MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lecldbas Structured version   Visualization version   GIF version

Theorem lecldbas 23227
Description: The set of closed intervals forms a closed subbasis for the topology on the extended reals. Since our definition of a basis is in terms of open sets, we express this by showing that the complements of closed intervals form an open subbasis for the topology. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
lecldbas.1 𝐹 = (𝑥 ∈ ran [,] ↦ (ℝ*𝑥))
Assertion
Ref Expression
lecldbas (ordTop‘ ≤ ) = (topGen‘(fi‘ran 𝐹))

Proof of Theorem lecldbas
Dummy variables 𝑎 𝑏 𝑐 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . . 4 ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) = ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞))
2 eqid 2737 . . . 4 ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)) = ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))
31, 2leordtval2 23220 . . 3 (ordTop‘ ≤ ) = (topGen‘(fi‘(ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)))))
4 fvex 6919 . . . 4 (fi‘ran 𝐹) ∈ V
5 fvex 6919 . . . . . 6 (ordTop‘ ≤ ) ∈ V
6 lecldbas.1 . . . . . . . 8 𝐹 = (𝑥 ∈ ran [,] ↦ (ℝ*𝑥))
7 iccf 13488 . . . . . . . . . . 11 [,]:(ℝ* × ℝ*)⟶𝒫 ℝ*
8 ffn 6736 . . . . . . . . . . 11 ([,]:(ℝ* × ℝ*)⟶𝒫 ℝ* → [,] Fn (ℝ* × ℝ*))
97, 8ax-mp 5 . . . . . . . . . 10 [,] Fn (ℝ* × ℝ*)
10 ovelrn 7609 . . . . . . . . . 10 ([,] Fn (ℝ* × ℝ*) → (𝑥 ∈ ran [,] ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑥 = (𝑎[,]𝑏)))
119, 10ax-mp 5 . . . . . . . . 9 (𝑥 ∈ ran [,] ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑥 = (𝑎[,]𝑏))
12 difeq2 4120 . . . . . . . . . . . 12 (𝑥 = (𝑎[,]𝑏) → (ℝ*𝑥) = (ℝ* ∖ (𝑎[,]𝑏)))
13 iccordt 23222 . . . . . . . . . . . . 13 (𝑎[,]𝑏) ∈ (Clsd‘(ordTop‘ ≤ ))
14 letopuni 23215 . . . . . . . . . . . . . 14 * = (ordTop‘ ≤ )
1514cldopn 23039 . . . . . . . . . . . . 13 ((𝑎[,]𝑏) ∈ (Clsd‘(ordTop‘ ≤ )) → (ℝ* ∖ (𝑎[,]𝑏)) ∈ (ordTop‘ ≤ ))
1613, 15ax-mp 5 . . . . . . . . . . . 12 (ℝ* ∖ (𝑎[,]𝑏)) ∈ (ordTop‘ ≤ )
1712, 16eqeltrdi 2849 . . . . . . . . . . 11 (𝑥 = (𝑎[,]𝑏) → (ℝ*𝑥) ∈ (ordTop‘ ≤ ))
1817rexlimivw 3151 . . . . . . . . . 10 (∃𝑏 ∈ ℝ* 𝑥 = (𝑎[,]𝑏) → (ℝ*𝑥) ∈ (ordTop‘ ≤ ))
1918rexlimivw 3151 . . . . . . . . 9 (∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑥 = (𝑎[,]𝑏) → (ℝ*𝑥) ∈ (ordTop‘ ≤ ))
2011, 19sylbi 217 . . . . . . . 8 (𝑥 ∈ ran [,] → (ℝ*𝑥) ∈ (ordTop‘ ≤ ))
216, 20fmpti 7132 . . . . . . 7 𝐹:ran [,]⟶(ordTop‘ ≤ )
22 frn 6743 . . . . . . 7 (𝐹:ran [,]⟶(ordTop‘ ≤ ) → ran 𝐹 ⊆ (ordTop‘ ≤ ))
2321, 22ax-mp 5 . . . . . 6 ran 𝐹 ⊆ (ordTop‘ ≤ )
245, 23ssexi 5322 . . . . 5 ran 𝐹 ∈ V
25 eqid 2737 . . . . . . . 8 (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) = (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞))
26 mnfxr 11318 . . . . . . . . . . 11 -∞ ∈ ℝ*
27 fnovrn 7608 . . . . . . . . . . 11 (([,] Fn (ℝ* × ℝ*) ∧ -∞ ∈ ℝ*𝑦 ∈ ℝ*) → (-∞[,]𝑦) ∈ ran [,])
289, 26, 27mp3an12 1453 . . . . . . . . . 10 (𝑦 ∈ ℝ* → (-∞[,]𝑦) ∈ ran [,])
2926a1i 11 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ* → -∞ ∈ ℝ*)
30 id 22 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ*𝑦 ∈ ℝ*)
31 pnfxr 11315 . . . . . . . . . . . . . . 15 +∞ ∈ ℝ*
3231a1i 11 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ* → +∞ ∈ ℝ*)
33 mnfle 13177 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ* → -∞ ≤ 𝑦)
34 pnfge 13172 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ*𝑦 ≤ +∞)
35 df-icc 13394 . . . . . . . . . . . . . . 15 [,] = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑐 ∈ ℝ* ∣ (𝑎𝑐𝑐𝑏)})
36 df-ioc 13392 . . . . . . . . . . . . . . 15 (,] = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑐 ∈ ℝ* ∣ (𝑎 < 𝑐𝑐𝑏)})
37 xrltnle 11328 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ*𝑧 ∈ ℝ*) → (𝑦 < 𝑧 ↔ ¬ 𝑧𝑦))
38 xrletr 13200 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℝ*𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑧𝑦𝑦 ≤ +∞) → 𝑧 ≤ +∞))
39 xrlelttr 13198 . . . . . . . . . . . . . . . 16 ((-∞ ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) → ((-∞ ≤ 𝑦𝑦 < 𝑧) → -∞ < 𝑧))
40 xrltle 13191 . . . . . . . . . . . . . . . . 17 ((-∞ ∈ ℝ*𝑧 ∈ ℝ*) → (-∞ < 𝑧 → -∞ ≤ 𝑧))
41403adant2 1132 . . . . . . . . . . . . . . . 16 ((-∞ ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) → (-∞ < 𝑧 → -∞ ≤ 𝑧))
4239, 41syld 47 . . . . . . . . . . . . . . 15 ((-∞ ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) → ((-∞ ≤ 𝑦𝑦 < 𝑧) → -∞ ≤ 𝑧))
4335, 36, 37, 35, 38, 42ixxun 13403 . . . . . . . . . . . . . 14 (((-∞ ∈ ℝ*𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ ≤ 𝑦𝑦 ≤ +∞)) → ((-∞[,]𝑦) ∪ (𝑦(,]+∞)) = (-∞[,]+∞))
4429, 30, 32, 33, 34, 43syl32anc 1380 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ* → ((-∞[,]𝑦) ∪ (𝑦(,]+∞)) = (-∞[,]+∞))
45 iccmax 13463 . . . . . . . . . . . . 13 (-∞[,]+∞) = ℝ*
4644, 45eqtrdi 2793 . . . . . . . . . . . 12 (𝑦 ∈ ℝ* → ((-∞[,]𝑦) ∪ (𝑦(,]+∞)) = ℝ*)
47 iccssxr 13470 . . . . . . . . . . . . 13 (-∞[,]𝑦) ⊆ ℝ*
4835, 36, 37ixxdisj 13402 . . . . . . . . . . . . . 14 ((-∞ ∈ ℝ*𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((-∞[,]𝑦) ∩ (𝑦(,]+∞)) = ∅)
4926, 31, 48mp3an13 1454 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ* → ((-∞[,]𝑦) ∩ (𝑦(,]+∞)) = ∅)
50 uneqdifeq 4493 . . . . . . . . . . . . 13 (((-∞[,]𝑦) ⊆ ℝ* ∧ ((-∞[,]𝑦) ∩ (𝑦(,]+∞)) = ∅) → (((-∞[,]𝑦) ∪ (𝑦(,]+∞)) = ℝ* ↔ (ℝ* ∖ (-∞[,]𝑦)) = (𝑦(,]+∞)))
5147, 49, 50sylancr 587 . . . . . . . . . . . 12 (𝑦 ∈ ℝ* → (((-∞[,]𝑦) ∪ (𝑦(,]+∞)) = ℝ* ↔ (ℝ* ∖ (-∞[,]𝑦)) = (𝑦(,]+∞)))
5246, 51mpbid 232 . . . . . . . . . . 11 (𝑦 ∈ ℝ* → (ℝ* ∖ (-∞[,]𝑦)) = (𝑦(,]+∞))
5352eqcomd 2743 . . . . . . . . . 10 (𝑦 ∈ ℝ* → (𝑦(,]+∞) = (ℝ* ∖ (-∞[,]𝑦)))
54 difeq2 4120 . . . . . . . . . . 11 (𝑥 = (-∞[,]𝑦) → (ℝ*𝑥) = (ℝ* ∖ (-∞[,]𝑦)))
5554rspceeqv 3645 . . . . . . . . . 10 (((-∞[,]𝑦) ∈ ran [,] ∧ (𝑦(,]+∞) = (ℝ* ∖ (-∞[,]𝑦))) → ∃𝑥 ∈ ran [,](𝑦(,]+∞) = (ℝ*𝑥))
5628, 53, 55syl2anc 584 . . . . . . . . 9 (𝑦 ∈ ℝ* → ∃𝑥 ∈ ran [,](𝑦(,]+∞) = (ℝ*𝑥))
57 xrex 13029 . . . . . . . . . . 11 * ∈ V
5857difexi 5330 . . . . . . . . . 10 (ℝ*𝑥) ∈ V
596, 58elrnmpti 5973 . . . . . . . . 9 ((𝑦(,]+∞) ∈ ran 𝐹 ↔ ∃𝑥 ∈ ran [,](𝑦(,]+∞) = (ℝ*𝑥))
6056, 59sylibr 234 . . . . . . . 8 (𝑦 ∈ ℝ* → (𝑦(,]+∞) ∈ ran 𝐹)
6125, 60fmpti 7132 . . . . . . 7 (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)):ℝ*⟶ran 𝐹
62 frn 6743 . . . . . . 7 ((𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)):ℝ*⟶ran 𝐹 → ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ⊆ ran 𝐹)
6361, 62ax-mp 5 . . . . . 6 ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ⊆ ran 𝐹
64 eqid 2737 . . . . . . . 8 (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)) = (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))
65 fnovrn 7608 . . . . . . . . . . 11 (([,] Fn (ℝ* × ℝ*) ∧ 𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑦[,]+∞) ∈ ran [,])
669, 31, 65mp3an13 1454 . . . . . . . . . 10 (𝑦 ∈ ℝ* → (𝑦[,]+∞) ∈ ran [,])
67 df-ico 13393 . . . . . . . . . . . . . . 15 [,) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑐 ∈ ℝ* ∣ (𝑎𝑐𝑐 < 𝑏)})
68 xrlenlt 11326 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ*𝑧 ∈ ℝ*) → (𝑦𝑧 ↔ ¬ 𝑧 < 𝑦))
69 xrltletr 13199 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℝ*𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑧 < 𝑦𝑦 ≤ +∞) → 𝑧 < +∞))
70 xrltle 13191 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑧 < +∞ → 𝑧 ≤ +∞))
71703adant2 1132 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℝ*𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑧 < +∞ → 𝑧 ≤ +∞))
7269, 71syld 47 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℝ*𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑧 < 𝑦𝑦 ≤ +∞) → 𝑧 ≤ +∞))
73 xrletr 13200 . . . . . . . . . . . . . . 15 ((-∞ ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) → ((-∞ ≤ 𝑦𝑦𝑧) → -∞ ≤ 𝑧))
7467, 35, 68, 35, 72, 73ixxun 13403 . . . . . . . . . . . . . 14 (((-∞ ∈ ℝ*𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ ≤ 𝑦𝑦 ≤ +∞)) → ((-∞[,)𝑦) ∪ (𝑦[,]+∞)) = (-∞[,]+∞))
7529, 30, 32, 33, 34, 74syl32anc 1380 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ* → ((-∞[,)𝑦) ∪ (𝑦[,]+∞)) = (-∞[,]+∞))
76 uncom 4158 . . . . . . . . . . . . 13 ((-∞[,)𝑦) ∪ (𝑦[,]+∞)) = ((𝑦[,]+∞) ∪ (-∞[,)𝑦))
7775, 76, 453eqtr3g 2800 . . . . . . . . . . . 12 (𝑦 ∈ ℝ* → ((𝑦[,]+∞) ∪ (-∞[,)𝑦)) = ℝ*)
78 iccssxr 13470 . . . . . . . . . . . . 13 (𝑦[,]+∞) ⊆ ℝ*
79 incom 4209 . . . . . . . . . . . . . 14 ((𝑦[,]+∞) ∩ (-∞[,)𝑦)) = ((-∞[,)𝑦) ∩ (𝑦[,]+∞))
8067, 35, 68ixxdisj 13402 . . . . . . . . . . . . . . 15 ((-∞ ∈ ℝ*𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((-∞[,)𝑦) ∩ (𝑦[,]+∞)) = ∅)
8126, 31, 80mp3an13 1454 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ* → ((-∞[,)𝑦) ∩ (𝑦[,]+∞)) = ∅)
8279, 81eqtrid 2789 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ* → ((𝑦[,]+∞) ∩ (-∞[,)𝑦)) = ∅)
83 uneqdifeq 4493 . . . . . . . . . . . . 13 (((𝑦[,]+∞) ⊆ ℝ* ∧ ((𝑦[,]+∞) ∩ (-∞[,)𝑦)) = ∅) → (((𝑦[,]+∞) ∪ (-∞[,)𝑦)) = ℝ* ↔ (ℝ* ∖ (𝑦[,]+∞)) = (-∞[,)𝑦)))
8478, 82, 83sylancr 587 . . . . . . . . . . . 12 (𝑦 ∈ ℝ* → (((𝑦[,]+∞) ∪ (-∞[,)𝑦)) = ℝ* ↔ (ℝ* ∖ (𝑦[,]+∞)) = (-∞[,)𝑦)))
8577, 84mpbid 232 . . . . . . . . . . 11 (𝑦 ∈ ℝ* → (ℝ* ∖ (𝑦[,]+∞)) = (-∞[,)𝑦))
8685eqcomd 2743 . . . . . . . . . 10 (𝑦 ∈ ℝ* → (-∞[,)𝑦) = (ℝ* ∖ (𝑦[,]+∞)))
87 difeq2 4120 . . . . . . . . . . 11 (𝑥 = (𝑦[,]+∞) → (ℝ*𝑥) = (ℝ* ∖ (𝑦[,]+∞)))
8887rspceeqv 3645 . . . . . . . . . 10 (((𝑦[,]+∞) ∈ ran [,] ∧ (-∞[,)𝑦) = (ℝ* ∖ (𝑦[,]+∞))) → ∃𝑥 ∈ ran [,](-∞[,)𝑦) = (ℝ*𝑥))
8966, 86, 88syl2anc 584 . . . . . . . . 9 (𝑦 ∈ ℝ* → ∃𝑥 ∈ ran [,](-∞[,)𝑦) = (ℝ*𝑥))
906, 58elrnmpti 5973 . . . . . . . . 9 ((-∞[,)𝑦) ∈ ran 𝐹 ↔ ∃𝑥 ∈ ran [,](-∞[,)𝑦) = (ℝ*𝑥))
9189, 90sylibr 234 . . . . . . . 8 (𝑦 ∈ ℝ* → (-∞[,)𝑦) ∈ ran 𝐹)
9264, 91fmpti 7132 . . . . . . 7 (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)):ℝ*⟶ran 𝐹
93 frn 6743 . . . . . . 7 ((𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)):ℝ*⟶ran 𝐹 → ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)) ⊆ ran 𝐹)
9492, 93ax-mp 5 . . . . . 6 ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)) ⊆ ran 𝐹
9563, 94unssi 4191 . . . . 5 (ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ⊆ ran 𝐹
96 fiss 9464 . . . . 5 ((ran 𝐹 ∈ V ∧ (ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ⊆ ran 𝐹) → (fi‘(ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)))) ⊆ (fi‘ran 𝐹))
9724, 95, 96mp2an 692 . . . 4 (fi‘(ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)))) ⊆ (fi‘ran 𝐹)
98 tgss 22975 . . . 4 (((fi‘ran 𝐹) ∈ V ∧ (fi‘(ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)))) ⊆ (fi‘ran 𝐹)) → (topGen‘(fi‘(ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))))) ⊆ (topGen‘(fi‘ran 𝐹)))
994, 97, 98mp2an 692 . . 3 (topGen‘(fi‘(ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))))) ⊆ (topGen‘(fi‘ran 𝐹))
1003, 99eqsstri 4030 . 2 (ordTop‘ ≤ ) ⊆ (topGen‘(fi‘ran 𝐹))
101 letop 23214 . . 3 (ordTop‘ ≤ ) ∈ Top
102 tgfiss 22998 . . 3 (((ordTop‘ ≤ ) ∈ Top ∧ ran 𝐹 ⊆ (ordTop‘ ≤ )) → (topGen‘(fi‘ran 𝐹)) ⊆ (ordTop‘ ≤ ))
103101, 23, 102mp2an 692 . 2 (topGen‘(fi‘ran 𝐹)) ⊆ (ordTop‘ ≤ )
104100, 103eqssi 4000 1 (ordTop‘ ≤ ) = (topGen‘(fi‘ran 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wrex 3070  Vcvv 3480  cdif 3948  cun 3949  cin 3950  wss 3951  c0 4333  𝒫 cpw 4600   class class class wbr 5143  cmpt 5225   × cxp 5683  ran crn 5686   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431  ficfi 9450  +∞cpnf 11292  -∞cmnf 11293  *cxr 11294   < clt 11295  cle 11296  (,]cioc 13388  [,)cico 13389  [,]cicc 13390  topGenctg 17482  ordTopcordt 17544  Topctop 22899  Clsdccld 23024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-1o 8506  df-2o 8507  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fi 9451  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-ioc 13392  df-ico 13393  df-icc 13394  df-topgen 17488  df-ordt 17546  df-ps 18611  df-tsr 18612  df-top 22900  df-topon 22917  df-bases 22953  df-cld 23027
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator