝐹:ran [,]⟶(ordTop‘
≤ ) → ran 𝐹 ⊆
(ordTop‘ ≤ )) |
| 23 | 21, 22 | ax-mp 5 |
. . . . . 6
⊢ ran 𝐹 ⊆ (ordTop‘ ≤
) |
| 24 | 5, 23 | ssexi 5322 |
. . . . 5
⊢ ran 𝐹 ∈ V |
| 25 | | eqid 2737 |
. . . . . . . 8
⊢ (𝑦 ∈ ℝ*
↦ (𝑦(,]+∞)) =
(𝑦 ∈
ℝ* ↦ (𝑦(,]+∞)) |
| 26 | | mnfxr 11318 |
. . . . . . . . . . 11
⊢ -∞
∈ ℝ* |
| 27 | | fnovrn 7608 |
. . . . . . . . . . 11
⊢ (([,] Fn
(ℝ* × ℝ*) ∧ -∞ ∈
ℝ* ∧ 𝑦
∈ ℝ*) → (-∞[,]𝑦) ∈ ran [,]) |
| 28 | 9, 26, 27 | mp3an12 1453 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℝ*
→ (-∞[,]𝑦)
∈ ran [,]) |
| 29 | 26 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ℝ*
→ -∞ ∈ ℝ*) |
| 30 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ℝ*
→ 𝑦 ∈
ℝ*) |
| 31 | | pnfxr 11315 |
. . . . . . . . . . . . . . 15
⊢ +∞
∈ ℝ* |
| 32 | 31 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ℝ*
→ +∞ ∈ ℝ*) |
| 33 | | mnfle 13177 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ℝ*
→ -∞ ≤ 𝑦) |
| 34 | | pnfge 13172 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ℝ*
→ 𝑦 ≤
+∞) |
| 35 | | df-icc 13394 |
. . . . . . . . . . . . . . 15
⊢ [,] =
(𝑎 ∈
ℝ*, 𝑏
∈ ℝ* ↦ {𝑐 ∈ ℝ* ∣ (𝑎 ≤ 𝑐 ∧ 𝑐 ≤ 𝑏)}) |
| 36 | | df-ioc 13392 |
. . . . . . . . . . . . . . 15
⊢ (,] =
(𝑎 ∈
ℝ*, 𝑏
∈ ℝ* ↦ {𝑐 ∈ ℝ* ∣ (𝑎 < 𝑐 ∧ 𝑐 ≤ 𝑏)}) |
| 37 | | xrltnle 11328 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ ℝ*
∧ 𝑧 ∈
ℝ*) → (𝑦 < 𝑧 ↔ ¬ 𝑧 ≤ 𝑦)) |
| 38 | | xrletr 13200 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ ℝ*
∧ 𝑦 ∈
ℝ* ∧ +∞ ∈ ℝ*) → ((𝑧 ≤ 𝑦 ∧ 𝑦 ≤ +∞) → 𝑧 ≤ +∞)) |
| 39 | | xrlelttr 13198 |
. . . . . . . . . . . . . . . 16
⊢
((-∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ*)
→ ((-∞ ≤ 𝑦
∧ 𝑦 < 𝑧) → -∞ < 𝑧)) |
| 40 | | xrltle 13191 |
. . . . . . . . . . . . . . . . 17
⊢
((-∞ ∈ ℝ* ∧ 𝑧 ∈ ℝ*) → (-∞
< 𝑧 → -∞ ≤
𝑧)) |
| 41 | 40 | 3adant2 1132 |
. . . . . . . . . . . . . . . 16
⊢
((-∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ*)
→ (-∞ < 𝑧
→ -∞ ≤ 𝑧)) |
| 42 | 39, 41 | syld 47 |
. . . . . . . . . . . . . . 15
⊢
((-∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ*)
→ ((-∞ ≤ 𝑦
∧ 𝑦 < 𝑧) → -∞ ≤ 𝑧)) |
| 43 | 35, 36, 37, 35, 38, 42 | ixxun 13403 |
. . . . . . . . . . . . . 14
⊢
(((-∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ +∞
∈ ℝ*) ∧ (-∞ ≤ 𝑦 ∧ 𝑦 ≤ +∞)) → ((-∞[,]𝑦) ∪ (𝑦(,]+∞)) =
(-∞[,]+∞)) |
| 44 | 29, 30, 32, 33, 34, 43 | syl32anc 1380 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℝ*
→ ((-∞[,]𝑦)
∪ (𝑦(,]+∞)) =
(-∞[,]+∞)) |
| 45 | | iccmax 13463 |
. . . . . . . . . . . . 13
⊢
(-∞[,]+∞) = ℝ* |
| 46 | 44, 45 | eqtrdi 2793 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℝ*
→ ((-∞[,]𝑦)
∪ (𝑦(,]+∞)) =
ℝ*) |
| 47 | | iccssxr 13470 |
. . . . . . . . . . . . 13
⊢
(-∞[,]𝑦)
⊆ ℝ* |
| 48 | 35, 36, 37 | ixxdisj 13402 |
. . . . . . . . . . . . . 14
⊢
((-∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ +∞
∈ ℝ*) → ((-∞[,]𝑦) ∩ (𝑦(,]+∞)) = ∅) |
| 49 | 26, 31, 48 | mp3an13 1454 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℝ*
→ ((-∞[,]𝑦)
∩ (𝑦(,]+∞)) =
∅) |
| 50 | | uneqdifeq 4493 |
. . . . . . . . . . . . 13
⊢
(((-∞[,]𝑦)
⊆ ℝ* ∧ ((-∞[,]𝑦) ∩ (𝑦(,]+∞)) = ∅) →
(((-∞[,]𝑦) ∪
(𝑦(,]+∞)) =
ℝ* ↔ (ℝ* ∖ (-∞[,]𝑦)) = (𝑦(,]+∞))) |
| 51 | 47, 49, 50 | sylancr 587 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℝ*
→ (((-∞[,]𝑦)
∪ (𝑦(,]+∞)) =
ℝ* ↔ (ℝ* ∖ (-∞[,]𝑦)) = (𝑦(,]+∞))) |
| 52 | 46, 51 | mpbid 232 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℝ*
→ (ℝ* ∖ (-∞[,]𝑦)) = (𝑦(,]+∞)) |
| 53 | 52 | eqcomd 2743 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℝ*
→ (𝑦(,]+∞) =
(ℝ* ∖ (-∞[,]𝑦))) |
| 54 | | difeq2 4120 |
. . . . . . . . . . 11
⊢ (𝑥 = (-∞[,]𝑦) → (ℝ*
∖ 𝑥) =
(ℝ* ∖ (-∞[,]𝑦))) |
| 55 | 54 | rspceeqv 3645 |
. . . . . . . . . 10
⊢
(((-∞[,]𝑦)
∈ ran [,] ∧ (𝑦(,]+∞) = (ℝ* ∖
(-∞[,]𝑦))) →
∃𝑥 ∈ ran
[,](𝑦(,]+∞) =
(ℝ* ∖ 𝑥)) |
| 56 | 28, 53, 55 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℝ*
→ ∃𝑥 ∈ ran
[,](𝑦(,]+∞) =
(ℝ* ∖ 𝑥)) |
| 57 | | xrex 13029 |
. . . . . . . . . . 11
⊢
ℝ* ∈ V |
| 58 | 57 | difexi 5330 |
. . . . . . . . . 10
⊢
(ℝ* ∖ 𝑥) ∈ V |
| 59 | 6, 58 | elrnmpti 5973 |
. . . . . . . . 9
⊢ ((𝑦(,]+∞) ∈ ran 𝐹 ↔ ∃𝑥 ∈ ran [,](𝑦(,]+∞) =
(ℝ* ∖ 𝑥)) |
| 60 | 56, 59 | sylibr 234 |
. . . . . . . 8
⊢ (𝑦 ∈ ℝ*
→ (𝑦(,]+∞)
∈ ran 𝐹) |
| 61 | 25, 60 | fmpti 7132 |
. . . . . . 7
⊢ (𝑦 ∈ ℝ*
↦ (𝑦(,]+∞)):ℝ*⟶ran
𝐹 |
| 62 | | frn 6743 |
. . . . . . 7
⊢ ((𝑦 ∈ ℝ*
↦ (𝑦(,]+∞)):ℝ*⟶ran
𝐹 → ran (𝑦 ∈ ℝ*
↦ (𝑦(,]+∞))
⊆ ran 𝐹) |
| 63 | 61, 62 | ax-mp 5 |
. . . . . 6
⊢ ran
(𝑦 ∈
ℝ* ↦ (𝑦(,]+∞)) ⊆ ran 𝐹 |
| 64 | | eqid 2737 |
. . . . . . . 8
⊢ (𝑦 ∈ ℝ*
↦ (-∞[,)𝑦)) =
(𝑦 ∈
ℝ* ↦ (-∞[,)𝑦)) |
| 65 | | fnovrn 7608 |
. . . . . . . . . . 11
⊢ (([,] Fn
(ℝ* × ℝ*) ∧ 𝑦 ∈ ℝ* ∧ +∞
∈ ℝ*) → (𝑦[,]+∞) ∈ ran [,]) |
| 66 | 9, 31, 65 | mp3an13 1454 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℝ*
→ (𝑦[,]+∞)
∈ ran [,]) |
| 67 | | df-ico 13393 |
. . . . . . . . . . . . . . 15
⊢ [,) =
(𝑎 ∈
ℝ*, 𝑏
∈ ℝ* ↦ {𝑐 ∈ ℝ* ∣ (𝑎 ≤ 𝑐 ∧ 𝑐 < 𝑏)}) |
| 68 | | xrlenlt 11326 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ ℝ*
∧ 𝑧 ∈
ℝ*) → (𝑦 ≤ 𝑧 ↔ ¬ 𝑧 < 𝑦)) |
| 69 | | xrltletr 13199 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 ∈ ℝ*
∧ 𝑦 ∈
ℝ* ∧ +∞ ∈ ℝ*) → ((𝑧 < 𝑦 ∧ 𝑦 ≤ +∞) → 𝑧 < +∞)) |
| 70 | | xrltle 13191 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑧 ∈ ℝ*
∧ +∞ ∈ ℝ*) → (𝑧 < +∞ → 𝑧 ≤ +∞)) |
| 71 | 70 | 3adant2 1132 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 ∈ ℝ*
∧ 𝑦 ∈
ℝ* ∧ +∞ ∈ ℝ*) → (𝑧 < +∞ → 𝑧 ≤
+∞)) |
| 72 | 69, 71 | syld 47 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ ℝ*
∧ 𝑦 ∈
ℝ* ∧ +∞ ∈ ℝ*) → ((𝑧 < 𝑦 ∧ 𝑦 ≤ +∞) → 𝑧 ≤ +∞)) |
| 73 | | xrletr 13200 |
. . . . . . . . . . . . . . 15
⊢
((-∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ*)
→ ((-∞ ≤ 𝑦
∧ 𝑦 ≤ 𝑧) → -∞ ≤ 𝑧)) |
| 74 | 67, 35, 68, 35, 72, 73 | ixxun 13403 |
. . . . . . . . . . . . . 14
⊢
(((-∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ +∞
∈ ℝ*) ∧ (-∞ ≤ 𝑦 ∧ 𝑦 ≤ +∞)) → ((-∞[,)𝑦) ∪ (𝑦[,]+∞)) =
(-∞[,]+∞)) |
| 75 | 29, 30, 32, 33, 34, 74 | syl32anc 1380 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℝ*
→ ((-∞[,)𝑦)
∪ (𝑦[,]+∞)) =
(-∞[,]+∞)) |
| 76 | | uncom 4158 |
. . . . . . . . . . . . 13
⊢
((-∞[,)𝑦)
∪ (𝑦[,]+∞)) =
((𝑦[,]+∞) ∪
(-∞[,)𝑦)) |
| 77 | 75, 76, 45 | 3eqtr3g 2800 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℝ*
→ ((𝑦[,]+∞)
∪ (-∞[,)𝑦)) =
ℝ*) |
| 78 | | iccssxr 13470 |
. . . . . . . . . . . . 13
⊢ (𝑦[,]+∞) ⊆
ℝ* |
| 79 | | incom 4209 |
. . . . . . . . . . . . . 14
⊢ ((𝑦[,]+∞) ∩
(-∞[,)𝑦)) =
((-∞[,)𝑦) ∩
(𝑦[,]+∞)) |
| 80 | 67, 35, 68 | ixxdisj 13402 |
. . . . . . . . . . . . . . 15
⊢
((-∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ +∞
∈ ℝ*) → ((-∞[,)𝑦) ∩ (𝑦[,]+∞)) = ∅) |
| 81 | 26, 31, 80 | mp3an13 1454 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ℝ*
→ ((-∞[,)𝑦)
∩ (𝑦[,]+∞)) =
∅) |
| 82 | 79, 81 | eqtrid 2789 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℝ*
→ ((𝑦[,]+∞)
∩ (-∞[,)𝑦)) =
∅) |
| 83 | | uneqdifeq 4493 |
. . . . . . . . . . . . 13
⊢ (((𝑦[,]+∞) ⊆
ℝ* ∧ ((𝑦[,]+∞) ∩ (-∞[,)𝑦)) = ∅) → (((𝑦[,]+∞) ∪
(-∞[,)𝑦)) =
ℝ* ↔ (ℝ* ∖ (𝑦[,]+∞)) = (-∞[,)𝑦))) |
| 84 | 78, 82, 83 | sylancr 587 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℝ*
→ (((𝑦[,]+∞)
∪ (-∞[,)𝑦)) =
ℝ* ↔ (ℝ* ∖ (𝑦[,]+∞)) = (-∞[,)𝑦))) |
| 85 | 77, 84 | mpbid 232 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℝ*
→ (ℝ* ∖ (𝑦[,]+∞)) = (-∞[,)𝑦)) |
| 86 | 85 | eqcomd 2743 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℝ*
→ (-∞[,)𝑦) =
(ℝ* ∖ (𝑦[,]+∞))) |
| 87 | | difeq2 4120 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑦[,]+∞) → (ℝ*
∖ 𝑥) =
(ℝ* ∖ (𝑦[,]+∞))) |
| 88 | 87 | rspceeqv 3645 |
. . . . . . . . . 10
⊢ (((𝑦[,]+∞) ∈ ran [,]
∧ (-∞[,)𝑦) =
(ℝ* ∖ (𝑦[,]+∞))) → ∃𝑥 ∈ ran [,](-∞[,)𝑦) = (ℝ* ∖
𝑥)) |
| 89 | 66, 86, 88 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℝ*
→ ∃𝑥 ∈ ran
[,](-∞[,)𝑦) =
(ℝ* ∖ 𝑥)) |
| 90 | 6, 58 | elrnmpti 5973 |
. . . . . . . . 9
⊢
((-∞[,)𝑦)
∈ ran 𝐹 ↔
∃𝑥 ∈ ran
[,](-∞[,)𝑦) =
(ℝ* ∖ 𝑥)) |
| 91 | 89, 90 | sylibr 234 |
. . . . . . . 8
⊢ (𝑦 ∈ ℝ*
→ (-∞[,)𝑦)
∈ ran 𝐹) |
| 92 | 64, 91 | fmpti 7132 |
. . . . . . 7
⊢ (𝑦 ∈ ℝ*
↦ (-∞[,)𝑦)):ℝ*⟶ran 𝐹 |
| 93 | | frn 6743 |
. . . . . . 7
⊢ ((𝑦 ∈ ℝ*
↦ (-∞[,)𝑦)):ℝ*⟶ran 𝐹 → ran (𝑦 ∈ ℝ* ↦
(-∞[,)𝑦)) ⊆ ran
𝐹) |
| 94 | 92, 93 | ax-mp 5 |
. . . . . 6
⊢ ran
(𝑦 ∈
ℝ* ↦ (-∞[,)𝑦)) ⊆ ran 𝐹 |
| 95 | 63, 94 | unssi 4191 |
. . . . 5
⊢ (ran
(𝑦 ∈
ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦
(-∞[,)𝑦))) ⊆
ran 𝐹 |
| 96 | | fiss 9464 |
. . . . 5
⊢ ((ran
𝐹 ∈ V ∧ (ran
(𝑦 ∈
ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦
(-∞[,)𝑦))) ⊆
ran 𝐹) →
(fi‘(ran (𝑦 ∈
ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦
(-∞[,)𝑦)))) ⊆
(fi‘ran 𝐹)) |
| 97 | 24, 95, 96 | mp2an 692 |
. . . 4
⊢
(fi‘(ran (𝑦
∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦
(-∞[,)𝑦)))) ⊆
(fi‘ran 𝐹) |
| 98 | | tgss 22975 |
. . . 4
⊢
(((fi‘ran 𝐹)
∈ V ∧ (fi‘(ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ*
↦ (-∞[,)𝑦))))
⊆ (fi‘ran 𝐹))
→ (topGen‘(fi‘(ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ*
↦ (-∞[,)𝑦)))))
⊆ (topGen‘(fi‘ran 𝐹))) |
| 99 | 4, 97, 98 | mp2an 692 |
. . 3
⊢
(topGen‘(fi‘(ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ*
↦ (-∞[,)𝑦)))))
⊆ (topGen‘(fi‘ran 𝐹)) |
| 100 | 3, 99 | eqsstri 4030 |
. 2
⊢
(ordTop‘ ≤ ) ⊆ (topGen‘(fi‘ran 𝐹)) |
| 101 | | letop 23214 |
. . 3
⊢
(ordTop‘ ≤ ) ∈ Top |
| 102 | | tgfiss 22998 |
. . 3
⊢
(((ordTop‘ ≤ ) ∈ Top ∧ ran 𝐹 ⊆ (ordTop‘ ≤ )) →
(topGen‘(fi‘ran 𝐹)) ⊆ (ordTop‘ ≤
)) |
| 103 | 101, 23, 102 | mp2an 692 |
. 2
⊢
(topGen‘(fi‘ran 𝐹)) ⊆ (ordTop‘ ≤
) |
| 104 | 100, 103 | eqssi 4000 |
1
⊢
(ordTop‘ ≤ ) = (topGen‘(fi‘ran 𝐹)) |