MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvloglem Structured version   Visualization version   GIF version

Theorem dvloglem 26555
Description: Lemma for dvlog 26558. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypothesis
Ref Expression
logcn.d 𝐷 = (ℂ ∖ (-∞(,]0))
Assertion
Ref Expression
dvloglem (log “ 𝐷) ∈ (TopOpen‘ℂfld)

Proof of Theorem dvloglem
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 logf1o 26471 . . . . . 6 log:(ℂ ∖ {0})–1-1-onto→ran log
2 f1ofun 6766 . . . . . 6 (log:(ℂ ∖ {0})–1-1-onto→ran log → Fun log)
31, 2ax-mp 5 . . . . 5 Fun log
4 logcn.d . . . . . . 7 𝐷 = (ℂ ∖ (-∞(,]0))
54logdmss 26549 . . . . . 6 𝐷 ⊆ (ℂ ∖ {0})
6 f1odm 6768 . . . . . . 7 (log:(ℂ ∖ {0})–1-1-onto→ran log → dom log = (ℂ ∖ {0}))
71, 6ax-mp 5 . . . . . 6 dom log = (ℂ ∖ {0})
85, 7sseqtrri 3985 . . . . 5 𝐷 ⊆ dom log
9 funimass4 6887 . . . . 5 ((Fun log ∧ 𝐷 ⊆ dom log) → ((log “ 𝐷) ⊆ (ℑ “ (-π(,)π)) ↔ ∀𝑥𝐷 (log‘𝑥) ∈ (ℑ “ (-π(,)π))))
103, 8, 9mp2an 692 . . . 4 ((log “ 𝐷) ⊆ (ℑ “ (-π(,)π)) ↔ ∀𝑥𝐷 (log‘𝑥) ∈ (ℑ “ (-π(,)π)))
114ellogdm 26546 . . . . . . 7 (𝑥𝐷 ↔ (𝑥 ∈ ℂ ∧ (𝑥 ∈ ℝ → 𝑥 ∈ ℝ+)))
1211simplbi 497 . . . . . 6 (𝑥𝐷𝑥 ∈ ℂ)
134logdmn0 26547 . . . . . 6 (𝑥𝐷𝑥 ≠ 0)
1412, 13logcld 26477 . . . . 5 (𝑥𝐷 → (log‘𝑥) ∈ ℂ)
1514imcld 15102 . . . . . 6 (𝑥𝐷 → (ℑ‘(log‘𝑥)) ∈ ℝ)
1612, 13logimcld 26478 . . . . . . 7 (𝑥𝐷 → (-π < (ℑ‘(log‘𝑥)) ∧ (ℑ‘(log‘𝑥)) ≤ π))
1716simpld 494 . . . . . 6 (𝑥𝐷 → -π < (ℑ‘(log‘𝑥)))
18 pire 26364 . . . . . . . 8 π ∈ ℝ
1918a1i 11 . . . . . . 7 (𝑥𝐷 → π ∈ ℝ)
2016simprd 495 . . . . . . 7 (𝑥𝐷 → (ℑ‘(log‘𝑥)) ≤ π)
214logdmnrp 26548 . . . . . . . . 9 (𝑥𝐷 → ¬ -𝑥 ∈ ℝ+)
22 lognegb 26497 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (-𝑥 ∈ ℝ+ ↔ (ℑ‘(log‘𝑥)) = π))
2312, 13, 22syl2anc 584 . . . . . . . . . 10 (𝑥𝐷 → (-𝑥 ∈ ℝ+ ↔ (ℑ‘(log‘𝑥)) = π))
2423necon3bbid 2962 . . . . . . . . 9 (𝑥𝐷 → (¬ -𝑥 ∈ ℝ+ ↔ (ℑ‘(log‘𝑥)) ≠ π))
2521, 24mpbid 232 . . . . . . . 8 (𝑥𝐷 → (ℑ‘(log‘𝑥)) ≠ π)
2625necomd 2980 . . . . . . 7 (𝑥𝐷 → π ≠ (ℑ‘(log‘𝑥)))
2715, 19, 20, 26leneltd 11270 . . . . . 6 (𝑥𝐷 → (ℑ‘(log‘𝑥)) < π)
2818renegcli 11425 . . . . . . . 8 -π ∈ ℝ
2928rexri 11173 . . . . . . 7 -π ∈ ℝ*
3018rexri 11173 . . . . . . 7 π ∈ ℝ*
31 elioo2 13289 . . . . . . 7 ((-π ∈ ℝ* ∧ π ∈ ℝ*) → ((ℑ‘(log‘𝑥)) ∈ (-π(,)π) ↔ ((ℑ‘(log‘𝑥)) ∈ ℝ ∧ -π < (ℑ‘(log‘𝑥)) ∧ (ℑ‘(log‘𝑥)) < π)))
3229, 30, 31mp2an 692 . . . . . 6 ((ℑ‘(log‘𝑥)) ∈ (-π(,)π) ↔ ((ℑ‘(log‘𝑥)) ∈ ℝ ∧ -π < (ℑ‘(log‘𝑥)) ∧ (ℑ‘(log‘𝑥)) < π))
3315, 17, 27, 32syl3anbrc 1344 . . . . 5 (𝑥𝐷 → (ℑ‘(log‘𝑥)) ∈ (-π(,)π))
34 imf 15020 . . . . . 6 ℑ:ℂ⟶ℝ
35 ffn 6652 . . . . . 6 (ℑ:ℂ⟶ℝ → ℑ Fn ℂ)
36 elpreima 6992 . . . . . 6 (ℑ Fn ℂ → ((log‘𝑥) ∈ (ℑ “ (-π(,)π)) ↔ ((log‘𝑥) ∈ ℂ ∧ (ℑ‘(log‘𝑥)) ∈ (-π(,)π))))
3734, 35, 36mp2b 10 . . . . 5 ((log‘𝑥) ∈ (ℑ “ (-π(,)π)) ↔ ((log‘𝑥) ∈ ℂ ∧ (ℑ‘(log‘𝑥)) ∈ (-π(,)π)))
3814, 33, 37sylanbrc 583 . . . 4 (𝑥𝐷 → (log‘𝑥) ∈ (ℑ “ (-π(,)π)))
3910, 38mprgbir 3051 . . 3 (log “ 𝐷) ⊆ (ℑ “ (-π(,)π))
40 df-ioo 13252 . . . . . . . . . 10 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
41 df-ioc 13253 . . . . . . . . . 10 (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
42 idd 24 . . . . . . . . . 10 ((-π ∈ ℝ*𝑤 ∈ ℝ*) → (-π < 𝑤 → -π < 𝑤))
43 xrltle 13051 . . . . . . . . . 10 ((𝑤 ∈ ℝ* ∧ π ∈ ℝ*) → (𝑤 < π → 𝑤 ≤ π))
4440, 41, 42, 43ixxssixx 13262 . . . . . . . . 9 (-π(,)π) ⊆ (-π(,]π)
45 imass2 6053 . . . . . . . . 9 ((-π(,)π) ⊆ (-π(,]π) → (ℑ “ (-π(,)π)) ⊆ (ℑ “ (-π(,]π)))
4644, 45ax-mp 5 . . . . . . . 8 (ℑ “ (-π(,)π)) ⊆ (ℑ “ (-π(,]π))
47 logrn 26465 . . . . . . . 8 ran log = (ℑ “ (-π(,]π))
4846, 47sseqtrri 3985 . . . . . . 7 (ℑ “ (-π(,)π)) ⊆ ran log
4948sseli 3931 . . . . . 6 (𝑥 ∈ (ℑ “ (-π(,)π)) → 𝑥 ∈ ran log)
50 logef 26488 . . . . . 6 (𝑥 ∈ ran log → (log‘(exp‘𝑥)) = 𝑥)
5149, 50syl 17 . . . . 5 (𝑥 ∈ (ℑ “ (-π(,)π)) → (log‘(exp‘𝑥)) = 𝑥)
52 elpreima 6992 . . . . . . . . . 10 (ℑ Fn ℂ → (𝑥 ∈ (ℑ “ (-π(,)π)) ↔ (𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π))))
5334, 35, 52mp2b 10 . . . . . . . . 9 (𝑥 ∈ (ℑ “ (-π(,)π)) ↔ (𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)))
54 efcl 15989 . . . . . . . . . 10 (𝑥 ∈ ℂ → (exp‘𝑥) ∈ ℂ)
5554adantr 480 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → (exp‘𝑥) ∈ ℂ)
5653, 55sylbi 217 . . . . . . . 8 (𝑥 ∈ (ℑ “ (-π(,)π)) → (exp‘𝑥) ∈ ℂ)
5753simplbi 497 . . . . . . . . . . 11 (𝑥 ∈ (ℑ “ (-π(,)π)) → 𝑥 ∈ ℂ)
5857imcld 15102 . . . . . . . . . 10 (𝑥 ∈ (ℑ “ (-π(,)π)) → (ℑ‘𝑥) ∈ ℝ)
59 eliooord 13308 . . . . . . . . . . . 12 ((ℑ‘𝑥) ∈ (-π(,)π) → (-π < (ℑ‘𝑥) ∧ (ℑ‘𝑥) < π))
6053, 59simplbiim 504 . . . . . . . . . . 11 (𝑥 ∈ (ℑ “ (-π(,)π)) → (-π < (ℑ‘𝑥) ∧ (ℑ‘𝑥) < π))
6160simprd 495 . . . . . . . . . 10 (𝑥 ∈ (ℑ “ (-π(,)π)) → (ℑ‘𝑥) < π)
6258, 61ltned 11252 . . . . . . . . 9 (𝑥 ∈ (ℑ “ (-π(,)π)) → (ℑ‘𝑥) ≠ π)
6351adantr 480 . . . . . . . . . . . . 13 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → (log‘(exp‘𝑥)) = 𝑥)
6463fveq2d 6826 . . . . . . . . . . . 12 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → (ℑ‘(log‘(exp‘𝑥))) = (ℑ‘𝑥))
65 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → (exp‘𝑥) ∈ (-∞(,]0))
66 mnfxr 11172 . . . . . . . . . . . . . . . . 17 -∞ ∈ ℝ*
67 0re 11117 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ
68 elioc2 13312 . . . . . . . . . . . . . . . . 17 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ) → ((exp‘𝑥) ∈ (-∞(,]0) ↔ ((exp‘𝑥) ∈ ℝ ∧ -∞ < (exp‘𝑥) ∧ (exp‘𝑥) ≤ 0)))
6966, 67, 68mp2an 692 . . . . . . . . . . . . . . . 16 ((exp‘𝑥) ∈ (-∞(,]0) ↔ ((exp‘𝑥) ∈ ℝ ∧ -∞ < (exp‘𝑥) ∧ (exp‘𝑥) ≤ 0))
7065, 69sylib 218 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → ((exp‘𝑥) ∈ ℝ ∧ -∞ < (exp‘𝑥) ∧ (exp‘𝑥) ≤ 0))
7170simp1d 1142 . . . . . . . . . . . . . 14 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → (exp‘𝑥) ∈ ℝ)
72 0red 11118 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → 0 ∈ ℝ)
7370simp3d 1144 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → (exp‘𝑥) ≤ 0)
74 efne0 16005 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℂ → (exp‘𝑥) ≠ 0)
7557, 74syl 17 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (ℑ “ (-π(,)π)) → (exp‘𝑥) ≠ 0)
7675adantr 480 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → (exp‘𝑥) ≠ 0)
7776necomd 2980 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → 0 ≠ (exp‘𝑥))
7871, 72, 73, 77leneltd 11270 . . . . . . . . . . . . . 14 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → (exp‘𝑥) < 0)
7971, 78negelrpd 12929 . . . . . . . . . . . . 13 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → -(exp‘𝑥) ∈ ℝ+)
80 lognegb 26497 . . . . . . . . . . . . . . 15 (((exp‘𝑥) ∈ ℂ ∧ (exp‘𝑥) ≠ 0) → (-(exp‘𝑥) ∈ ℝ+ ↔ (ℑ‘(log‘(exp‘𝑥))) = π))
8156, 75, 80syl2anc 584 . . . . . . . . . . . . . 14 (𝑥 ∈ (ℑ “ (-π(,)π)) → (-(exp‘𝑥) ∈ ℝ+ ↔ (ℑ‘(log‘(exp‘𝑥))) = π))
8281adantr 480 . . . . . . . . . . . . 13 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → (-(exp‘𝑥) ∈ ℝ+ ↔ (ℑ‘(log‘(exp‘𝑥))) = π))
8379, 82mpbid 232 . . . . . . . . . . . 12 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → (ℑ‘(log‘(exp‘𝑥))) = π)
8464, 83eqtr3d 2766 . . . . . . . . . . 11 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → (ℑ‘𝑥) = π)
8584ex 412 . . . . . . . . . 10 (𝑥 ∈ (ℑ “ (-π(,)π)) → ((exp‘𝑥) ∈ (-∞(,]0) → (ℑ‘𝑥) = π))
8685necon3ad 2938 . . . . . . . . 9 (𝑥 ∈ (ℑ “ (-π(,)π)) → ((ℑ‘𝑥) ≠ π → ¬ (exp‘𝑥) ∈ (-∞(,]0)))
8762, 86mpd 15 . . . . . . . 8 (𝑥 ∈ (ℑ “ (-π(,)π)) → ¬ (exp‘𝑥) ∈ (-∞(,]0))
8856, 87eldifd 3914 . . . . . . 7 (𝑥 ∈ (ℑ “ (-π(,)π)) → (exp‘𝑥) ∈ (ℂ ∖ (-∞(,]0)))
8988, 4eleqtrrdi 2839 . . . . . 6 (𝑥 ∈ (ℑ “ (-π(,)π)) → (exp‘𝑥) ∈ 𝐷)
90 funfvima2 7167 . . . . . . 7 ((Fun log ∧ 𝐷 ⊆ dom log) → ((exp‘𝑥) ∈ 𝐷 → (log‘(exp‘𝑥)) ∈ (log “ 𝐷)))
913, 8, 90mp2an 692 . . . . . 6 ((exp‘𝑥) ∈ 𝐷 → (log‘(exp‘𝑥)) ∈ (log “ 𝐷))
9289, 91syl 17 . . . . 5 (𝑥 ∈ (ℑ “ (-π(,)π)) → (log‘(exp‘𝑥)) ∈ (log “ 𝐷))
9351, 92eqeltrrd 2829 . . . 4 (𝑥 ∈ (ℑ “ (-π(,)π)) → 𝑥 ∈ (log “ 𝐷))
9493ssriv 3939 . . 3 (ℑ “ (-π(,)π)) ⊆ (log “ 𝐷)
9539, 94eqssi 3952 . 2 (log “ 𝐷) = (ℑ “ (-π(,)π))
96 imcncf 24794 . . . 4 ℑ ∈ (ℂ–cn→ℝ)
97 ssid 3958 . . . . 5 ℂ ⊆ ℂ
98 ax-resscn 11066 . . . . 5 ℝ ⊆ ℂ
99 eqid 2729 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
10099cnfldtopon 24668 . . . . . . 7 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
101100toponrestid 22806 . . . . . 6 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
102 tgioo4 24691 . . . . . 6 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
10399, 101, 102cncfcn 24801 . . . . 5 ((ℂ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℂ–cn→ℝ) = ((TopOpen‘ℂfld) Cn (topGen‘ran (,))))
10497, 98, 103mp2an 692 . . . 4 (ℂ–cn→ℝ) = ((TopOpen‘ℂfld) Cn (topGen‘ran (,)))
10596, 104eleqtri 2826 . . 3 ℑ ∈ ((TopOpen‘ℂfld) Cn (topGen‘ran (,)))
106 iooretop 24651 . . 3 (-π(,)π) ∈ (topGen‘ran (,))
107 cnima 23150 . . 3 ((ℑ ∈ ((TopOpen‘ℂfld) Cn (topGen‘ran (,))) ∧ (-π(,)π) ∈ (topGen‘ran (,))) → (ℑ “ (-π(,)π)) ∈ (TopOpen‘ℂfld))
108105, 106, 107mp2an 692 . 2 (ℑ “ (-π(,)π)) ∈ (TopOpen‘ℂfld)
10995, 108eqeltri 2824 1 (log “ 𝐷) ∈ (TopOpen‘ℂfld)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  cdif 3900  wss 3903  {csn 4577   class class class wbr 5092  ccnv 5618  dom cdm 5619  ran crn 5620  cima 5622  Fun wfun 6476   Fn wfn 6477  wf 6478  1-1-ontowf1o 6481  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009  -∞cmnf 11147  *cxr 11148   < clt 11149  cle 11150  -cneg 11348  +crp 12893  (,)cioo 13248  (,]cioc 13249  cim 15005  expce 15968  πcpi 15973  TopOpenctopn 17325  topGenctg 17341  fldccnfld 21261   Cn ccn 23109  cnccncf 24767  logclog 26461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-haus 23200  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769  df-limc 25765  df-dv 25766  df-log 26463
This theorem is referenced by:  dvlog  26558
  Copyright terms: Public domain W3C validator