![]() |
Metamath
Proof Explorer Theorem List (p. 134 of 437) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-28361) |
![]() (28362-29886) |
![]() (29887-43649) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | binom2sub1 13301 | Special case of binom2sub 13300 where 𝐵 = 1. (Contributed by AV, 2-Aug-2021.) |
⊢ (𝐴 ∈ ℂ → ((𝐴 − 1)↑2) = (((𝐴↑2) − (2 · 𝐴)) + 1)) | ||
Theorem | binom2subi 13302 | Expand the square of a subtraction. (Contributed by Scott Fenton, 13-Jun-2013.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ ((𝐴 − 𝐵)↑2) = (((𝐴↑2) − (2 · (𝐴 · 𝐵))) + (𝐵↑2)) | ||
Theorem | mulbinom2 13303 | The square of a binomial with factor. (Contributed by AV, 19-Jul-2021.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐶 · 𝐴) + 𝐵)↑2) = ((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2))) | ||
Theorem | binom3 13304 | The cube of a binomial. (Contributed by Mario Carneiro, 24-Apr-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑3) = (((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3)))) | ||
Theorem | sq01 13305 | If a complex number equals its square, it must be 0 or 1. (Contributed by NM, 6-Jun-2006.) |
⊢ (𝐴 ∈ ℂ → ((𝐴↑2) = 𝐴 ↔ (𝐴 = 0 ∨ 𝐴 = 1))) | ||
Theorem | zesq 13306 | An integer is even iff its square is even. (Contributed by Mario Carneiro, 12-Sep-2015.) |
⊢ (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ↔ ((𝑁↑2) / 2) ∈ ℤ)) | ||
Theorem | nnesq 13307 | A positive integer is even iff its square is even. (Contributed by NM, 20-Aug-2001.) (Revised by Mario Carneiro, 12-Sep-2015.) |
⊢ (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ↔ ((𝑁↑2) / 2) ∈ ℕ)) | ||
Theorem | crreczi 13308 | Reciprocal of a complex number in terms of real and imaginary components. Remark in [Apostol] p. 361. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Jeff Hankins, 16-Dec-2013.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) → (1 / (𝐴 + (i · 𝐵))) = ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2)))) | ||
Theorem | bernneq 13309 | Bernoulli's inequality, due to Johan Bernoulli (1667-1748). (Contributed by NM, 21-Feb-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 𝑁)) ≤ ((1 + 𝐴)↑𝑁)) | ||
Theorem | bernneq2 13310 | Variation of Bernoulli's inequality bernneq 13309. (Contributed by NM, 18-Oct-2007.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → (((𝐴 − 1) · 𝑁) + 1) ≤ (𝐴↑𝑁)) | ||
Theorem | bernneq3 13311 | A corollary of bernneq 13309. (Contributed by Mario Carneiro, 11-Mar-2014.) |
⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 < (𝑃↑𝑁)) | ||
Theorem | expnbnd 13312* | Exponentiation with a mantissa greater than 1 has no upper bound. (Contributed by NM, 20-Oct-2007.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵↑𝑘)) | ||
Theorem | expnlbnd 13313* | The reciprocal of exponentiation with a mantissa greater than 1 has no lower bound. (Contributed by NM, 18-Jul-2008.) |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ (1 / (𝐵↑𝑘)) < 𝐴) | ||
Theorem | expnlbnd2 13314* | The reciprocal of exponentiation with a mantissa greater than 1 has no lower bound. (Contributed by NM, 18-Jul-2008.) (Proof shortened by Mario Carneiro, 5-Jun-2014.) |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(1 / (𝐵↑𝑘)) < 𝐴) | ||
Theorem | expmulnbnd 13315* | Exponentiation with a mantissa greater than 1 is not bounded by any linear function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑗 ∈ ℕ0 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐴 · 𝑘) < (𝐵↑𝑘)) | ||
Theorem | digit2 13316 | Two ways to express the 𝐾 th digit in the decimal (when base 𝐵 = 10) expansion of a number 𝐴. 𝐾 = 1 corresponds to the first digit after the decimal point. (Contributed by NM, 25-Dec-2008.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((⌊‘((𝐵↑𝐾) · 𝐴)) mod 𝐵) = ((⌊‘((𝐵↑𝐾) · 𝐴)) − (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))))) | ||
Theorem | digit1 13317 | Two ways to express the 𝐾 th digit in the decimal expansion of a number 𝐴 (when base 𝐵 = 10). 𝐾 = 1 corresponds to the first digit after the decimal point. (Contributed by NM, 3-Jan-2009.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((⌊‘((𝐵↑𝐾) · 𝐴)) mod 𝐵) = (((⌊‘((𝐵↑𝐾) · 𝐴)) mod (𝐵↑𝐾)) − ((𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))) mod (𝐵↑𝐾)))) | ||
Theorem | modexp 13318 | Exponentiation property of the modulo operation, see theorem 5.2(c) in [ApostolNT] p. 107. (Contributed by Mario Carneiro, 28-Feb-2014.) |
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℝ+) ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴↑𝐶) mod 𝐷) = ((𝐵↑𝐶) mod 𝐷)) | ||
Theorem | discr1 13319* | A nonnegative quadratic form has nonnegative leading coefficient. (Contributed by Mario Carneiro, 4-Jun-2014.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 0 ≤ (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶)) & ⊢ 𝑋 = if(1 ≤ (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), 1) ⇒ ⊢ (𝜑 → 0 ≤ 𝐴) | ||
Theorem | discr 13320* | If a quadratic polynomial with real coefficients is nonnegative for all values, then its discriminant is nonpositive. (Contributed by NM, 10-Aug-1999.) (Revised by Mario Carneiro, 4-Jun-2014.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 0 ≤ (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶)) ⇒ ⊢ (𝜑 → ((𝐵↑2) − (4 · (𝐴 · 𝐶))) ≤ 0) | ||
Theorem | exp0d 13321 | Value of a complex number raised to the 0th power. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴↑0) = 1) | ||
Theorem | exp1d 13322 | Value of a complex number raised to the first power. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴↑1) = 𝐴) | ||
Theorem | expeq0d 13323 | Positive integer exponentiation is 0 iff its mantissa is 0. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → (𝐴↑𝑁) = 0) ⇒ ⊢ (𝜑 → 𝐴 = 0) | ||
Theorem | sqvald 13324 | Value of square. Inference version. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴↑2) = (𝐴 · 𝐴)) | ||
Theorem | sqcld 13325 | Closure of square. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴↑2) ∈ ℂ) | ||
Theorem | sqeq0d 13326 | A number is zero iff its square is zero. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (𝐴↑2) = 0) ⇒ ⊢ (𝜑 → 𝐴 = 0) | ||
Theorem | expcld 13327 | Closure law for nonnegative integer exponentiation. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℂ) | ||
Theorem | expp1d 13328 | Value of a complex number raised to a nonnegative integer power plus one. Part of Definition 10-4.1 of [Gleason] p. 134. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴↑(𝑁 + 1)) = ((𝐴↑𝑁) · 𝐴)) | ||
Theorem | expaddd 13329 | Sum of exponents law for nonnegative integer exponentiation. Proposition 10-4.2(a) of [Gleason] p. 135. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴↑(𝑀 + 𝑁)) = ((𝐴↑𝑀) · (𝐴↑𝑁))) | ||
Theorem | expmuld 13330 | Product of exponents law for positive integer exponentiation. Proposition 10-4.2(b) of [Gleason] p. 135, restricted to nonnegative integer exponents. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴↑(𝑀 · 𝑁)) = ((𝐴↑𝑀)↑𝑁)) | ||
Theorem | sqrecd 13331 | Square of reciprocal. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → ((1 / 𝐴)↑2) = (1 / (𝐴↑2))) | ||
Theorem | expclzd 13332 | Closure law for integer exponentiation. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℂ) | ||
Theorem | expne0d 13333 | Nonnegative integer exponentiation is nonzero if its mantissa is nonzero. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐴↑𝑁) ≠ 0) | ||
Theorem | expnegd 13334 | Value of a complex number raised to a negative power. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐴↑-𝑁) = (1 / (𝐴↑𝑁))) | ||
Theorem | exprecd 13335 | Nonnegative integer exponentiation of a reciprocal. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → ((1 / 𝐴)↑𝑁) = (1 / (𝐴↑𝑁))) | ||
Theorem | expp1zd 13336 | Value of a nonzero complex number raised to an integer power plus one. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐴↑(𝑁 + 1)) = ((𝐴↑𝑁) · 𝐴)) | ||
Theorem | expm1d 13337 | Value of a complex number raised to an integer power minus one. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐴↑(𝑁 − 1)) = ((𝐴↑𝑁) / 𝐴)) | ||
Theorem | expsubd 13338 | Exponent subtraction law for nonnegative integer exponentiation. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐴↑(𝑀 − 𝑁)) = ((𝐴↑𝑀) / (𝐴↑𝑁))) | ||
Theorem | sqmuld 13339 | Distribution of square over multiplication. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐵)↑2) = ((𝐴↑2) · (𝐵↑2))) | ||
Theorem | sqdivd 13340 | Distribution of square over division. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵)↑2) = ((𝐴↑2) / (𝐵↑2))) | ||
Theorem | expdivd 13341 | Nonnegative integer exponentiation of a quotient. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵)↑𝑁) = ((𝐴↑𝑁) / (𝐵↑𝑁))) | ||
Theorem | mulexpd 13342 | Positive integer exponentiation of a product. Proposition 10-4.2(c) of [Gleason] p. 135, restricted to nonnegative integer exponents. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐵)↑𝑁) = ((𝐴↑𝑁) · (𝐵↑𝑁))) | ||
Theorem | 0expd 13343 | Value of zero raised to a positive integer power. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (0↑𝑁) = 0) | ||
Theorem | reexpcld 13344 | Closure of exponentiation of reals. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℝ) | ||
Theorem | expge0d 13345 | Nonnegative integer exponentiation with a nonnegative mantissa is nonnegative. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → 0 ≤ (𝐴↑𝑁)) | ||
Theorem | expge1d 13346 | Nonnegative integer exponentiation with a nonnegative mantissa is nonnegative. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 1 ≤ 𝐴) ⇒ ⊢ (𝜑 → 1 ≤ (𝐴↑𝑁)) | ||
Theorem | expnngt1 13347 | If an integer power with a positive integer base is greater than 1, then the exponent is positive. (Contributed by AV, 28-Dec-2022.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 1 < (𝐴↑𝐵)) → 𝐵 ∈ ℕ) | ||
Theorem | expnngt1b 13348 | An integer power with an integer base greater than 1 is greater than 1 iff the exponent is positive. (Contributed by AV, 28-Dec-2022.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ ℤ) → (1 < (𝐴↑𝐵) ↔ 𝐵 ∈ ℕ)) | ||
Theorem | sqoddm1div8 13349 | A squared odd number minus 1 divided by 8 is the odd number multiplied with its successor divided by 2. (Contributed by AV, 19-Jul-2021.) |
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 = ((2 · 𝑁) + 1)) → (((𝑀↑2) − 1) / 8) = ((𝑁 · (𝑁 + 1)) / 2)) | ||
Theorem | nnsqcld 13350 | The naturals are closed under squaring. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝐴↑2) ∈ ℕ) | ||
Theorem | nnexpcld 13351 | Closure of exponentiation of nonnegative integers. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℕ) | ||
Theorem | nn0expcld 13352 | Closure of exponentiation of nonnegative integers. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℕ0) | ||
Theorem | rpexpcld 13353 | Closure law for exponentiation of positive reals. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℝ+) | ||
Theorem | ltexp2rd 13354 | The power of a positive number smaller than 1 decreases as its exponent increases. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 < 1) ⇒ ⊢ (𝜑 → (𝑀 < 𝑁 ↔ (𝐴↑𝑁) < (𝐴↑𝑀))) | ||
Theorem | reexpclzd 13355 | Closure of exponentiation of reals. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℝ) | ||
Theorem | resqcld 13356 | Closure of square in reals. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴↑2) ∈ ℝ) | ||
Theorem | sqge0d 13357 | A square of a real is nonnegative. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → 0 ≤ (𝐴↑2)) | ||
Theorem | sqgt0d 13358 | The square of a nonzero real is positive. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → 0 < (𝐴↑2)) | ||
Theorem | ltexp2d 13359 | Ordering relationship for exponentiation. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 1 < 𝐴) ⇒ ⊢ (𝜑 → (𝑀 < 𝑁 ↔ (𝐴↑𝑀) < (𝐴↑𝑁))) | ||
Theorem | leexp2d 13360 | Ordering law for exponentiation. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 1 < 𝐴) ⇒ ⊢ (𝜑 → (𝑀 ≤ 𝑁 ↔ (𝐴↑𝑀) ≤ (𝐴↑𝑁))) | ||
Theorem | expcand 13361 | Ordering relationship for exponentiation. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 1 < 𝐴) & ⊢ (𝜑 → (𝐴↑𝑀) = (𝐴↑𝑁)) ⇒ ⊢ (𝜑 → 𝑀 = 𝑁) | ||
Theorem | leexp2ad 13362 | Ordering relationship for exponentiation. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 1 ≤ 𝐴) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) ⇒ ⊢ (𝜑 → (𝐴↑𝑀) ≤ (𝐴↑𝑁)) | ||
Theorem | leexp2rd 13363 | Ordering relationship for exponentiation. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐴 ≤ 1) ⇒ ⊢ (𝜑 → (𝐴↑𝑁) ≤ (𝐴↑𝑀)) | ||
Theorem | lt2sqd 13364 | The square function on nonnegative reals is strictly monotonic. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (𝐴↑2) < (𝐵↑2))) | ||
Theorem | le2sqd 13365 | The square function on nonnegative reals is monotonic. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (𝐴↑2) ≤ (𝐵↑2))) | ||
Theorem | sq11d 13366 | The square function is one-to-one for nonnegative reals. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 0 ≤ 𝐵) & ⊢ (𝜑 → (𝐴↑2) = (𝐵↑2)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | mulsubdivbinom2 13367 | The square of a binomial with factor minus a number divided by a nonzero number. (Contributed by AV, 19-Jul-2021.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((((𝐶 · 𝐴) + 𝐵)↑2) − 𝐷) / 𝐶) = (((𝐶 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) + (((𝐵↑2) − 𝐷) / 𝐶))) | ||
Theorem | muldivbinom2 13368 | The square of a binomial with factor divided by a nonzero number. (Contributed by AV, 19-Jul-2021.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((((𝐶 · 𝐴) + 𝐵)↑2) / 𝐶) = (((𝐶 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) + ((𝐵↑2) / 𝐶))) | ||
Theorem | sq10 13369 | The square of 10 is 100. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 1-Aug-2021.) |
⊢ (;10↑2) = ;;100 | ||
Theorem | sq10e99m1 13370 | The square of 10 is 99 plus 1. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 1-Aug-2021.) |
⊢ (;10↑2) = (;99 + 1) | ||
Theorem | 3dec 13371 | A "decimal constructor" which is used to build up "decimal integers" or "numeric terms" in base 10 with 3 "digits". (Contributed by AV, 14-Jun-2021.) (Revised by AV, 1-Aug-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 ⇒ ⊢ ;;𝐴𝐵𝐶 = ((((;10↑2) · 𝐴) + (;10 · 𝐵)) + 𝐶) | ||
Theorem | nn0le2msqi 13372 | The square function on nonnegative integers is monotonic. (Contributed by Raph Levien, 10-Dec-2002.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 ⇒ ⊢ (𝐴 ≤ 𝐵 ↔ (𝐴 · 𝐴) ≤ (𝐵 · 𝐵)) | ||
Theorem | nn0opthlem1 13373 | A rather pretty lemma for nn0opthi 13375. (Contributed by Raph Levien, 10-Dec-2002.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 ⇒ ⊢ (𝐴 < 𝐶 ↔ ((𝐴 · 𝐴) + (2 · 𝐴)) < (𝐶 · 𝐶)) | ||
Theorem | nn0opthlem2 13374 | Lemma for nn0opthi 13375. (Contributed by Raph Levien, 10-Dec-2002.) (Revised by Scott Fenton, 8-Sep-2010.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 ⇒ ⊢ ((𝐴 + 𝐵) < 𝐶 → ((𝐶 · 𝐶) + 𝐷) ≠ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵)) | ||
Theorem | nn0opthi 13375 | An ordered pair theorem for nonnegative integers. Theorem 17.3 of [Quine] p. 124. We can represent an ordered pair of nonnegative integers 𝐴 and 𝐵 by (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵). If two such ordered pairs are equal, their first elements are equal and their second elements are equal. Contrast this ordered pair representation with the standard one df-op 4404 that works for any set. (Contributed by Raph Levien, 10-Dec-2002.) (Proof shortened by Scott Fenton, 8-Sep-2010.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 ⇒ ⊢ ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | ||
Theorem | nn0opth2i 13376 | An ordered pair theorem for nonnegative integers. Theorem 17.3 of [Quine] p. 124. See comments for nn0opthi 13375. (Contributed by NM, 22-Jul-2004.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 ⇒ ⊢ ((((𝐴 + 𝐵)↑2) + 𝐵) = (((𝐶 + 𝐷)↑2) + 𝐷) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | ||
Theorem | nn0opth2 13377 | An ordered pair theorem for nonnegative integers. Theorem 17.3 of [Quine] p. 124. See nn0opthi 13375. (Contributed by NM, 22-Jul-2004.) |
⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ (𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0)) → ((((𝐴 + 𝐵)↑2) + 𝐵) = (((𝐶 + 𝐷)↑2) + 𝐷) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
Syntax | cfa 13378 | Extend class notation to include the factorial of nonnegative integers. |
class ! | ||
Definition | df-fac 13379 | Define the factorial function on nonnegative integers. For example, (!‘5) = 120 because 1 · 2 · 3 · 4 · 5 = 120 (ex-fac 27897). In the literature, the factorial function is written as a postscript exclamation point. (Contributed by NM, 2-Dec-2004.) |
⊢ ! = ({〈0, 1〉} ∪ seq1( · , I )) | ||
Theorem | facnn 13380 | Value of the factorial function for positive integers. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.) |
⊢ (𝑁 ∈ ℕ → (!‘𝑁) = (seq1( · , I )‘𝑁)) | ||
Theorem | fac0 13381 | The factorial of 0. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.) |
⊢ (!‘0) = 1 | ||
Theorem | fac1 13382 | The factorial of 1. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.) |
⊢ (!‘1) = 1 | ||
Theorem | facp1 13383 | The factorial of a successor. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.) |
⊢ (𝑁 ∈ ℕ0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1))) | ||
Theorem | fac2 13384 | The factorial of 2. (Contributed by NM, 17-Mar-2005.) |
⊢ (!‘2) = 2 | ||
Theorem | fac3 13385 | The factorial of 3. (Contributed by NM, 17-Mar-2005.) |
⊢ (!‘3) = 6 | ||
Theorem | fac4 13386 | The factorial of 4. (Contributed by Mario Carneiro, 18-Jun-2015.) |
⊢ (!‘4) = ;24 | ||
Theorem | facnn2 13387 | Value of the factorial function expressed recursively. (Contributed by NM, 2-Dec-2004.) |
⊢ (𝑁 ∈ ℕ → (!‘𝑁) = ((!‘(𝑁 − 1)) · 𝑁)) | ||
Theorem | faccl 13388 | Closure of the factorial function. (Contributed by NM, 2-Dec-2004.) |
⊢ (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ) | ||
Theorem | faccld 13389 | Closure of the factorial function, deduction version of faccl 13388. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (!‘𝑁) ∈ ℕ) | ||
Theorem | facmapnn 13390 | The factorial function restricted to positive integers is a mapping from the positive integers to the positive integers. (Contributed by AV, 8-Aug-2020.) |
⊢ (𝑛 ∈ ℕ ↦ (!‘𝑛)) ∈ (ℕ ↑𝑚 ℕ) | ||
Theorem | facne0 13391 | The factorial function is nonzero. (Contributed by NM, 26-Apr-2005.) |
⊢ (𝑁 ∈ ℕ0 → (!‘𝑁) ≠ 0) | ||
Theorem | facdiv 13392 | A positive integer divides the factorial of an equal or larger number. (Contributed by NM, 2-May-2005.) |
⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝑁 ≤ 𝑀) → ((!‘𝑀) / 𝑁) ∈ ℕ) | ||
Theorem | facndiv 13393 | No positive integer (greater than one) divides the factorial plus one of an equal or larger number. (Contributed by NM, 3-May-2005.) |
⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) ∧ (1 < 𝑁 ∧ 𝑁 ≤ 𝑀)) → ¬ (((!‘𝑀) + 1) / 𝑁) ∈ ℤ) | ||
Theorem | facwordi 13394 | Ordering property of factorial. (Contributed by NM, 9-Dec-2005.) |
⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁) → (!‘𝑀) ≤ (!‘𝑁)) | ||
Theorem | faclbnd 13395 | A lower bound for the factorial function. (Contributed by NM, 17-Dec-2005.) |
⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀↑(𝑁 + 1)) ≤ ((𝑀↑𝑀) · (!‘𝑁))) | ||
Theorem | faclbnd2 13396 | A lower bound for the factorial function. (Contributed by NM, 17-Dec-2005.) |
⊢ (𝑁 ∈ ℕ0 → ((2↑𝑁) / 2) ≤ (!‘𝑁)) | ||
Theorem | faclbnd3 13397 | A lower bound for the factorial function. (Contributed by NM, 19-Dec-2005.) |
⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀↑𝑁) ≤ ((𝑀↑𝑀) · (!‘𝑁))) | ||
Theorem | faclbnd4lem1 13398 | Lemma for faclbnd4 13402. Prepare the induction step. (Contributed by NM, 20-Dec-2005.) |
⊢ 𝑁 ∈ ℕ & ⊢ 𝐾 ∈ ℕ0 & ⊢ 𝑀 ∈ ℕ0 ⇒ ⊢ ((((𝑁 − 1)↑𝐾) · (𝑀↑(𝑁 − 1))) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘(𝑁 − 1))) → ((𝑁↑(𝐾 + 1)) · (𝑀↑𝑁)) ≤ (((2↑((𝐾 + 1)↑2)) · (𝑀↑(𝑀 + (𝐾 + 1)))) · (!‘𝑁))) | ||
Theorem | faclbnd4lem2 13399 | Lemma for faclbnd4 13402. Use the weak deduction theorem to convert the hypotheses of faclbnd4lem1 13398 to antecedents. (Contributed by NM, 23-Dec-2005.) |
⊢ ((𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → ((((𝑁 − 1)↑𝐾) · (𝑀↑(𝑁 − 1))) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘(𝑁 − 1))) → ((𝑁↑(𝐾 + 1)) · (𝑀↑𝑁)) ≤ (((2↑((𝐾 + 1)↑2)) · (𝑀↑(𝑀 + (𝐾 + 1)))) · (!‘𝑁)))) | ||
Theorem | faclbnd4lem3 13400 | Lemma for faclbnd4 13402. The 𝑁 = 0 case. (Contributed by NM, 23-Dec-2005.) |
⊢ (((𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) ∧ 𝑁 = 0) → ((𝑁↑𝐾) · (𝑀↑𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |