MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvloglem Structured version   Visualization version   GIF version

Theorem dvloglem 26564
Description: Lemma for dvlog 26567. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypothesis
Ref Expression
logcn.d 𝐷 = (ℂ ∖ (-∞(,]0))
Assertion
Ref Expression
dvloglem (log “ 𝐷) ∈ (TopOpen‘ℂfld)

Proof of Theorem dvloglem
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 logf1o 26480 . . . . . 6 log:(ℂ ∖ {0})–1-1-onto→ran log
2 f1ofun 6805 . . . . . 6 (log:(ℂ ∖ {0})–1-1-onto→ran log → Fun log)
31, 2ax-mp 5 . . . . 5 Fun log
4 logcn.d . . . . . . 7 𝐷 = (ℂ ∖ (-∞(,]0))
54logdmss 26558 . . . . . 6 𝐷 ⊆ (ℂ ∖ {0})
6 f1odm 6807 . . . . . . 7 (log:(ℂ ∖ {0})–1-1-onto→ran log → dom log = (ℂ ∖ {0}))
71, 6ax-mp 5 . . . . . 6 dom log = (ℂ ∖ {0})
85, 7sseqtrri 3999 . . . . 5 𝐷 ⊆ dom log
9 funimass4 6928 . . . . 5 ((Fun log ∧ 𝐷 ⊆ dom log) → ((log “ 𝐷) ⊆ (ℑ “ (-π(,)π)) ↔ ∀𝑥𝐷 (log‘𝑥) ∈ (ℑ “ (-π(,)π))))
103, 8, 9mp2an 692 . . . 4 ((log “ 𝐷) ⊆ (ℑ “ (-π(,)π)) ↔ ∀𝑥𝐷 (log‘𝑥) ∈ (ℑ “ (-π(,)π)))
114ellogdm 26555 . . . . . . 7 (𝑥𝐷 ↔ (𝑥 ∈ ℂ ∧ (𝑥 ∈ ℝ → 𝑥 ∈ ℝ+)))
1211simplbi 497 . . . . . 6 (𝑥𝐷𝑥 ∈ ℂ)
134logdmn0 26556 . . . . . 6 (𝑥𝐷𝑥 ≠ 0)
1412, 13logcld 26486 . . . . 5 (𝑥𝐷 → (log‘𝑥) ∈ ℂ)
1514imcld 15168 . . . . . 6 (𝑥𝐷 → (ℑ‘(log‘𝑥)) ∈ ℝ)
1612, 13logimcld 26487 . . . . . . 7 (𝑥𝐷 → (-π < (ℑ‘(log‘𝑥)) ∧ (ℑ‘(log‘𝑥)) ≤ π))
1716simpld 494 . . . . . 6 (𝑥𝐷 → -π < (ℑ‘(log‘𝑥)))
18 pire 26373 . . . . . . . 8 π ∈ ℝ
1918a1i 11 . . . . . . 7 (𝑥𝐷 → π ∈ ℝ)
2016simprd 495 . . . . . . 7 (𝑥𝐷 → (ℑ‘(log‘𝑥)) ≤ π)
214logdmnrp 26557 . . . . . . . . 9 (𝑥𝐷 → ¬ -𝑥 ∈ ℝ+)
22 lognegb 26506 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (-𝑥 ∈ ℝ+ ↔ (ℑ‘(log‘𝑥)) = π))
2312, 13, 22syl2anc 584 . . . . . . . . . 10 (𝑥𝐷 → (-𝑥 ∈ ℝ+ ↔ (ℑ‘(log‘𝑥)) = π))
2423necon3bbid 2963 . . . . . . . . 9 (𝑥𝐷 → (¬ -𝑥 ∈ ℝ+ ↔ (ℑ‘(log‘𝑥)) ≠ π))
2521, 24mpbid 232 . . . . . . . 8 (𝑥𝐷 → (ℑ‘(log‘𝑥)) ≠ π)
2625necomd 2981 . . . . . . 7 (𝑥𝐷 → π ≠ (ℑ‘(log‘𝑥)))
2715, 19, 20, 26leneltd 11335 . . . . . 6 (𝑥𝐷 → (ℑ‘(log‘𝑥)) < π)
2818renegcli 11490 . . . . . . . 8 -π ∈ ℝ
2928rexri 11239 . . . . . . 7 -π ∈ ℝ*
3018rexri 11239 . . . . . . 7 π ∈ ℝ*
31 elioo2 13354 . . . . . . 7 ((-π ∈ ℝ* ∧ π ∈ ℝ*) → ((ℑ‘(log‘𝑥)) ∈ (-π(,)π) ↔ ((ℑ‘(log‘𝑥)) ∈ ℝ ∧ -π < (ℑ‘(log‘𝑥)) ∧ (ℑ‘(log‘𝑥)) < π)))
3229, 30, 31mp2an 692 . . . . . 6 ((ℑ‘(log‘𝑥)) ∈ (-π(,)π) ↔ ((ℑ‘(log‘𝑥)) ∈ ℝ ∧ -π < (ℑ‘(log‘𝑥)) ∧ (ℑ‘(log‘𝑥)) < π))
3315, 17, 27, 32syl3anbrc 1344 . . . . 5 (𝑥𝐷 → (ℑ‘(log‘𝑥)) ∈ (-π(,)π))
34 imf 15086 . . . . . 6 ℑ:ℂ⟶ℝ
35 ffn 6691 . . . . . 6 (ℑ:ℂ⟶ℝ → ℑ Fn ℂ)
36 elpreima 7033 . . . . . 6 (ℑ Fn ℂ → ((log‘𝑥) ∈ (ℑ “ (-π(,)π)) ↔ ((log‘𝑥) ∈ ℂ ∧ (ℑ‘(log‘𝑥)) ∈ (-π(,)π))))
3734, 35, 36mp2b 10 . . . . 5 ((log‘𝑥) ∈ (ℑ “ (-π(,)π)) ↔ ((log‘𝑥) ∈ ℂ ∧ (ℑ‘(log‘𝑥)) ∈ (-π(,)π)))
3814, 33, 37sylanbrc 583 . . . 4 (𝑥𝐷 → (log‘𝑥) ∈ (ℑ “ (-π(,)π)))
3910, 38mprgbir 3052 . . 3 (log “ 𝐷) ⊆ (ℑ “ (-π(,)π))
40 df-ioo 13317 . . . . . . . . . 10 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
41 df-ioc 13318 . . . . . . . . . 10 (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
42 idd 24 . . . . . . . . . 10 ((-π ∈ ℝ*𝑤 ∈ ℝ*) → (-π < 𝑤 → -π < 𝑤))
43 xrltle 13116 . . . . . . . . . 10 ((𝑤 ∈ ℝ* ∧ π ∈ ℝ*) → (𝑤 < π → 𝑤 ≤ π))
4440, 41, 42, 43ixxssixx 13327 . . . . . . . . 9 (-π(,)π) ⊆ (-π(,]π)
45 imass2 6076 . . . . . . . . 9 ((-π(,)π) ⊆ (-π(,]π) → (ℑ “ (-π(,)π)) ⊆ (ℑ “ (-π(,]π)))
4644, 45ax-mp 5 . . . . . . . 8 (ℑ “ (-π(,)π)) ⊆ (ℑ “ (-π(,]π))
47 logrn 26474 . . . . . . . 8 ran log = (ℑ “ (-π(,]π))
4846, 47sseqtrri 3999 . . . . . . 7 (ℑ “ (-π(,)π)) ⊆ ran log
4948sseli 3945 . . . . . 6 (𝑥 ∈ (ℑ “ (-π(,)π)) → 𝑥 ∈ ran log)
50 logef 26497 . . . . . 6 (𝑥 ∈ ran log → (log‘(exp‘𝑥)) = 𝑥)
5149, 50syl 17 . . . . 5 (𝑥 ∈ (ℑ “ (-π(,)π)) → (log‘(exp‘𝑥)) = 𝑥)
52 elpreima 7033 . . . . . . . . . 10 (ℑ Fn ℂ → (𝑥 ∈ (ℑ “ (-π(,)π)) ↔ (𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π))))
5334, 35, 52mp2b 10 . . . . . . . . 9 (𝑥 ∈ (ℑ “ (-π(,)π)) ↔ (𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)))
54 efcl 16055 . . . . . . . . . 10 (𝑥 ∈ ℂ → (exp‘𝑥) ∈ ℂ)
5554adantr 480 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → (exp‘𝑥) ∈ ℂ)
5653, 55sylbi 217 . . . . . . . 8 (𝑥 ∈ (ℑ “ (-π(,)π)) → (exp‘𝑥) ∈ ℂ)
5753simplbi 497 . . . . . . . . . . 11 (𝑥 ∈ (ℑ “ (-π(,)π)) → 𝑥 ∈ ℂ)
5857imcld 15168 . . . . . . . . . 10 (𝑥 ∈ (ℑ “ (-π(,)π)) → (ℑ‘𝑥) ∈ ℝ)
59 eliooord 13373 . . . . . . . . . . . 12 ((ℑ‘𝑥) ∈ (-π(,)π) → (-π < (ℑ‘𝑥) ∧ (ℑ‘𝑥) < π))
6053, 59simplbiim 504 . . . . . . . . . . 11 (𝑥 ∈ (ℑ “ (-π(,)π)) → (-π < (ℑ‘𝑥) ∧ (ℑ‘𝑥) < π))
6160simprd 495 . . . . . . . . . 10 (𝑥 ∈ (ℑ “ (-π(,)π)) → (ℑ‘𝑥) < π)
6258, 61ltned 11317 . . . . . . . . 9 (𝑥 ∈ (ℑ “ (-π(,)π)) → (ℑ‘𝑥) ≠ π)
6351adantr 480 . . . . . . . . . . . . 13 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → (log‘(exp‘𝑥)) = 𝑥)
6463fveq2d 6865 . . . . . . . . . . . 12 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → (ℑ‘(log‘(exp‘𝑥))) = (ℑ‘𝑥))
65 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → (exp‘𝑥) ∈ (-∞(,]0))
66 mnfxr 11238 . . . . . . . . . . . . . . . . 17 -∞ ∈ ℝ*
67 0re 11183 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ
68 elioc2 13377 . . . . . . . . . . . . . . . . 17 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ) → ((exp‘𝑥) ∈ (-∞(,]0) ↔ ((exp‘𝑥) ∈ ℝ ∧ -∞ < (exp‘𝑥) ∧ (exp‘𝑥) ≤ 0)))
6966, 67, 68mp2an 692 . . . . . . . . . . . . . . . 16 ((exp‘𝑥) ∈ (-∞(,]0) ↔ ((exp‘𝑥) ∈ ℝ ∧ -∞ < (exp‘𝑥) ∧ (exp‘𝑥) ≤ 0))
7065, 69sylib 218 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → ((exp‘𝑥) ∈ ℝ ∧ -∞ < (exp‘𝑥) ∧ (exp‘𝑥) ≤ 0))
7170simp1d 1142 . . . . . . . . . . . . . 14 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → (exp‘𝑥) ∈ ℝ)
72 0red 11184 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → 0 ∈ ℝ)
7370simp3d 1144 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → (exp‘𝑥) ≤ 0)
74 efne0 16071 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℂ → (exp‘𝑥) ≠ 0)
7557, 74syl 17 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (ℑ “ (-π(,)π)) → (exp‘𝑥) ≠ 0)
7675adantr 480 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → (exp‘𝑥) ≠ 0)
7776necomd 2981 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → 0 ≠ (exp‘𝑥))
7871, 72, 73, 77leneltd 11335 . . . . . . . . . . . . . 14 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → (exp‘𝑥) < 0)
7971, 78negelrpd 12994 . . . . . . . . . . . . 13 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → -(exp‘𝑥) ∈ ℝ+)
80 lognegb 26506 . . . . . . . . . . . . . . 15 (((exp‘𝑥) ∈ ℂ ∧ (exp‘𝑥) ≠ 0) → (-(exp‘𝑥) ∈ ℝ+ ↔ (ℑ‘(log‘(exp‘𝑥))) = π))
8156, 75, 80syl2anc 584 . . . . . . . . . . . . . 14 (𝑥 ∈ (ℑ “ (-π(,)π)) → (-(exp‘𝑥) ∈ ℝ+ ↔ (ℑ‘(log‘(exp‘𝑥))) = π))
8281adantr 480 . . . . . . . . . . . . 13 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → (-(exp‘𝑥) ∈ ℝ+ ↔ (ℑ‘(log‘(exp‘𝑥))) = π))
8379, 82mpbid 232 . . . . . . . . . . . 12 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → (ℑ‘(log‘(exp‘𝑥))) = π)
8464, 83eqtr3d 2767 . . . . . . . . . . 11 ((𝑥 ∈ (ℑ “ (-π(,)π)) ∧ (exp‘𝑥) ∈ (-∞(,]0)) → (ℑ‘𝑥) = π)
8584ex 412 . . . . . . . . . 10 (𝑥 ∈ (ℑ “ (-π(,)π)) → ((exp‘𝑥) ∈ (-∞(,]0) → (ℑ‘𝑥) = π))
8685necon3ad 2939 . . . . . . . . 9 (𝑥 ∈ (ℑ “ (-π(,)π)) → ((ℑ‘𝑥) ≠ π → ¬ (exp‘𝑥) ∈ (-∞(,]0)))
8762, 86mpd 15 . . . . . . . 8 (𝑥 ∈ (ℑ “ (-π(,)π)) → ¬ (exp‘𝑥) ∈ (-∞(,]0))
8856, 87eldifd 3928 . . . . . . 7 (𝑥 ∈ (ℑ “ (-π(,)π)) → (exp‘𝑥) ∈ (ℂ ∖ (-∞(,]0)))
8988, 4eleqtrrdi 2840 . . . . . 6 (𝑥 ∈ (ℑ “ (-π(,)π)) → (exp‘𝑥) ∈ 𝐷)
90 funfvima2 7208 . . . . . . 7 ((Fun log ∧ 𝐷 ⊆ dom log) → ((exp‘𝑥) ∈ 𝐷 → (log‘(exp‘𝑥)) ∈ (log “ 𝐷)))
913, 8, 90mp2an 692 . . . . . 6 ((exp‘𝑥) ∈ 𝐷 → (log‘(exp‘𝑥)) ∈ (log “ 𝐷))
9289, 91syl 17 . . . . 5 (𝑥 ∈ (ℑ “ (-π(,)π)) → (log‘(exp‘𝑥)) ∈ (log “ 𝐷))
9351, 92eqeltrrd 2830 . . . 4 (𝑥 ∈ (ℑ “ (-π(,)π)) → 𝑥 ∈ (log “ 𝐷))
9493ssriv 3953 . . 3 (ℑ “ (-π(,)π)) ⊆ (log “ 𝐷)
9539, 94eqssi 3966 . 2 (log “ 𝐷) = (ℑ “ (-π(,)π))
96 imcncf 24803 . . . 4 ℑ ∈ (ℂ–cn→ℝ)
97 ssid 3972 . . . . 5 ℂ ⊆ ℂ
98 ax-resscn 11132 . . . . 5 ℝ ⊆ ℂ
99 eqid 2730 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
10099cnfldtopon 24677 . . . . . . 7 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
101100toponrestid 22815 . . . . . 6 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
102 tgioo4 24700 . . . . . 6 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
10399, 101, 102cncfcn 24810 . . . . 5 ((ℂ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℂ–cn→ℝ) = ((TopOpen‘ℂfld) Cn (topGen‘ran (,))))
10497, 98, 103mp2an 692 . . . 4 (ℂ–cn→ℝ) = ((TopOpen‘ℂfld) Cn (topGen‘ran (,)))
10596, 104eleqtri 2827 . . 3 ℑ ∈ ((TopOpen‘ℂfld) Cn (topGen‘ran (,)))
106 iooretop 24660 . . 3 (-π(,)π) ∈ (topGen‘ran (,))
107 cnima 23159 . . 3 ((ℑ ∈ ((TopOpen‘ℂfld) Cn (topGen‘ran (,))) ∧ (-π(,)π) ∈ (topGen‘ran (,))) → (ℑ “ (-π(,)π)) ∈ (TopOpen‘ℂfld))
108105, 106, 107mp2an 692 . 2 (ℑ “ (-π(,)π)) ∈ (TopOpen‘ℂfld)
10995, 108eqeltri 2825 1 (log “ 𝐷) ∈ (TopOpen‘ℂfld)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  cdif 3914  wss 3917  {csn 4592   class class class wbr 5110  ccnv 5640  dom cdm 5641  ran crn 5642  cima 5644  Fun wfun 6508   Fn wfn 6509  wf 6510  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  -∞cmnf 11213  *cxr 11214   < clt 11215  cle 11216  -cneg 11413  +crp 12958  (,)cioo 13313  (,]cioc 13314  cim 15071  expce 16034  πcpi 16039  TopOpenctopn 17391  topGenctg 17407  fldccnfld 21271   Cn ccn 23118  cnccncf 24776  logclog 26470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775  df-log 26472
This theorem is referenced by:  dvlog  26567
  Copyright terms: Public domain W3C validator