Step | Hyp | Ref
| Expression |
1 | | logf1o 25729 |
. . . . . 6
⊢
log:(ℂ ∖ {0})–1-1-onto→ran
log |
2 | | f1ofun 6727 |
. . . . . 6
⊢
(log:(ℂ ∖ {0})–1-1-onto→ran
log → Fun log) |
3 | 1, 2 | ax-mp 5 |
. . . . 5
⊢ Fun
log |
4 | | logcn.d |
. . . . . . 7
⊢ 𝐷 = (ℂ ∖
(-∞(,]0)) |
5 | 4 | logdmss 25806 |
. . . . . 6
⊢ 𝐷 ⊆ (ℂ ∖
{0}) |
6 | | f1odm 6729 |
. . . . . . 7
⊢
(log:(ℂ ∖ {0})–1-1-onto→ran
log → dom log = (ℂ ∖ {0})) |
7 | 1, 6 | ax-mp 5 |
. . . . . 6
⊢ dom log =
(ℂ ∖ {0}) |
8 | 5, 7 | sseqtrri 3959 |
. . . . 5
⊢ 𝐷 ⊆ dom
log |
9 | | funimass4 6843 |
. . . . 5
⊢ ((Fun log
∧ 𝐷 ⊆ dom log)
→ ((log “ 𝐷)
⊆ (◡ℑ “
(-π(,)π)) ↔ ∀𝑥 ∈ 𝐷 (log‘𝑥) ∈ (◡ℑ “
(-π(,)π)))) |
10 | 3, 8, 9 | mp2an 689 |
. . . 4
⊢ ((log
“ 𝐷) ⊆ (◡ℑ “ (-π(,)π)) ↔
∀𝑥 ∈ 𝐷 (log‘𝑥) ∈ (◡ℑ “
(-π(,)π))) |
11 | 4 | ellogdm 25803 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐷 ↔ (𝑥 ∈ ℂ ∧ (𝑥 ∈ ℝ → 𝑥 ∈
ℝ+))) |
12 | 11 | simplbi 498 |
. . . . . 6
⊢ (𝑥 ∈ 𝐷 → 𝑥 ∈ ℂ) |
13 | 4 | logdmn0 25804 |
. . . . . 6
⊢ (𝑥 ∈ 𝐷 → 𝑥 ≠ 0) |
14 | 12, 13 | logcld 25735 |
. . . . 5
⊢ (𝑥 ∈ 𝐷 → (log‘𝑥) ∈ ℂ) |
15 | 14 | imcld 14915 |
. . . . . 6
⊢ (𝑥 ∈ 𝐷 → (ℑ‘(log‘𝑥)) ∈
ℝ) |
16 | 12, 13 | logimcld 25736 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐷 → (-π <
(ℑ‘(log‘𝑥)) ∧ (ℑ‘(log‘𝑥)) ≤ π)) |
17 | 16 | simpld 495 |
. . . . . 6
⊢ (𝑥 ∈ 𝐷 → -π <
(ℑ‘(log‘𝑥))) |
18 | | pire 25624 |
. . . . . . . 8
⊢ π
∈ ℝ |
19 | 18 | a1i 11 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐷 → π ∈
ℝ) |
20 | 16 | simprd 496 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐷 → (ℑ‘(log‘𝑥)) ≤ π) |
21 | 4 | logdmnrp 25805 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐷 → ¬ -𝑥 ∈ ℝ+) |
22 | | lognegb 25754 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (-𝑥 ∈ ℝ+
↔ (ℑ‘(log‘𝑥)) = π)) |
23 | 12, 13, 22 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐷 → (-𝑥 ∈ ℝ+ ↔
(ℑ‘(log‘𝑥)) = π)) |
24 | 23 | necon3bbid 2982 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐷 → (¬ -𝑥 ∈ ℝ+ ↔
(ℑ‘(log‘𝑥)) ≠ π)) |
25 | 21, 24 | mpbid 231 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐷 → (ℑ‘(log‘𝑥)) ≠ π) |
26 | 25 | necomd 3000 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐷 → π ≠
(ℑ‘(log‘𝑥))) |
27 | 15, 19, 20, 26 | leneltd 11138 |
. . . . . 6
⊢ (𝑥 ∈ 𝐷 → (ℑ‘(log‘𝑥)) < π) |
28 | 18 | renegcli 11291 |
. . . . . . . 8
⊢ -π
∈ ℝ |
29 | 28 | rexri 11042 |
. . . . . . 7
⊢ -π
∈ ℝ* |
30 | 18 | rexri 11042 |
. . . . . . 7
⊢ π
∈ ℝ* |
31 | | elioo2 13129 |
. . . . . . 7
⊢ ((-π
∈ ℝ* ∧ π ∈ ℝ*) →
((ℑ‘(log‘𝑥)) ∈ (-π(,)π) ↔
((ℑ‘(log‘𝑥)) ∈ ℝ ∧ -π <
(ℑ‘(log‘𝑥)) ∧ (ℑ‘(log‘𝑥)) < π))) |
32 | 29, 30, 31 | mp2an 689 |
. . . . . 6
⊢
((ℑ‘(log‘𝑥)) ∈ (-π(,)π) ↔
((ℑ‘(log‘𝑥)) ∈ ℝ ∧ -π <
(ℑ‘(log‘𝑥)) ∧ (ℑ‘(log‘𝑥)) < π)) |
33 | 15, 17, 27, 32 | syl3anbrc 1342 |
. . . . 5
⊢ (𝑥 ∈ 𝐷 → (ℑ‘(log‘𝑥)) ∈
(-π(,)π)) |
34 | | imf 14833 |
. . . . . 6
⊢
ℑ:ℂ⟶ℝ |
35 | | ffn 6609 |
. . . . . 6
⊢
(ℑ:ℂ⟶ℝ → ℑ Fn
ℂ) |
36 | | elpreima 6944 |
. . . . . 6
⊢ (ℑ
Fn ℂ → ((log‘𝑥) ∈ (◡ℑ “ (-π(,)π)) ↔
((log‘𝑥) ∈
ℂ ∧ (ℑ‘(log‘𝑥)) ∈ (-π(,)π)))) |
37 | 34, 35, 36 | mp2b 10 |
. . . . 5
⊢
((log‘𝑥)
∈ (◡ℑ “
(-π(,)π)) ↔ ((log‘𝑥) ∈ ℂ ∧
(ℑ‘(log‘𝑥)) ∈ (-π(,)π))) |
38 | 14, 33, 37 | sylanbrc 583 |
. . . 4
⊢ (𝑥 ∈ 𝐷 → (log‘𝑥) ∈ (◡ℑ “
(-π(,)π))) |
39 | 10, 38 | mprgbir 3080 |
. . 3
⊢ (log
“ 𝐷) ⊆ (◡ℑ “
(-π(,)π)) |
40 | | df-ioo 13092 |
. . . . . . . . . 10
⊢ (,) =
(𝑥 ∈
ℝ*, 𝑦
∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) |
41 | | df-ioc 13093 |
. . . . . . . . . 10
⊢ (,] =
(𝑥 ∈
ℝ*, 𝑦
∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
42 | | idd 24 |
. . . . . . . . . 10
⊢ ((-π
∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (-π
< 𝑤 → -π <
𝑤)) |
43 | | xrltle 12892 |
. . . . . . . . . 10
⊢ ((𝑤 ∈ ℝ*
∧ π ∈ ℝ*) → (𝑤 < π → 𝑤 ≤ π)) |
44 | 40, 41, 42, 43 | ixxssixx 13102 |
. . . . . . . . 9
⊢
(-π(,)π) ⊆ (-π(,]π) |
45 | | imass2 6013 |
. . . . . . . . 9
⊢
((-π(,)π) ⊆ (-π(,]π) → (◡ℑ “ (-π(,)π)) ⊆
(◡ℑ “
(-π(,]π))) |
46 | 44, 45 | ax-mp 5 |
. . . . . . . 8
⊢ (◡ℑ “ (-π(,)π)) ⊆
(◡ℑ “
(-π(,]π)) |
47 | | logrn 25723 |
. . . . . . . 8
⊢ ran log =
(◡ℑ “
(-π(,]π)) |
48 | 46, 47 | sseqtrri 3959 |
. . . . . . 7
⊢ (◡ℑ “ (-π(,)π)) ⊆ ran
log |
49 | 48 | sseli 3918 |
. . . . . 6
⊢ (𝑥 ∈ (◡ℑ “ (-π(,)π)) → 𝑥 ∈ ran
log) |
50 | | logef 25746 |
. . . . . 6
⊢ (𝑥 ∈ ran log →
(log‘(exp‘𝑥)) =
𝑥) |
51 | 49, 50 | syl 17 |
. . . . 5
⊢ (𝑥 ∈ (◡ℑ “ (-π(,)π)) →
(log‘(exp‘𝑥)) =
𝑥) |
52 | | elpreima 6944 |
. . . . . . . . . 10
⊢ (ℑ
Fn ℂ → (𝑥 ∈
(◡ℑ “ (-π(,)π))
↔ (𝑥 ∈ ℂ
∧ (ℑ‘𝑥)
∈ (-π(,)π)))) |
53 | 34, 35, 52 | mp2b 10 |
. . . . . . . . 9
⊢ (𝑥 ∈ (◡ℑ “ (-π(,)π)) ↔
(𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π))) |
54 | | efcl 15801 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℂ →
(exp‘𝑥) ∈
ℂ) |
55 | 54 | adantr 481 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) → (exp‘𝑥) ∈ ℂ) |
56 | 53, 55 | sylbi 216 |
. . . . . . . 8
⊢ (𝑥 ∈ (◡ℑ “ (-π(,)π)) →
(exp‘𝑥) ∈
ℂ) |
57 | 53 | simplbi 498 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (◡ℑ “ (-π(,)π)) → 𝑥 ∈
ℂ) |
58 | 57 | imcld 14915 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (◡ℑ “ (-π(,)π)) →
(ℑ‘𝑥) ∈
ℝ) |
59 | | eliooord 13147 |
. . . . . . . . . . . 12
⊢
((ℑ‘𝑥)
∈ (-π(,)π) → (-π < (ℑ‘𝑥) ∧ (ℑ‘𝑥) < π)) |
60 | 53, 59 | simplbiim 505 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (◡ℑ “ (-π(,)π)) →
(-π < (ℑ‘𝑥) ∧ (ℑ‘𝑥) < π)) |
61 | 60 | simprd 496 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (◡ℑ “ (-π(,)π)) →
(ℑ‘𝑥) <
π) |
62 | 58, 61 | ltned 11120 |
. . . . . . . . 9
⊢ (𝑥 ∈ (◡ℑ “ (-π(,)π)) →
(ℑ‘𝑥) ≠
π) |
63 | 51 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ (◡ℑ “ (-π(,)π)) ∧
(exp‘𝑥) ∈
(-∞(,]0)) → (log‘(exp‘𝑥)) = 𝑥) |
64 | 63 | fveq2d 6787 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ (◡ℑ “ (-π(,)π)) ∧
(exp‘𝑥) ∈
(-∞(,]0)) → (ℑ‘(log‘(exp‘𝑥))) = (ℑ‘𝑥)) |
65 | | simpr 485 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ (◡ℑ “ (-π(,)π)) ∧
(exp‘𝑥) ∈
(-∞(,]0)) → (exp‘𝑥) ∈ (-∞(,]0)) |
66 | | mnfxr 11041 |
. . . . . . . . . . . . . . . . 17
⊢ -∞
∈ ℝ* |
67 | | 0re 10986 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ∈
ℝ |
68 | | elioc2 13151 |
. . . . . . . . . . . . . . . . 17
⊢
((-∞ ∈ ℝ* ∧ 0 ∈ ℝ) →
((exp‘𝑥) ∈
(-∞(,]0) ↔ ((exp‘𝑥) ∈ ℝ ∧ -∞ <
(exp‘𝑥) ∧
(exp‘𝑥) ≤
0))) |
69 | 66, 67, 68 | mp2an 689 |
. . . . . . . . . . . . . . . 16
⊢
((exp‘𝑥)
∈ (-∞(,]0) ↔ ((exp‘𝑥) ∈ ℝ ∧ -∞ <
(exp‘𝑥) ∧
(exp‘𝑥) ≤
0)) |
70 | 65, 69 | sylib 217 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ (◡ℑ “ (-π(,)π)) ∧
(exp‘𝑥) ∈
(-∞(,]0)) → ((exp‘𝑥) ∈ ℝ ∧ -∞ <
(exp‘𝑥) ∧
(exp‘𝑥) ≤
0)) |
71 | 70 | simp1d 1141 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ (◡ℑ “ (-π(,)π)) ∧
(exp‘𝑥) ∈
(-∞(,]0)) → (exp‘𝑥) ∈ ℝ) |
72 | | 0red 10987 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ (◡ℑ “ (-π(,)π)) ∧
(exp‘𝑥) ∈
(-∞(,]0)) → 0 ∈ ℝ) |
73 | 70 | simp3d 1143 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ (◡ℑ “ (-π(,)π)) ∧
(exp‘𝑥) ∈
(-∞(,]0)) → (exp‘𝑥) ≤ 0) |
74 | | efne0 15815 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ ℂ →
(exp‘𝑥) ≠
0) |
75 | 57, 74 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ (◡ℑ “ (-π(,)π)) →
(exp‘𝑥) ≠
0) |
76 | 75 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ (◡ℑ “ (-π(,)π)) ∧
(exp‘𝑥) ∈
(-∞(,]0)) → (exp‘𝑥) ≠ 0) |
77 | 76 | necomd 3000 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ (◡ℑ “ (-π(,)π)) ∧
(exp‘𝑥) ∈
(-∞(,]0)) → 0 ≠ (exp‘𝑥)) |
78 | 71, 72, 73, 77 | leneltd 11138 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ (◡ℑ “ (-π(,)π)) ∧
(exp‘𝑥) ∈
(-∞(,]0)) → (exp‘𝑥) < 0) |
79 | 71, 78 | negelrpd 12773 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ (◡ℑ “ (-π(,)π)) ∧
(exp‘𝑥) ∈
(-∞(,]0)) → -(exp‘𝑥) ∈
ℝ+) |
80 | | lognegb 25754 |
. . . . . . . . . . . . . . 15
⊢
(((exp‘𝑥)
∈ ℂ ∧ (exp‘𝑥) ≠ 0) → (-(exp‘𝑥) ∈ ℝ+
↔ (ℑ‘(log‘(exp‘𝑥))) = π)) |
81 | 56, 75, 80 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (◡ℑ “ (-π(,)π)) →
(-(exp‘𝑥) ∈
ℝ+ ↔ (ℑ‘(log‘(exp‘𝑥))) = π)) |
82 | 81 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ (◡ℑ “ (-π(,)π)) ∧
(exp‘𝑥) ∈
(-∞(,]0)) → (-(exp‘𝑥) ∈ ℝ+ ↔
(ℑ‘(log‘(exp‘𝑥))) = π)) |
83 | 79, 82 | mpbid 231 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ (◡ℑ “ (-π(,)π)) ∧
(exp‘𝑥) ∈
(-∞(,]0)) → (ℑ‘(log‘(exp‘𝑥))) = π) |
84 | 64, 83 | eqtr3d 2781 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ (◡ℑ “ (-π(,)π)) ∧
(exp‘𝑥) ∈
(-∞(,]0)) → (ℑ‘𝑥) = π) |
85 | 84 | ex 413 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (◡ℑ “ (-π(,)π)) →
((exp‘𝑥) ∈
(-∞(,]0) → (ℑ‘𝑥) = π)) |
86 | 85 | necon3ad 2957 |
. . . . . . . . 9
⊢ (𝑥 ∈ (◡ℑ “ (-π(,)π)) →
((ℑ‘𝑥) ≠
π → ¬ (exp‘𝑥) ∈ (-∞(,]0))) |
87 | 62, 86 | mpd 15 |
. . . . . . . 8
⊢ (𝑥 ∈ (◡ℑ “ (-π(,)π)) → ¬
(exp‘𝑥) ∈
(-∞(,]0)) |
88 | 56, 87 | eldifd 3899 |
. . . . . . 7
⊢ (𝑥 ∈ (◡ℑ “ (-π(,)π)) →
(exp‘𝑥) ∈
(ℂ ∖ (-∞(,]0))) |
89 | 88, 4 | eleqtrrdi 2851 |
. . . . . 6
⊢ (𝑥 ∈ (◡ℑ “ (-π(,)π)) →
(exp‘𝑥) ∈ 𝐷) |
90 | | funfvima2 7116 |
. . . . . . 7
⊢ ((Fun log
∧ 𝐷 ⊆ dom log)
→ ((exp‘𝑥)
∈ 𝐷 →
(log‘(exp‘𝑥))
∈ (log “ 𝐷))) |
91 | 3, 8, 90 | mp2an 689 |
. . . . . 6
⊢
((exp‘𝑥)
∈ 𝐷 →
(log‘(exp‘𝑥))
∈ (log “ 𝐷)) |
92 | 89, 91 | syl 17 |
. . . . 5
⊢ (𝑥 ∈ (◡ℑ “ (-π(,)π)) →
(log‘(exp‘𝑥))
∈ (log “ 𝐷)) |
93 | 51, 92 | eqeltrrd 2841 |
. . . 4
⊢ (𝑥 ∈ (◡ℑ “ (-π(,)π)) → 𝑥 ∈ (log “ 𝐷)) |
94 | 93 | ssriv 3926 |
. . 3
⊢ (◡ℑ “ (-π(,)π)) ⊆ (log
“ 𝐷) |
95 | 39, 94 | eqssi 3938 |
. 2
⊢ (log
“ 𝐷) = (◡ℑ “
(-π(,)π)) |
96 | | imcncf 24075 |
. . . 4
⊢ ℑ
∈ (ℂ–cn→ℝ) |
97 | | ssid 3944 |
. . . . 5
⊢ ℂ
⊆ ℂ |
98 | | ax-resscn 10937 |
. . . . 5
⊢ ℝ
⊆ ℂ |
99 | | eqid 2739 |
. . . . . 6
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
100 | 99 | cnfldtopon 23955 |
. . . . . . 7
⊢
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ) |
101 | 100 | toponrestid 22079 |
. . . . . 6
⊢
(TopOpen‘ℂfld) =
((TopOpen‘ℂfld) ↾t
ℂ) |
102 | 99 | tgioo2 23975 |
. . . . . 6
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
103 | 99, 101, 102 | cncfcn 24082 |
. . . . 5
⊢ ((ℂ
⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℂ–cn→ℝ) =
((TopOpen‘ℂfld) Cn (topGen‘ran
(,)))) |
104 | 97, 98, 103 | mp2an 689 |
. . . 4
⊢
(ℂ–cn→ℝ) =
((TopOpen‘ℂfld) Cn (topGen‘ran
(,))) |
105 | 96, 104 | eleqtri 2838 |
. . 3
⊢ ℑ
∈ ((TopOpen‘ℂfld) Cn (topGen‘ran
(,))) |
106 | | iooretop 23938 |
. . 3
⊢
(-π(,)π) ∈ (topGen‘ran (,)) |
107 | | cnima 22425 |
. . 3
⊢ ((ℑ
∈ ((TopOpen‘ℂfld) Cn (topGen‘ran (,))) ∧
(-π(,)π) ∈ (topGen‘ran (,))) → (◡ℑ “ (-π(,)π)) ∈
(TopOpen‘ℂfld)) |
108 | 105, 106,
107 | mp2an 689 |
. 2
⊢ (◡ℑ “ (-π(,)π)) ∈
(TopOpen‘ℂfld) |
109 | 95, 108 | eqeltri 2836 |
1
⊢ (log
“ 𝐷) ∈
(TopOpen‘ℂfld) |