MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvloglem Structured version   Visualization version   GIF version

Theorem dvloglem 26557
Description: Lemma for dvlog 26560. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypothesis
Ref Expression
logcn.d 𝐷 = (ℂ ∖ (-∞(,]0))
Assertion
Ref Expression
dvloglem (log “ 𝐷) ∈ (TopOpen‘ℂfld)

Proof of Theorem dvloglem
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 logf1o 26473 . . . . . 6 log:(ℂ ∖ {0})–1-1-onto→ran log
2 f1ofun 6802 . . . . . 6 (log:(ℂ ∖ {0})–1-1-onto→ran log → Fun log)
31, 2ax-mp 5 . . . . 5 Fun log
4 logcn.d . . . . . . 7 𝐷 = (ℂ ∖ (-∞(,]0))
54logdmss 26551 . . . . . 6 𝐷 ⊆ (ℂ ∖ {0})
6 f1odm 6804 . . . . . . 7 (log:(ℂ ∖ {0})–1-1-onto→ran log → dom log = (ℂ ∖ {0}))
71, 6ax-mp 5 . . . . . 6 dom log = (ℂ ∖ {0})
85, 7sseqtrri 3996 . . . . 5 𝐷 ⊆ dom log
9 funimass4 6925 . . . . 5 ((Fun log ∧ 𝐷 ⊆ dom log) → ((log “ 𝐷) ⊆ (ℑ “ (-π(,)π)) ↔ ∀𝑥𝐷 (log‘𝑥) ∈ (ℑ “ (-π(,)π))))
103, 8, 9mp2an 692 . . . 4 ((log “ 𝐷) ⊆ (ℑ “ (-π(,)π)) ↔ ∀𝑥𝐷 (log‘𝑥) ∈ (ℑ “ (-π(,)π)))
114ellogdm 26548 . . . . . . 7 (𝑥𝐷 ↔ (𝑥 ∈ ℂ ∧ (𝑥 ∈ ℝ → 𝑥 ∈ ℝ+)))
1211simplbi 497 . . . . . 6 (𝑥𝐷𝑥 ∈ ℂ)
134logdmn0 26549 . . . . . 6 (𝑥𝐷𝑥 ≠ 0)
1412, 13logcld 26479 . . . . 5 (𝑥𝐷 → (log‘𝑥) ∈ ℂ)
1514imcld 15161 . . . . . 6 (𝑥𝐷 → (ℑ‘(log‘𝑥)) ∈ ℝ)
1612, 13logimcld 26480 . . . . . . 7 (𝑥𝐷 → (-π < (ℑ‘(log‘𝑥)) ∧ (ℑ‘(log‘𝑥)) ≤ π))
1716simpld 494 . . . . . 6 (𝑥𝐷 → -π < (ℑ‘(log‘𝑥)))
18 pire 26366 . . . . . . . 8 π ∈ ℝ
1918a1i 11 . . . . . . 7 (𝑥𝐷 → π ∈ ℝ)
2016simprd 495 . . . . . . 7 (𝑥𝐷 → (ℑ‘(log‘𝑥)) ≤ π)
214logdmnrp 26550 . . . . . . . . 9 (𝑥𝐷 → ¬ -𝑥 ∈ ℝ+)
22 lognegb 26499 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (-𝑥 ∈ ℝ+ ↔ (ℑ‘(log‘𝑥)) = π))
2312, 13, 22syl2anc 584 . . . . . . . . . 10 (𝑥𝐷 → (-𝑥 ∈ ℝ+ ↔ (ℑ‘(log‘𝑥)) = π))
2423necon3bbid 2962 . . . . . . . . 9 (𝑥𝐷 → (¬ -𝑥 ∈ ℝ+ ↔ (ℑ‘(log‘𝑥)) ≠ π))
2521, 24mpbid 232 . . . . . . . 8 (𝑥𝐷 → (ℑ‘(log‘𝑥)) ≠ π)
2625necomd 2980 . . . . . . 7 (𝑥𝐷 → π ≠ (ℑ‘(log‘𝑥)))
2715, 19, 20, 26leneltd 11328 . . . . . 6 (𝑥𝐷 → (ℑ‘(log‘𝑥)) < π)
2818renegcli 11483 . . . . . . . 8 -π ∈ ℝ
2928rexri 11232 . . . . . . 7 -π ∈ ℝ*
3018rexri 11232 . . . . . . 7 π ∈ ℝ*
31 elioo2 13347 . . . . . . 7 ((-π ∈ ℝ* ∧ π ∈ ℝ*) → ((ℑ‘(log‘𝑥)) ∈ (-π(,)π) ↔ ((ℑ‘(log‘𝑥)) ∈ ℝ ∧ -π < (ℑ‘(log‘𝑥)) ∧ (ℑ‘(log‘𝑥)) < π)))
3229, 30, 31mp2an 692 . . . . . 6 ((ℑ‘(log‘𝑥)) ∈ (-π(,)π) ↔ ((ℑ‘(log‘𝑥)) ∈ ℝ ∧ -π < (ℑ‘(log‘𝑥)) ∧ (ℑ‘(log‘𝑥)) < π))
3315, 17, 27, 32syl3anbrc 1344 . . . . 5 (𝑥𝐷 → (ℑ‘(log‘𝑥)) ∈ (-π(,)π))
34 imf 15079 . . . . . 6 ℑ:ℂ⟶ℝ
35 ffn 6688 . . . . . 6 (ℑ:ℂ⟶ℝ → ℑ Fn ℂ)
36 elpreima 7030 . . . . . 6 (ℑ Fn ℂ → ((log‘𝑥) ∈ (ℑ “ (-π(,)π)) ↔ ((log‘𝑥) ∈ ℂ ∧ (ℑ‘(log‘𝑥)) ∈ (-π(,)π))))
3734, 35, 36mp2b 10 . . . . 5 ((log‘𝑥) ∈ (ℑ “ (-π(,)π)) ↔ ((log‘𝑥) ∈ ℂ ∧ (ℑ‘(log‘𝑥)) ∈ (-π(,)π)))
3814, 33, 37sylanbrc 583 . . . 4 (𝑥𝐷 → (log‘𝑥) ∈ (ℑ “ (-π(,)π)))
3910, 38mprgbir 3051 . . 3 (log “ 𝐷) ⊆ (ℑ “ (-π(,)π))
40 df-ioo 13310 . . . . . . . . . 10 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
41 df-ioc 13311 . . . . . . . . . 10 (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
42 idd 24 . . . . . . . . . 10 ((-π ∈ ℝ*𝑤 ∈ ℝ*) → (-π < 𝑤 → -π < 𝑤))
43 xrltle 13109 . . . . . . . . . 10 ((𝑤 ∈ ℝ* ∧ π ∈ ℝ*) → (𝑤 < π → 𝑤 ≤ π))
4440, 41, 42, 43ixxssixx 13320 . . . . . . . . 9 (-π(,)π) ⊆ (-π(,]π)
45 imass2 6073 . . . . . . . . 9 ((-π(,)π) ⊆ (-π(,]π) → (ℑ “ (-π(,)π)) ⊆ (ℑ “ (-π(,]π)))
4644, 45ax-mp 5 . . . . . . . 8 (ℑ “ (-π(,)π)) ⊆ (ℑ “ (-π(,]π))
47 logrn 26467 . . . . . . . 8 ran log = (ℑ “ (-π(,]π))
4846, 47sseqtrri 3996 . . . . . . 7 (ℑ “ (-π(,)π)) ⊆ ran log
4948sseli 3942 . . . . . 6 (𝑥 ∈ (ℑ “ (-π(,)π)) → 𝑥 ∈ ran log)
50 logef 26490 . . . . . 6 (𝑥 ∈ ran log → (log‘(exp‘𝑥)) = 𝑥)
5149, 50syl 17 . . . . 5 (𝑥 ∈ (ℑ “ (-π(,)π)) → (log‘(exp‘𝑥)) = 𝑥)
52 elpreima 7030 . . . . . . . . . 10 (ℑ Fn ℂ → (𝑥 ∈ (ℑ “ (-π(,)π)) ↔ (𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π))))
5334, 35, 52mp2b 10 . . . . . . . . 9 (𝑥 ∈ (ℑ “ (-π(,)π)) ↔ (𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)))
54 efcl 16048 . . . . . . . . . 10 (𝑥 ∈ ℂ → (exp‘𝑥) ∈ ℂ)
5554adantr 480 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → (exp‘𝑥) ∈ ℂ)
5653, 55sylbi 217 . . . . . . . 8 (𝑥 ∈ (ℑ “ (-π(,)π)) → (exp‘𝑥) ∈ ℂ)
5753simplbi 497 . . . . . . . . . . 11 (𝑥 ∈ (ℑ “ (-π(,)π)) → 𝑥 ∈ ℂ)
5857imcld 15161 . . . . . . . . . 10 (𝑥 ∈ (ℑ “ (-π(,)π)) → (ℑ‘𝑥) ∈ ℝ)
59 eliooord 13366 . . . . . . . . . . . 12 ((ℑ‘𝑥) ∈ (-π(,)π) → (-π < (ℑ‘𝑥) ∧ (ℑ‘𝑥) < π))
6053, 59simplbiim 504 . . . . . . . . . . 11 (𝑥 ∈ (ℑ “ (-π(,)π)) → (-π < (ℑ‘𝑥) ∧ (ℑ‘𝑥) < π))
6160simprd 495 . . . . . . . . . 10 (𝑥 ∈ (ℑ “ (-π(,)π)) → (ℑ‘𝑥) < π)
6258, 61ltned 11310 . . . . . . . . 9 (𝑥 ∈ (ℑ “ (-π(,)π)) → (ℑ‘𝑥) ≠ π)
6351adantr 480 . . . . . . . . . . . . 13 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → (log‘(exp‘𝑥)) = 𝑥)
6463fveq2d 6862 . . . . . . . . . . . 12 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → (ℑ‘(log‘(exp‘𝑥))) = (ℑ‘𝑥))
65 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → (exp‘𝑥) ∈ (-∞(,]0))
66 mnfxr 11231 . . . . . . . . . . . . . . . . 17 -∞ ∈ ℝ*
67 0re 11176 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ
68 elioc2 13370 . . . . . . . . . . . . . . . . 17 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ) → ((exp‘𝑥) ∈ (-∞(,]0) ↔ ((exp‘𝑥) ∈ ℝ ∧ -∞ < (exp‘𝑥) ∧ (exp‘𝑥) ≤ 0)))
6966, 67, 68mp2an 692 . . . . . . . . . . . . . . . 16 ((exp‘𝑥) ∈ (-∞(,]0) ↔ ((exp‘𝑥) ∈ ℝ ∧ -∞ < (exp‘𝑥) ∧ (exp‘𝑥) ≤ 0))
7065, 69sylib 218 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → ((exp‘𝑥) ∈ ℝ ∧ -∞ < (exp‘𝑥) ∧ (exp‘𝑥) ≤ 0))
7170simp1d 1142 . . . . . . . . . . . . . 14 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → (exp‘𝑥) ∈ ℝ)
72 0red 11177 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → 0 ∈ ℝ)
7370simp3d 1144 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → (exp‘𝑥) ≤ 0)
74 efne0 16064 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℂ → (exp‘𝑥) ≠ 0)
7557, 74syl 17 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (ℑ “ (-π(,)π)) → (exp‘𝑥) ≠ 0)
7675adantr 480 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → (exp‘𝑥) ≠ 0)
7776necomd 2980 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → 0 ≠ (exp‘𝑥))
7871, 72, 73, 77leneltd 11328 . . . . . . . . . . . . . 14 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → (exp‘𝑥) < 0)
7971, 78negelrpd 12987 . . . . . . . . . . . . 13 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → -(exp‘𝑥) ∈ ℝ+)
80 lognegb 26499 . . . . . . . . . . . . . . 15 (((exp‘𝑥) ∈ ℂ ∧ (exp‘𝑥) ≠ 0) → (-(exp‘𝑥) ∈ ℝ+ ↔ (ℑ‘(log‘(exp‘𝑥))) = π))
8156, 75, 80syl2anc 584 . . . . . . . . . . . . . 14 (𝑥 ∈ (ℑ “ (-π(,)π)) → (-(exp‘𝑥) ∈ ℝ+ ↔ (ℑ‘(log‘(exp‘𝑥))) = π))
8281adantr 480 . . . . . . . . . . . . 13 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → (-(exp‘𝑥) ∈ ℝ+ ↔ (ℑ‘(log‘(exp‘𝑥))) = π))
8379, 82mpbid 232 . . . . . . . . . . . 12 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → (ℑ‘(log‘(exp‘𝑥))) = π)
8464, 83eqtr3d 2766 . . . . . . . . . . 11 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → (ℑ‘𝑥) = π)
8584ex 412 . . . . . . . . . 10 (𝑥 ∈ (ℑ “ (-π(,)π)) → ((exp‘𝑥) ∈ (-∞(,]0) → (ℑ‘𝑥) = π))
8685necon3ad 2938 . . . . . . . . 9 (𝑥 ∈ (ℑ “ (-π(,)π)) → ((ℑ‘𝑥) ≠ π → ¬ (exp‘𝑥) ∈ (-∞(,]0)))
8762, 86mpd 15 . . . . . . . 8 (𝑥 ∈ (ℑ “ (-π(,)π)) → ¬ (exp‘𝑥) ∈ (-∞(,]0))
8856, 87eldifd 3925 . . . . . . 7 (𝑥 ∈ (ℑ “ (-π(,)π)) → (exp‘𝑥) ∈ (ℂ ∖ (-∞(,]0)))
8988, 4eleqtrrdi 2839 . . . . . 6 (𝑥 ∈ (ℑ “ (-π(,)π)) → (exp‘𝑥) ∈ 𝐷)
90 funfvima2 7205 . . . . . . 7 ((Fun log ∧ 𝐷 ⊆ dom log) → ((exp‘𝑥) ∈ 𝐷 → (log‘(exp‘𝑥)) ∈ (log “ 𝐷)))
913, 8, 90mp2an 692 . . . . . 6 ((exp‘𝑥) ∈ 𝐷 → (log‘(exp‘𝑥)) ∈ (log “ 𝐷))
9289, 91syl 17 . . . . 5 (𝑥 ∈ (ℑ “ (-π(,)π)) → (log‘(exp‘𝑥)) ∈ (log “ 𝐷))
9351, 92eqeltrrd 2829 . . . 4 (𝑥 ∈ (ℑ “ (-π(,)π)) → 𝑥 ∈ (log “ 𝐷))
9493ssriv 3950 . . 3 (ℑ “ (-π(,)π)) ⊆ (log “ 𝐷)
9539, 94eqssi 3963 . 2 (log “ 𝐷) = (ℑ “ (-π(,)π))
96 imcncf 24796 . . . 4 ℑ ∈ (ℂ–cn→ℝ)
97 ssid 3969 . . . . 5 ℂ ⊆ ℂ
98 ax-resscn 11125 . . . . 5 ℝ ⊆ ℂ
99 eqid 2729 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
10099cnfldtopon 24670 . . . . . . 7 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
101100toponrestid 22808 . . . . . 6 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
102 tgioo4 24693 . . . . . 6 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
10399, 101, 102cncfcn 24803 . . . . 5 ((ℂ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℂ–cn→ℝ) = ((TopOpen‘ℂfld) Cn (topGen‘ran (,))))
10497, 98, 103mp2an 692 . . . 4 (ℂ–cn→ℝ) = ((TopOpen‘ℂfld) Cn (topGen‘ran (,)))
10596, 104eleqtri 2826 . . 3 ℑ ∈ ((TopOpen‘ℂfld) Cn (topGen‘ran (,)))
106 iooretop 24653 . . 3 (-π(,)π) ∈ (topGen‘ran (,))
107 cnima 23152 . . 3 ((ℑ ∈ ((TopOpen‘ℂfld) Cn (topGen‘ran (,))) ∧ (-π(,)π) ∈ (topGen‘ran (,))) → (ℑ “ (-π(,)π)) ∈ (TopOpen‘ℂfld))
108105, 106, 107mp2an 692 . 2 (ℑ “ (-π(,)π)) ∈ (TopOpen‘ℂfld)
10995, 108eqeltri 2824 1 (log “ 𝐷) ∈ (TopOpen‘ℂfld)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  cdif 3911  wss 3914  {csn 4589   class class class wbr 5107  ccnv 5637  dom cdm 5638  ran crn 5639  cima 5641  Fun wfun 6505   Fn wfn 6506  wf 6507  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  -∞cmnf 11206  *cxr 11207   < clt 11208  cle 11209  -cneg 11406  +crp 12951  (,)cioo 13306  (,]cioc 13307  cim 15064  expce 16027  πcpi 16032  TopOpenctopn 17384  topGenctg 17400  fldccnfld 21264   Cn ccn 23111  cnccncf 24769  logclog 26463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-pi 16038  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768  df-log 26465
This theorem is referenced by:  dvlog  26560
  Copyright terms: Public domain W3C validator