| Metamath
Proof Explorer Theorem List (p. 134 of 494) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30937) |
(30938-32460) |
(32461-49324) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | xle2add 13301 | Extended real version of le2add 11745. (Contributed by Mario Carneiro, 23-Aug-2015.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → ((𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐷) → (𝐴 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐷))) | ||
| Theorem | xlt2add 13302 | Extended real version of lt2add 11748. Note that ltleadd 11746, which has weaker assumptions, is not true for the extended reals (since 0 + +∞ < 1 + +∞ fails). (Contributed by Mario Carneiro, 23-Aug-2015.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → ((𝐴 < 𝐶 ∧ 𝐵 < 𝐷) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷))) | ||
| Theorem | xsubge0 13303 | Extended real version of subge0 11776. (Contributed by Mario Carneiro, 24-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ 𝐵 ≤ 𝐴)) | ||
| Theorem | xposdif 13304 | Extended real version of posdif 11756. (Contributed by Mario Carneiro, 24-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒 -𝑒𝐴))) | ||
| Theorem | xlesubadd 13305 | Under certain conditions, the conclusion of lesubadd 11735 is true even in the extended reals. (Contributed by Mario Carneiro, 4-Sep-2015.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴 ∧ 𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → ((𝐴 +𝑒 -𝑒𝐵) ≤ 𝐶 ↔ 𝐴 ≤ (𝐶 +𝑒 𝐵))) | ||
| Theorem | xmullem 13306 | Lemma for rexmul 13313. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → 𝐴 ∈ ℝ) | ||
| Theorem | xmullem2 13307 | Lemma for xmulneg1 13311. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))))) | ||
| Theorem | xmulcom 13308 | Extended real multiplication is commutative. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ·e 𝐵) = (𝐵 ·e 𝐴)) | ||
| Theorem | xmul01 13309 | Extended real version of mul01 11440. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (𝐴 ∈ ℝ* → (𝐴 ·e 0) = 0) | ||
| Theorem | xmul02 13310 | Extended real version of mul02 11439. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (𝐴 ∈ ℝ* → (0 ·e 𝐴) = 0) | ||
| Theorem | xmulneg1 13311 | Extended real version of mulneg1 11699. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (-𝑒𝐴 ·e 𝐵) = -𝑒(𝐴 ·e 𝐵)) | ||
| Theorem | xmulneg2 13312 | Extended real version of mulneg2 11700. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ·e -𝑒𝐵) = -𝑒(𝐴 ·e 𝐵)) | ||
| Theorem | rexmul 13313 | The extended real multiplication when both arguments are real. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ·e 𝐵) = (𝐴 · 𝐵)) | ||
| Theorem | xmulf 13314 | The extended real multiplication operation is closed in extended reals. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| ⊢ ·e :(ℝ* × ℝ*)⟶ℝ* | ||
| Theorem | xmulcl 13315 | Closure of extended real multiplication. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ·e 𝐵) ∈ ℝ*) | ||
| Theorem | xmulpnf1 13316 | Multiplication by plus infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e +∞) = +∞) | ||
| Theorem | xmulpnf2 13317 | Multiplication by plus infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (+∞ ·e 𝐴) = +∞) | ||
| Theorem | xmulmnf1 13318 | Multiplication by minus infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e -∞) = -∞) | ||
| Theorem | xmulmnf2 13319 | Multiplication by minus infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (-∞ ·e 𝐴) = -∞) | ||
| Theorem | xmulpnf1n 13320 | Multiplication by plus infinity on the right, for negative input. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → (𝐴 ·e +∞) = -∞) | ||
| Theorem | xmulrid 13321 | Extended real version of mulrid 11259. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (𝐴 ∈ ℝ* → (𝐴 ·e 1) = 𝐴) | ||
| Theorem | xmullid 13322 | Extended real version of mullid 11260. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (𝐴 ∈ ℝ* → (1 ·e 𝐴) = 𝐴) | ||
| Theorem | xmulm1 13323 | Extended real version of mulm1 11704. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (𝐴 ∈ ℝ* → (-1 ·e 𝐴) = -𝑒𝐴) | ||
| Theorem | xmulasslem2 13324 | Lemma for xmulass 13329. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((0 < 𝐴 ∧ 𝐴 = -∞) → 𝜑) | ||
| Theorem | xmulgt0 13325 | Extended real version of mulgt0 11338. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) → 0 < (𝐴 ·e 𝐵)) | ||
| Theorem | xmulge0 13326 | Extended real version of mulge0 11781. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 ·e 𝐵)) | ||
| Theorem | xmulasslem 13327* | Lemma for xmulass 13329. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (𝑥 = 𝐷 → (𝜓 ↔ 𝑋 = 𝑌)) & ⊢ (𝑥 = -𝑒𝐷 → (𝜓 ↔ 𝐸 = 𝐹)) & ⊢ (𝜑 → 𝑋 ∈ ℝ*) & ⊢ (𝜑 → 𝑌 ∈ ℝ*) & ⊢ (𝜑 → 𝐷 ∈ ℝ*) & ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 0 < 𝑥)) → 𝜓) & ⊢ (𝜑 → (𝑥 = 0 → 𝜓)) & ⊢ (𝜑 → 𝐸 = -𝑒𝑋) & ⊢ (𝜑 → 𝐹 = -𝑒𝑌) ⇒ ⊢ (𝜑 → 𝑋 = 𝑌) | ||
| Theorem | xmulasslem3 13328 | Lemma for xmulass 13329. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → ((𝐴 ·e 𝐵) ·e 𝐶) = (𝐴 ·e (𝐵 ·e 𝐶))) | ||
| Theorem | xmulass 13329 | Associativity of the extended real multiplication operation. Surprisingly, there are no restrictions on the values, unlike xaddass 13291 which has to avoid the "undefined" combinations +∞ +𝑒 -∞ and -∞ +𝑒 +∞. The equivalent "undefined" expression here would be 0 ·e +∞, but since this is defined to equal 0 any zeroes in the expression make the whole thing evaluate to zero (on both sides), thus establishing the identity in this case. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 ·e 𝐵) ·e 𝐶) = (𝐴 ·e (𝐵 ·e 𝐶))) | ||
| Theorem | xlemul1a 13330 | Extended real version of lemul1a 12121. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 𝐴 ≤ 𝐵) → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶)) | ||
| Theorem | xlemul2a 13331 | Extended real version of lemul2a 12122. (Contributed by Mario Carneiro, 8-Sep-2015.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 𝐴 ≤ 𝐵) → (𝐶 ·e 𝐴) ≤ (𝐶 ·e 𝐵)) | ||
| Theorem | xlemul1 13332 | Extended real version of lemul1 12119. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+) → (𝐴 ≤ 𝐵 ↔ (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶))) | ||
| Theorem | xlemul2 13333 | Extended real version of lemul2 12120. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+) → (𝐴 ≤ 𝐵 ↔ (𝐶 ·e 𝐴) ≤ (𝐶 ·e 𝐵))) | ||
| Theorem | xltmul1 13334 | Extended real version of ltmul1 12117. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+) → (𝐴 < 𝐵 ↔ (𝐴 ·e 𝐶) < (𝐵 ·e 𝐶))) | ||
| Theorem | xltmul2 13335 | Extended real version of ltmul2 12118. (Contributed by Mario Carneiro, 8-Sep-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+) → (𝐴 < 𝐵 ↔ (𝐶 ·e 𝐴) < (𝐶 ·e 𝐵))) | ||
| Theorem | xadddilem 13336 | Lemma for xadddi 13337. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ 0 < 𝐴) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶))) | ||
| Theorem | xadddi 13337 | Distributive property for extended real addition and multiplication. Like xaddass 13291, this has an unusual domain of correctness due to counterexamples like (+∞ · (2 − 1)) = -∞ ≠ ((+∞ · 2) − (+∞ · 1)) = (+∞ − +∞) = 0. In this theorem we show that if the multiplier is real then everything works as expected. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶))) | ||
| Theorem | xadddir 13338 | Commuted version of xadddi 13337. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶))) | ||
| Theorem | xadddi2 13339 | The assumption that the multiplier be real in xadddi 13337 can be relaxed if the addends have the same sign. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶))) | ||
| Theorem | xadddi2r 13340 | Commuted version of xadddi2 13339. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ*) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶))) | ||
| Theorem | x2times 13341 | Extended real version of 2times 12402. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (𝐴 ∈ ℝ* → (2 ·e 𝐴) = (𝐴 +𝑒 𝐴)) | ||
| Theorem | xnegcld 13342 | Closure of extended real negative. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) ⇒ ⊢ (𝜑 → -𝑒𝐴 ∈ ℝ*) | ||
| Theorem | xaddcld 13343 | The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) ⇒ ⊢ (𝜑 → (𝐴 +𝑒 𝐵) ∈ ℝ*) | ||
| Theorem | xmulcld 13344 | Closure of extended real multiplication. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) ⇒ ⊢ (𝜑 → (𝐴 ·e 𝐵) ∈ ℝ*) | ||
| Theorem | xadd4d 13345 | Rearrangement of 4 terms in a sum for extended addition, analogous to add4d 11490. (Contributed by Alexander van der Vekens, 21-Dec-2017.) |
| ⊢ (𝜑 → (𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞)) & ⊢ (𝜑 → (𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞)) & ⊢ (𝜑 → (𝐶 ∈ ℝ* ∧ 𝐶 ≠ -∞)) & ⊢ (𝜑 → (𝐷 ∈ ℝ* ∧ 𝐷 ≠ -∞)) ⇒ ⊢ (𝜑 → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = ((𝐴 +𝑒 𝐶) +𝑒 (𝐵 +𝑒 𝐷))) | ||
| Theorem | xnn0add4d 13346 | Rearrangement of 4 terms in a sum for extended addition of extended nonnegative integers, analogous to xadd4d 13345. (Contributed by AV, 12-Dec-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ0*) & ⊢ (𝜑 → 𝐵 ∈ ℕ0*) & ⊢ (𝜑 → 𝐶 ∈ ℕ0*) & ⊢ (𝜑 → 𝐷 ∈ ℕ0*) ⇒ ⊢ (𝜑 → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = ((𝐴 +𝑒 𝐶) +𝑒 (𝐵 +𝑒 𝐷))) | ||
| Theorem | xrsupexmnf 13347* | Adding minus infinity to a set does not affect the existence of its supremum. (Contributed by NM, 26-Oct-2005.) |
| ⊢ (∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∪ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∪ {-∞})𝑦 < 𝑧))) | ||
| Theorem | xrinfmexpnf 13348* | Adding plus infinity to a set does not affect the existence of its infimum. (Contributed by NM, 19-Jan-2006.) |
| ⊢ (∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦)) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∪ {+∞}) ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ (𝐴 ∪ {+∞})𝑧 < 𝑦))) | ||
| Theorem | xrsupsslem 13349* | Lemma for xrsupss 13351. (Contributed by NM, 25-Oct-2005.) |
| ⊢ ((𝐴 ⊆ ℝ* ∧ (𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴)) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | ||
| Theorem | xrinfmsslem 13350* | Lemma for xrinfmss 13352. (Contributed by NM, 19-Jan-2006.) |
| ⊢ ((𝐴 ⊆ ℝ* ∧ (𝐴 ⊆ ℝ ∨ -∞ ∈ 𝐴)) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) | ||
| Theorem | xrsupss 13351* | Any subset of extended reals has a supremum. (Contributed by NM, 25-Oct-2005.) |
| ⊢ (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | ||
| Theorem | xrinfmss 13352* | Any subset of extended reals has an infimum. (Contributed by NM, 25-Oct-2005.) |
| ⊢ (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) | ||
| Theorem | xrinfmss2 13353* | Any subset of extended reals has an infimum. (Contributed by Mario Carneiro, 16-Mar-2014.) |
| ⊢ (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑥◡ < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦◡ < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦◡ < 𝑧))) | ||
| Theorem | xrub 13354* | By quantifying only over reals, we can specify any extended real upper bound for any set of extended reals. (Contributed by NM, 9-Apr-2006.) |
| ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ*) → (∀𝑥 ∈ ℝ (𝑥 < 𝐵 → ∃𝑦 ∈ 𝐴 𝑥 < 𝑦) ↔ ∀𝑥 ∈ ℝ* (𝑥 < 𝐵 → ∃𝑦 ∈ 𝐴 𝑥 < 𝑦))) | ||
| Theorem | supxr 13355* | The supremum of a set of extended reals. (Contributed by NM, 9-Apr-2006.) (Revised by Mario Carneiro, 21-Apr-2015.) |
| ⊢ (((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (∀𝑥 ∈ 𝐴 ¬ 𝐵 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝐵 → ∃𝑦 ∈ 𝐴 𝑥 < 𝑦))) → sup(𝐴, ℝ*, < ) = 𝐵) | ||
| Theorem | supxr2 13356* | The supremum of a set of extended reals. (Contributed by NM, 9-Apr-2006.) |
| ⊢ (((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (∀𝑥 ∈ 𝐴 𝑥 ≤ 𝐵 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝐵 → ∃𝑦 ∈ 𝐴 𝑥 < 𝑦))) → sup(𝐴, ℝ*, < ) = 𝐵) | ||
| Theorem | supxrcl 13357 | The supremum of an arbitrary set of extended reals is an extended real. (Contributed by NM, 24-Oct-2005.) |
| ⊢ (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*) | ||
| Theorem | supxrun 13358 | The supremum of the union of two sets of extended reals equals the largest of their suprema. (Contributed by NM, 19-Jan-2006.) |
| ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → sup((𝐴 ∪ 𝐵), ℝ*, < ) = sup(𝐵, ℝ*, < )) | ||
| Theorem | supxrmnf 13359 | Adding minus infinity to a set does not affect its supremum. (Contributed by NM, 19-Jan-2006.) |
| ⊢ (𝐴 ⊆ ℝ* → sup((𝐴 ∪ {-∞}), ℝ*, < ) = sup(𝐴, ℝ*, < )) | ||
| Theorem | supxrpnf 13360 | The supremum of a set of extended reals containing plus infinity is plus infinity. (Contributed by NM, 15-Oct-2005.) |
| ⊢ ((𝐴 ⊆ ℝ* ∧ +∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) = +∞) | ||
| Theorem | supxrunb1 13361* | The supremum of an unbounded-above set of extended reals is plus infinity. (Contributed by NM, 19-Jan-2006.) |
| ⊢ (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ sup(𝐴, ℝ*, < ) = +∞)) | ||
| Theorem | supxrunb2 13362* | The supremum of an unbounded-above set of extended reals is plus infinity. (Contributed by NM, 19-Jan-2006.) |
| ⊢ (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦 ∈ 𝐴 𝑥 < 𝑦 ↔ sup(𝐴, ℝ*, < ) = +∞)) | ||
| Theorem | supxrbnd1 13363* | The supremum of a bounded-above set of extended reals is less than infinity. (Contributed by NM, 30-Jan-2006.) |
| ⊢ (𝐴 ⊆ ℝ* → (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 < 𝑥 ↔ sup(𝐴, ℝ*, < ) < +∞)) | ||
| Theorem | supxrbnd2 13364* | The supremum of a bounded-above set of extended reals is less than infinity. (Contributed by NM, 30-Jan-2006.) |
| ⊢ (𝐴 ⊆ ℝ* → (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ sup(𝐴, ℝ*, < ) < +∞)) | ||
| Theorem | xrsup0 13365 | The supremum of an empty set under the extended reals is minus infinity. (Contributed by NM, 15-Oct-2005.) |
| ⊢ sup(∅, ℝ*, < ) = -∞ | ||
| Theorem | supxrub 13366 | A member of a set of extended reals is less than or equal to the set's supremum. (Contributed by NM, 7-Feb-2006.) |
| ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ 𝐴) → 𝐵 ≤ sup(𝐴, ℝ*, < )) | ||
| Theorem | supxrlub 13367* | The supremum of a set of extended reals is less than or equal to an upper bound. (Contributed by Mario Carneiro, 13-Sep-2015.) |
| ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐵 < sup(𝐴, ℝ*, < ) ↔ ∃𝑥 ∈ 𝐴 𝐵 < 𝑥)) | ||
| Theorem | supxrleub 13368* | The supremum of a set of extended reals is less than or equal to an upper bound. (Contributed by NM, 22-Feb-2006.) (Revised by Mario Carneiro, 6-Sep-2014.) |
| ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ*) → (sup(𝐴, ℝ*, < ) ≤ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝐵)) | ||
| Theorem | supxrre 13369* | The real and extended real suprema match when the real supremum exists. (Contributed by NM, 18-Oct-2005.) (Proof shortened by Mario Carneiro, 7-Sep-2014.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → sup(𝐴, ℝ*, < ) = sup(𝐴, ℝ, < )) | ||
| Theorem | supxrbnd 13370 | The supremum of a bounded-above nonempty set of reals is real. (Contributed by NM, 19-Jan-2006.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ sup(𝐴, ℝ*, < ) < +∞) → sup(𝐴, ℝ*, < ) ∈ ℝ) | ||
| Theorem | supxrgtmnf 13371 | The supremum of a nonempty set of reals is greater than minus infinity. (Contributed by NM, 2-Feb-2006.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → -∞ < sup(𝐴, ℝ*, < )) | ||
| Theorem | supxrre1 13372 | The supremum of a nonempty set of reals is real iff it is less than plus infinity. (Contributed by NM, 5-Feb-2006.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (sup(𝐴, ℝ*, < ) ∈ ℝ ↔ sup(𝐴, ℝ*, < ) < +∞)) | ||
| Theorem | supxrre2 13373 | The supremum of a nonempty set of reals is real iff it is not plus infinity. (Contributed by NM, 5-Feb-2006.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (sup(𝐴, ℝ*, < ) ∈ ℝ ↔ sup(𝐴, ℝ*, < ) ≠ +∞)) | ||
| Theorem | supxrss 13374 | Smaller sets of extended reals have smaller suprema. (Contributed by Mario Carneiro, 1-Apr-2015.) |
| ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ*) → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) | ||
| Theorem | infxrcl 13375 | The infimum of an arbitrary set of extended reals is an extended real. (Contributed by NM, 19-Jan-2006.) (Revised by AV, 5-Sep-2020.) |
| ⊢ (𝐴 ⊆ ℝ* → inf(𝐴, ℝ*, < ) ∈ ℝ*) | ||
| Theorem | infxrlb 13376 | A member of a set of extended reals is greater than or equal to the set's infimum. (Contributed by Mario Carneiro, 16-Mar-2014.) (Revised by AV, 5-Sep-2020.) |
| ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ 𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝐵) | ||
| Theorem | infxrgelb 13377* | The infimum of a set of extended reals is greater than or equal to a lower bound. (Contributed by Mario Carneiro, 16-Mar-2014.) (Revised by AV, 5-Sep-2020.) |
| ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐵 ≤ inf(𝐴, ℝ*, < ) ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑥)) | ||
| Theorem | infxrre 13378* | The real and extended real infima match when the real infimum exists. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 5-Sep-2020.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) → inf(𝐴, ℝ*, < ) = inf(𝐴, ℝ, < )) | ||
| Theorem | infxrmnf 13379 | The infinimum of a set of extended reals containing minus infinity is minus infinity. (Contributed by Thierry Arnoux, 18-Feb-2018.) (Revised by AV, 28-Sep-2020.) |
| ⊢ ((𝐴 ⊆ ℝ* ∧ -∞ ∈ 𝐴) → inf(𝐴, ℝ*, < ) = -∞) | ||
| Theorem | xrinf0 13380 | The infimum of the empty set under the extended reals is positive infinity. (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by AV, 5-Sep-2020.) |
| ⊢ inf(∅, ℝ*, < ) = +∞ | ||
| Theorem | infxrss 13381 | Larger sets of extended reals have smaller infima. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 13-Sep-2020.) |
| ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ*) → inf(𝐵, ℝ*, < ) ≤ inf(𝐴, ℝ*, < )) | ||
| Theorem | reltre 13382* | For all real numbers there is a smaller real number. (Contributed by AV, 5-Sep-2020.) |
| ⊢ ∀𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑦 < 𝑥 | ||
| Theorem | rpltrp 13383* | For all positive real numbers there is a smaller positive real number. (Contributed by AV, 5-Sep-2020.) |
| ⊢ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ+ 𝑦 < 𝑥 | ||
| Theorem | reltxrnmnf 13384* | For all extended real numbers not being minus infinity there is a smaller real number. (Contributed by AV, 5-Sep-2020.) |
| ⊢ ∀𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑦 ∈ ℝ 𝑦 < 𝑥) | ||
| Theorem | infmremnf 13385 | The infimum of the reals is minus infinity. (Contributed by AV, 5-Sep-2020.) |
| ⊢ inf(ℝ, ℝ*, < ) = -∞ | ||
| Theorem | infmrp1 13386 | The infimum of the positive reals is 0. (Contributed by AV, 5-Sep-2020.) |
| ⊢ inf(ℝ+, ℝ, < ) = 0 | ||
| Syntax | cioo 13387 | Extend class notation with the set of open intervals of extended reals. |
| class (,) | ||
| Syntax | cioc 13388 | Extend class notation with the set of open-below, closed-above intervals of extended reals. |
| class (,] | ||
| Syntax | cico 13389 | Extend class notation with the set of closed-below, open-above intervals of extended reals. |
| class [,) | ||
| Syntax | cicc 13390 | Extend class notation with the set of closed intervals of extended reals. |
| class [,] | ||
| Definition | df-ioo 13391* | Define the set of open intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
| ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) | ||
| Definition | df-ioc 13392* | Define the set of open-below, closed-above intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
| ⊢ (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) | ||
| Definition | df-ico 13393* | Define the set of closed-below, open-above intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
| ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) | ||
| Definition | df-icc 13394* | Define the set of closed intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
| ⊢ [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) | ||
| Theorem | ixxval 13395* | Value of the interval function. (Contributed by Mario Carneiro, 3-Nov-2013.) |
| ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) ⇒ ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴𝑂𝐵) = {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧 ∧ 𝑧𝑆𝐵)}) | ||
| Theorem | elixx1 13396* | Membership in an interval of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013.) |
| ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) ⇒ ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴𝑂𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴𝑅𝐶 ∧ 𝐶𝑆𝐵))) | ||
| Theorem | ixxf 13397* | The set of intervals of extended reals maps to subsets of extended reals. (Contributed by FL, 14-Jun-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) |
| ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) ⇒ ⊢ 𝑂:(ℝ* × ℝ*)⟶𝒫 ℝ* | ||
| Theorem | ixxex 13398* | The set of intervals of extended reals exists. (Contributed by Mario Carneiro, 3-Nov-2013.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) ⇒ ⊢ 𝑂 ∈ V | ||
| Theorem | ixxssxr 13399* | The set of intervals of extended reals maps to subsets of extended reals. (Contributed by Mario Carneiro, 4-Jul-2014.) |
| ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) ⇒ ⊢ (𝐴𝑂𝐵) ⊆ ℝ* | ||
| Theorem | elixx3g 13400* | Membership in a set of open intervals of extended reals. We use the fact that an operation's value is empty outside of its domain to show 𝐴 ∈ ℝ* and 𝐵 ∈ ℝ*. (Contributed by Mario Carneiro, 3-Nov-2013.) |
| ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) ⇒ ⊢ (𝐶 ∈ (𝐴𝑂𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴𝑅𝐶 ∧ 𝐶𝑆𝐵))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |