Home | Metamath
Proof Explorer Theorem List (p. 134 of 457) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-28790) |
Hilbert Space Explorer
(28791-30313) |
Users' Mathboxes
(30314-45688) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | zmodfzo 13301 | An integer mod 𝐵 lies in the first 𝐵 nonnegative integers. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 mod 𝐵) ∈ (0..^𝐵)) | ||
Theorem | zmodfzp1 13302 | An integer mod 𝐵 lies in the first 𝐵 + 1 nonnegative integers. (Contributed by AV, 27-Oct-2018.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 mod 𝐵) ∈ (0...𝐵)) | ||
Theorem | modid 13303 | Identity law for modulo. (Contributed by NM, 29-Dec-2008.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → (𝐴 mod 𝐵) = 𝐴) | ||
Theorem | modid0 13304 | A positive real number modulo itself is 0. (Contributed by Alexander van der Vekens, 15-May-2018.) |
⊢ (𝑁 ∈ ℝ+ → (𝑁 mod 𝑁) = 0) | ||
Theorem | modid2 13305 | Identity law for modulo. (Contributed by NM, 29-Dec-2008.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 mod 𝐵) = 𝐴 ↔ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵))) | ||
Theorem | zmodid2 13306 | Identity law for modulo restricted to integers. (Contributed by Paul Chapman, 22-Jun-2011.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 mod 𝑁) = 𝑀 ↔ 𝑀 ∈ (0...(𝑁 − 1)))) | ||
Theorem | zmodidfzo 13307 | Identity law for modulo restricted to integers. (Contributed by AV, 27-Oct-2018.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 mod 𝑁) = 𝑀 ↔ 𝑀 ∈ (0..^𝑁))) | ||
Theorem | zmodidfzoimp 13308 | Identity law for modulo restricted to integers. (Contributed by AV, 27-Oct-2018.) |
⊢ (𝑀 ∈ (0..^𝑁) → (𝑀 mod 𝑁) = 𝑀) | ||
Theorem | 0mod 13309 | Special case: 0 modulo a positive real number is 0. (Contributed by Mario Carneiro, 22-Feb-2014.) |
⊢ (𝑁 ∈ ℝ+ → (0 mod 𝑁) = 0) | ||
Theorem | 1mod 13310 | Special case: 1 modulo a real number greater than 1 is 1. (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → (1 mod 𝑁) = 1) | ||
Theorem | modabs 13311 | Absorption law for modulo. (Contributed by NM, 29-Dec-2008.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) ∧ 𝐵 ≤ 𝐶) → ((𝐴 mod 𝐵) mod 𝐶) = (𝐴 mod 𝐵)) | ||
Theorem | modabs2 13312 | Absorption law for modulo. (Contributed by NM, 29-Dec-2008.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 mod 𝐵) mod 𝐵) = (𝐴 mod 𝐵)) | ||
Theorem | modcyc 13313 | The modulo operation is periodic. (Contributed by NM, 10-Nov-2008.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → ((𝐴 + (𝑁 · 𝐵)) mod 𝐵) = (𝐴 mod 𝐵)) | ||
Theorem | modcyc2 13314 | The modulo operation is periodic. (Contributed by NM, 12-Nov-2008.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → ((𝐴 − (𝐵 · 𝑁)) mod 𝐵) = (𝐴 mod 𝐵)) | ||
Theorem | modadd1 13315 | Addition property of the modulo operation. (Contributed by NM, 12-Nov-2008.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+) ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴 + 𝐶) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷)) | ||
Theorem | modaddabs 13316 | Absorption law for modulo. (Contributed by Paul Chapman, 22-Jun-2011.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (((𝐴 mod 𝐶) + (𝐵 mod 𝐶)) mod 𝐶) = ((𝐴 + 𝐵) mod 𝐶)) | ||
Theorem | modaddmod 13317 | The sum of a real number modulo a positive real number and another real number equals the sum of the two real numbers modulo the positive real number. (Contributed by Alexander van der Vekens, 13-May-2018.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (((𝐴 mod 𝑀) + 𝐵) mod 𝑀) = ((𝐴 + 𝐵) mod 𝑀)) | ||
Theorem | muladdmodid 13318 | The sum of a positive real number less than an upper bound and the product of an integer and the upper bound is the positive real number modulo the upper bound. (Contributed by AV, 5-Jul-2020.) |
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ∧ 𝐴 ∈ (0[,)𝑀)) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = 𝐴) | ||
Theorem | mulp1mod1 13319 | The product of an integer and an integer greater than 1 increased by 1 is 1 modulo the integer greater than 1. (Contributed by AV, 15-Jul-2021.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘2)) → (((𝑁 · 𝐴) + 1) mod 𝑁) = 1) | ||
Theorem | modmuladd 13320* | Decomposition of an integer into a multiple of a modulus and a remainder. (Contributed by AV, 14-Jul-2021.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (0[,)𝑀) ∧ 𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) = 𝐵 ↔ ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵))) | ||
Theorem | modmuladdim 13321* | Implication of a decomposition of an integer into a multiple of a modulus and a remainder. (Contributed by AV, 14-Jul-2021.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵))) | ||
Theorem | modmuladdnn0 13322* | Implication of a decomposition of a nonnegative integer into a multiple of a modulus and a remainder. (Contributed by AV, 14-Jul-2021.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵))) | ||
Theorem | negmod 13323 | The negation of a number modulo a positive number is equal to the difference of the modulus and the number modulo the modulus. (Contributed by AV, 5-Jul-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (-𝐴 mod 𝑁) = ((𝑁 − 𝐴) mod 𝑁)) | ||
Theorem | m1modnnsub1 13324 | Minus one modulo a positive integer is equal to the integer minus one. (Contributed by AV, 14-Jul-2021.) |
⊢ (𝑀 ∈ ℕ → (-1 mod 𝑀) = (𝑀 − 1)) | ||
Theorem | m1modge3gt1 13325 | Minus one modulo an integer greater than two is greater than one. (Contributed by AV, 14-Jul-2021.) |
⊢ (𝑀 ∈ (ℤ≥‘3) → 1 < (-1 mod 𝑀)) | ||
Theorem | addmodid 13326 | The sum of a positive integer and a nonnegative integer less than the positive integer is equal to the nonnegative integer modulo the positive integer. (Contributed by Alexander van der Vekens, 30-Oct-2018.) (Proof shortened by AV, 5-Jul-2020.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → ((𝑀 + 𝐴) mod 𝑀) = 𝐴) | ||
Theorem | addmodidr 13327 | The sum of a positive integer and a nonnegative integer less than the positive integer is equal to the nonnegative integer modulo the positive integer. (Contributed by AV, 19-Mar-2021.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → ((𝐴 + 𝑀) mod 𝑀) = 𝐴) | ||
Theorem | modadd2mod 13328 | The sum of a real number modulo a positive real number and another real number equals the sum of the two real numbers modulo the positive real number. (Contributed by Alexander van der Vekens, 17-May-2018.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((𝐵 + (𝐴 mod 𝑀)) mod 𝑀) = ((𝐵 + 𝐴) mod 𝑀)) | ||
Theorem | modm1p1mod0 13329 | If a real number modulo a positive real number equals the positive real number decreased by 1, the real number increased by 1 modulo the positive real number equals 0. (Contributed by AV, 2-Nov-2018.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) = (𝑀 − 1) → ((𝐴 + 1) mod 𝑀) = 0)) | ||
Theorem | modltm1p1mod 13330 | If a real number modulo a positive real number is less than the positive real number decreased by 1, the real number increased by 1 modulo the positive real number equals the real number modulo the positive real number increased by 1. (Contributed by AV, 2-Nov-2018.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ (𝐴 mod 𝑀) < (𝑀 − 1)) → ((𝐴 + 1) mod 𝑀) = ((𝐴 mod 𝑀) + 1)) | ||
Theorem | modmul1 13331 | Multiplication property of the modulo operation. Note that the multiplier 𝐶 must be an integer. (Contributed by NM, 12-Nov-2008.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+) ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴 · 𝐶) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷)) | ||
Theorem | modmul12d 13332 | Multiplication property of the modulo operation, see theorem 5.2(b) in [ApostolNT] p. 107. (Contributed by Mario Carneiro, 5-Feb-2015.) |
⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ ℤ) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸)) & ⊢ (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸)) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐶) mod 𝐸) = ((𝐵 · 𝐷) mod 𝐸)) | ||
Theorem | modnegd 13333 | Negation property of the modulo operation. (Contributed by Mario Carneiro, 9-Sep-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → (𝐴 mod 𝐶) = (𝐵 mod 𝐶)) ⇒ ⊢ (𝜑 → (-𝐴 mod 𝐶) = (-𝐵 mod 𝐶)) | ||
Theorem | modadd12d 13334 | Additive property of the modulo operation. (Contributed by Mario Carneiro, 9-Sep-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸)) & ⊢ (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸)) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐶) mod 𝐸) = ((𝐵 + 𝐷) mod 𝐸)) | ||
Theorem | modsub12d 13335 | Subtraction property of the modulo operation. (Contributed by Mario Carneiro, 9-Sep-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸)) & ⊢ (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸)) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐶) mod 𝐸) = ((𝐵 − 𝐷) mod 𝐸)) | ||
Theorem | modsubmod 13336 | The difference of a real number modulo a positive real number and another real number equals the difference of the two real numbers modulo the positive real number. (Contributed by Alexander van der Vekens, 17-May-2018.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (((𝐴 mod 𝑀) − 𝐵) mod 𝑀) = ((𝐴 − 𝐵) mod 𝑀)) | ||
Theorem | modsubmodmod 13337 | The difference of a real number modulo a positive real number and another real number modulo this positive real number equals the difference of the two real numbers modulo the positive real number. (Contributed by Alexander van der Vekens, 17-May-2018.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (((𝐴 mod 𝑀) − (𝐵 mod 𝑀)) mod 𝑀) = ((𝐴 − 𝐵) mod 𝑀)) | ||
Theorem | 2txmodxeq0 13338 | Two times a positive real number modulo the real number is zero. (Contributed by Alexander van der Vekens, 8-Jun-2018.) |
⊢ (𝑋 ∈ ℝ+ → ((2 · 𝑋) mod 𝑋) = 0) | ||
Theorem | 2submod 13339 | If a real number is between a positive real number and twice the positive real number, the real number modulo the positive real number equals the real number minus the positive real number. (Contributed by Alexander van der Vekens, 13-May-2018.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → (𝐴 mod 𝐵) = (𝐴 − 𝐵)) | ||
Theorem | modifeq2int 13340 | If a nonnegative integer is less than twice a positive integer, the nonnegative integer modulo the positive integer equals the nonnegative integer or the nonnegative integer minus the positive integer. (Contributed by Alexander van der Vekens, 21-May-2018.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → (𝐴 mod 𝐵) = if(𝐴 < 𝐵, 𝐴, (𝐴 − 𝐵))) | ||
Theorem | modaddmodup 13341 | The sum of an integer modulo a positive integer and another integer minus the positive integer equals the sum of the two integers modulo the positive integer if the other integer is in the upper part of the range between 0 and the positive integer. (Contributed by AV, 30-Oct-2018.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) → ((𝐵 + (𝐴 mod 𝑀)) − 𝑀) = ((𝐵 + 𝐴) mod 𝑀))) | ||
Theorem | modaddmodlo 13342 | The sum of an integer modulo a positive integer and another integer equals the sum of the two integers modulo the positive integer if the other integer is in the lower part of the range between 0 and the positive integer. (Contributed by AV, 30-Oct-2018.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀))) → (𝐵 + (𝐴 mod 𝑀)) = ((𝐵 + 𝐴) mod 𝑀))) | ||
Theorem | modmulmod 13343 | The product of a real number modulo a positive real number and an integer equals the product of the real number and the integer modulo the positive real number. (Contributed by Alexander van der Vekens, 17-May-2018.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → (((𝐴 mod 𝑀) · 𝐵) mod 𝑀) = ((𝐴 · 𝐵) mod 𝑀)) | ||
Theorem | modmulmodr 13344 | The product of an integer and a real number modulo a positive real number equals the product of the integer and the real number modulo the positive real number. (Contributed by Alexander van der Vekens, 9-Jul-2021.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((𝐴 · (𝐵 mod 𝑀)) mod 𝑀) = ((𝐴 · 𝐵) mod 𝑀)) | ||
Theorem | modaddmulmod 13345 | The sum of a real number and the product of a second real number modulo a positive real number and an integer equals the sum of the real number and the product of the other real number and the integer modulo the positive real number. (Contributed by Alexander van der Vekens, 17-May-2018.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → ((𝐴 + ((𝐵 mod 𝑀) · 𝐶)) mod 𝑀) = ((𝐴 + (𝐵 · 𝐶)) mod 𝑀)) | ||
Theorem | moddi 13346 | Distribute multiplication over a modulo operation. (Contributed by NM, 11-Nov-2008.) |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐴 · (𝐵 mod 𝐶)) = ((𝐴 · 𝐵) mod (𝐴 · 𝐶))) | ||
Theorem | modsubdir 13347 | Distribute the modulo operation over a subtraction. (Contributed by NM, 30-Dec-2008.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐵 mod 𝐶) ≤ (𝐴 mod 𝐶) ↔ ((𝐴 − 𝐵) mod 𝐶) = ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)))) | ||
Theorem | modeqmodmin 13348 | A real number equals the difference of the real number and a positive real number modulo the positive real number. (Contributed by AV, 3-Nov-2018.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (𝐴 mod 𝑀) = ((𝐴 − 𝑀) mod 𝑀)) | ||
Theorem | modirr 13349 | A number modulo an irrational multiple of it is nonzero. (Contributed by NM, 11-Nov-2008.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐴 / 𝐵) ∈ (ℝ ∖ ℚ)) → (𝐴 mod 𝐵) ≠ 0) | ||
Theorem | modfzo0difsn 13350* | For a number within a half-open range of nonnegative integers with one excluded integer there is a positive integer so that the number is equal to the sum of the positive integer and the excluded integer modulo the upper bound of the range. (Contributed by AV, 19-Mar-2021.) |
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)) | ||
Theorem | modsumfzodifsn 13351 | The sum of a number within a half-open range of positive integers is an element of the corresponding open range of nonnegative integers with one excluded integer modulo the excluded integer. (Contributed by AV, 19-Mar-2021.) |
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) mod 𝑁) ∈ ((0..^𝑁) ∖ {𝐽})) | ||
Theorem | modlteq 13352 | Two nonnegative integers less than the modulus are equal iff they are equal modulo the modulus. (Contributed by AV, 14-Mar-2021.) |
⊢ ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁)) → ((𝐼 mod 𝑁) = (𝐽 mod 𝑁) ↔ 𝐼 = 𝐽)) | ||
Theorem | addmodlteq 13353 | Two nonnegative integers less than the modulus are equal iff the sums of these integer with another integer are equal modulo the modulus. A much shorter proof exists if the "divides" relation ∥ can be used, see addmodlteqALT 15716. (Contributed by AV, 20-Mar-2021.) |
⊢ ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (((𝐼 + 𝑆) mod 𝑁) = ((𝐽 + 𝑆) mod 𝑁) ↔ 𝐼 = 𝐽)) | ||
Theorem | om2uz0i 13354* | The mapping 𝐺 is a one-to-one mapping from ω onto upper integers that will be used to construct a recursive definition generator. Ordinal natural number 0 maps to complex number 𝐶 (normally 0 for the upper integers ℕ0 or 1 for the upper integers ℕ), 1 maps to 𝐶 + 1, etc. This theorem shows the value of 𝐺 at ordinal natural number zero. (This series of theorems generalizes an earlier series for ℕ0 contributed by Raph Levien, 10-Apr-2004.) (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.) |
⊢ 𝐶 ∈ ℤ & ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) ⇒ ⊢ (𝐺‘∅) = 𝐶 | ||
Theorem | om2uzsuci 13355* | The value of 𝐺 (see om2uz0i 13354) at a successor. (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.) |
⊢ 𝐶 ∈ ℤ & ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) ⇒ ⊢ (𝐴 ∈ ω → (𝐺‘suc 𝐴) = ((𝐺‘𝐴) + 1)) | ||
Theorem | om2uzuzi 13356* | The value 𝐺 (see om2uz0i 13354) at an ordinal natural number is in the upper integers. (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.) |
⊢ 𝐶 ∈ ℤ & ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) ⇒ ⊢ (𝐴 ∈ ω → (𝐺‘𝐴) ∈ (ℤ≥‘𝐶)) | ||
Theorem | om2uzlti 13357* | Less-than relation for 𝐺 (see om2uz0i 13354). (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.) |
⊢ 𝐶 ∈ ℤ & ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) ⇒ ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 → (𝐺‘𝐴) < (𝐺‘𝐵))) | ||
Theorem | om2uzlt2i 13358* | The mapping 𝐺 (see om2uz0i 13354) preserves order. (Contributed by NM, 4-May-2005.) (Revised by Mario Carneiro, 13-Sep-2013.) |
⊢ 𝐶 ∈ ℤ & ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) ⇒ ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ↔ (𝐺‘𝐴) < (𝐺‘𝐵))) | ||
Theorem | om2uzrani 13359* | Range of 𝐺 (see om2uz0i 13354). (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.) |
⊢ 𝐶 ∈ ℤ & ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) ⇒ ⊢ ran 𝐺 = (ℤ≥‘𝐶) | ||
Theorem | om2uzf1oi 13360* | 𝐺 (see om2uz0i 13354) is a one-to-one onto mapping. (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.) |
⊢ 𝐶 ∈ ℤ & ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) ⇒ ⊢ 𝐺:ω–1-1-onto→(ℤ≥‘𝐶) | ||
Theorem | om2uzisoi 13361* | 𝐺 (see om2uz0i 13354) is an isomorphism from natural ordinals to upper integers. (Contributed by NM, 9-Oct-2008.) (Revised by Mario Carneiro, 13-Sep-2013.) |
⊢ 𝐶 ∈ ℤ & ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) ⇒ ⊢ 𝐺 Isom E , < (ω, (ℤ≥‘𝐶)) | ||
Theorem | om2uzoi 13362* | An alternative definition of 𝐺 in terms of df-oi 8997. (Contributed by Mario Carneiro, 2-Jun-2015.) |
⊢ 𝐶 ∈ ℤ & ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) ⇒ ⊢ 𝐺 = OrdIso( < , (ℤ≥‘𝐶)) | ||
Theorem | om2uzrdg 13363* | A helper lemma for the value of a recursive definition generator on upper integers (typically either ℕ or ℕ0) with characteristic function 𝐹(𝑥, 𝑦) and initial value 𝐴. Normally 𝐹 is a function on the partition, and 𝐴 is a member of the partition. See also comment in om2uz0i 13354. (Contributed by Mario Carneiro, 26-Jun-2013.) (Revised by Mario Carneiro, 18-Nov-2014.) |
⊢ 𝐶 ∈ ℤ & ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) & ⊢ 𝐴 ∈ V & ⊢ 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) ⇒ ⊢ (𝐵 ∈ ω → (𝑅‘𝐵) = 〈(𝐺‘𝐵), (2nd ‘(𝑅‘𝐵))〉) | ||
Theorem | uzrdglem 13364* | A helper lemma for the value of a recursive definition generator on upper integers. (Contributed by Mario Carneiro, 26-Jun-2013.) (Revised by Mario Carneiro, 18-Nov-2014.) |
⊢ 𝐶 ∈ ℤ & ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) & ⊢ 𝐴 ∈ V & ⊢ 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) ⇒ ⊢ (𝐵 ∈ (ℤ≥‘𝐶) → 〈𝐵, (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉 ∈ ran 𝑅) | ||
Theorem | uzrdgfni 13365* | The recursive definition generator on upper integers is a function. See comment in om2uzrdg 13363. (Contributed by Mario Carneiro, 26-Jun-2013.) (Revised by Mario Carneiro, 4-May-2015.) |
⊢ 𝐶 ∈ ℤ & ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) & ⊢ 𝐴 ∈ V & ⊢ 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) & ⊢ 𝑆 = ran 𝑅 ⇒ ⊢ 𝑆 Fn (ℤ≥‘𝐶) | ||
Theorem | uzrdg0i 13366* | Initial value of a recursive definition generator on upper integers. See comment in om2uzrdg 13363. (Contributed by Mario Carneiro, 26-Jun-2013.) (Revised by Mario Carneiro, 18-Nov-2014.) |
⊢ 𝐶 ∈ ℤ & ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) & ⊢ 𝐴 ∈ V & ⊢ 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) & ⊢ 𝑆 = ran 𝑅 ⇒ ⊢ (𝑆‘𝐶) = 𝐴 | ||
Theorem | uzrdgsuci 13367* | Successor value of a recursive definition generator on upper integers. See comment in om2uzrdg 13363. (Contributed by Mario Carneiro, 26-Jun-2013.) (Revised by Mario Carneiro, 13-Sep-2013.) |
⊢ 𝐶 ∈ ℤ & ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) & ⊢ 𝐴 ∈ V & ⊢ 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) & ⊢ 𝑆 = ran 𝑅 ⇒ ⊢ (𝐵 ∈ (ℤ≥‘𝐶) → (𝑆‘(𝐵 + 1)) = (𝐵𝐹(𝑆‘𝐵))) | ||
Theorem | ltweuz 13368 | < is a well-founded relation on any sequence of upper integers. (Contributed by Andrew Salmon, 13-Nov-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
⊢ < We (ℤ≥‘𝐴) | ||
Theorem | ltwenn 13369 | Less than well-orders the naturals. (Contributed by Scott Fenton, 6-Aug-2013.) |
⊢ < We ℕ | ||
Theorem | ltwefz 13370 | Less than well-orders a set of finite integers. (Contributed by Scott Fenton, 8-Aug-2013.) |
⊢ < We (𝑀...𝑁) | ||
Theorem | uzenom 13371 | An upper integer set is denumerable. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝑀 ∈ ℤ → 𝑍 ≈ ω) | ||
Theorem | uzinf 13372 | An upper integer set is infinite. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 26-Jun-2015.) |
⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝑀 ∈ ℤ → ¬ 𝑍 ∈ Fin) | ||
Theorem | nnnfi 13373 | The set of positive integers is infinite. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ ¬ ℕ ∈ Fin | ||
Theorem | uzrdgxfr 13374* | Transfer the value of the recursive sequence builder from one base to another. (Contributed by Mario Carneiro, 1-Apr-2014.) |
⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) & ⊢ 𝐻 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐵) ↾ ω) & ⊢ 𝐴 ∈ ℤ & ⊢ 𝐵 ∈ ℤ ⇒ ⊢ (𝑁 ∈ ω → (𝐺‘𝑁) = ((𝐻‘𝑁) + (𝐴 − 𝐵))) | ||
Theorem | fzennn 13375 | The cardinality of a finite set of sequential integers. (See om2uz0i 13354 for a description of the hypothesis.) (Contributed by Mario Carneiro, 12-Feb-2013.) (Revised by Mario Carneiro, 7-Mar-2014.) |
⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ⇒ ⊢ (𝑁 ∈ ℕ0 → (1...𝑁) ≈ (◡𝐺‘𝑁)) | ||
Theorem | fzen2 13376 | The cardinality of a finite set of sequential integers with arbitrary endpoints. (Contributed by Mario Carneiro, 13-Feb-2014.) |
⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) ≈ (◡𝐺‘((𝑁 + 1) − 𝑀))) | ||
Theorem | cardfz 13377 | The cardinality of a finite set of sequential integers. (See om2uz0i 13354 for a description of the hypothesis.) (Contributed by NM, 7-Nov-2008.) (Revised by Mario Carneiro, 15-Sep-2013.) |
⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ⇒ ⊢ (𝑁 ∈ ℕ0 → (card‘(1...𝑁)) = (◡𝐺‘𝑁)) | ||
Theorem | hashgf1o 13378 | 𝐺 maps ω one-to-one onto ℕ0. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 13-Sep-2013.) |
⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ⇒ ⊢ 𝐺:ω–1-1-onto→ℕ0 | ||
Theorem | fzfi 13379 | A finite interval of integers is finite. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Mar-2015.) |
⊢ (𝑀...𝑁) ∈ Fin | ||
Theorem | fzfid 13380 | Commonly used special case of fzfi 13379. (Contributed by Mario Carneiro, 25-May-2014.) |
⊢ (𝜑 → (𝑀...𝑁) ∈ Fin) | ||
Theorem | fzofi 13381 | Half-open integer sets are finite. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
⊢ (𝑀..^𝑁) ∈ Fin | ||
Theorem | fsequb 13382* | The values of a finite real sequence have an upper bound. (Contributed by NM, 19-Sep-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2015.) |
⊢ (∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ ℝ → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) < 𝑥) | ||
Theorem | fsequb2 13383* | The values of a finite real sequence have an upper bound. (Contributed by NM, 20-Sep-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2015.) |
⊢ (𝐹:(𝑀...𝑁)⟶ℝ → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) | ||
Theorem | fseqsupcl 13384 | The values of a finite real sequence have a supremum. (Contributed by NM, 20-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐹:(𝑀...𝑁)⟶ℝ) → sup(ran 𝐹, ℝ, < ) ∈ ℝ) | ||
Theorem | fseqsupubi 13385 | The values of a finite real sequence are bounded by their supremum. (Contributed by NM, 20-Sep-2005.) |
⊢ ((𝐾 ∈ (𝑀...𝑁) ∧ 𝐹:(𝑀...𝑁)⟶ℝ) → (𝐹‘𝐾) ≤ sup(ran 𝐹, ℝ, < )) | ||
Theorem | nn0ennn 13386 | The nonnegative integers are equinumerous to the positive integers. (Contributed by NM, 19-Jul-2004.) |
⊢ ℕ0 ≈ ℕ | ||
Theorem | nnenom 13387 | The set of positive integers (as a subset of complex numbers) is equinumerous to omega (the set of finite ordinal numbers). (Contributed by NM, 31-Jul-2004.) (Revised by Mario Carneiro, 15-Sep-2013.) |
⊢ ℕ ≈ ω | ||
Theorem | nnct 13388 | ℕ is countable. (Contributed by Thierry Arnoux, 29-Dec-2016.) |
⊢ ℕ ≼ ω | ||
Theorem | uzindi 13389* | Indirect strong induction on the upper integers. (Contributed by Stefan O'Rear, 25-Aug-2015.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑇 ∈ (ℤ≥‘𝐿)) & ⊢ ((𝜑 ∧ 𝑅 ∈ (𝐿...𝑇) ∧ ∀𝑦(𝑆 ∈ (𝐿..^𝑅) → 𝜒)) → 𝜓) & ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) & ⊢ (𝑥 = 𝑦 → 𝑅 = 𝑆) & ⊢ (𝑥 = 𝐴 → 𝑅 = 𝑇) ⇒ ⊢ (𝜑 → 𝜃) | ||
Theorem | axdc4uzlem 13390* | Lemma for axdc4uz 13391. (Contributed by Mario Carneiro, 8-Jan-2014.) (Revised by Mario Carneiro, 26-Dec-2014.) |
⊢ 𝑀 ∈ ℤ & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝐴 ∈ V & ⊢ 𝐺 = (rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀) ↾ ω) & ⊢ 𝐻 = (𝑛 ∈ ω, 𝑥 ∈ 𝐴 ↦ ((𝐺‘𝑛)𝐹𝑥)) ⇒ ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:𝑍⟶𝐴 ∧ (𝑔‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘)))) | ||
Theorem | axdc4uz 13391* | A version of axdc4 9906 that works on an upper set of integers instead of ω. (Contributed by Mario Carneiro, 8-Jan-2014.) |
⊢ 𝑀 ∈ ℤ & ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝐴 ∧ 𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:𝑍⟶𝐴 ∧ (𝑔‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘)))) | ||
Theorem | ssnn0fi 13392* | A subset of the nonnegative integers is finite if and only if there is a nonnegative integer so that all integers greater than this integer are not contained in the subset. (Contributed by AV, 3-Oct-2019.) |
⊢ (𝑆 ⊆ ℕ0 → (𝑆 ∈ Fin ↔ ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → 𝑥 ∉ 𝑆))) | ||
Theorem | rabssnn0fi 13393* | A subset of the nonnegative integers defined by a restricted class abstraction is finite if there is a nonnegative integer so that for all integers greater than this integer the condition of the class abstraction is not fulfilled. (Contributed by AV, 3-Oct-2019.) |
⊢ ({𝑥 ∈ ℕ0 ∣ 𝜑} ∈ Fin ↔ ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑)) | ||
Theorem | uzsinds 13394* | Strong (or "total") induction principle over an upper set of integers. (Contributed by Scott Fenton, 16-May-2014.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑁 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 ∈ (ℤ≥‘𝑀) → (∀𝑦 ∈ (𝑀...(𝑥 − 1))𝜓 → 𝜑)) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝜒) | ||
Theorem | nnsinds 13395* | Strong (or "total") induction principle over the naturals. (Contributed by Scott Fenton, 16-May-2014.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑁 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 ∈ ℕ → (∀𝑦 ∈ (1...(𝑥 − 1))𝜓 → 𝜑)) ⇒ ⊢ (𝑁 ∈ ℕ → 𝜒) | ||
Theorem | nn0sinds 13396* | Strong (or "total") induction principle over the nonnegative integers. (Contributed by Scott Fenton, 16-May-2014.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑁 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 ∈ ℕ0 → (∀𝑦 ∈ (0...(𝑥 − 1))𝜓 → 𝜑)) ⇒ ⊢ (𝑁 ∈ ℕ0 → 𝜒) | ||
Theorem | fsuppmapnn0fiublem 13397* | Lemma for fsuppmapnn0fiub 13398 and fsuppmapnn0fiubex 13399. (Contributed by AV, 2-Oct-2019.) |
⊢ 𝑈 = ∪ 𝑓 ∈ 𝑀 (𝑓 supp 𝑍) & ⊢ 𝑆 = sup(𝑈, ℝ, < ) ⇒ ⊢ ((𝑀 ⊆ (𝑅 ↑m ℕ0) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉) → ((∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅) → 𝑆 ∈ ℕ0)) | ||
Theorem | fsuppmapnn0fiub 13398* | If all functions of a finite set of functions over the nonnegative integers are finitely supported, then the support of all these functions is contained in a finite set of sequential integers starting at 0 and ending with the supremum of the union of the support of these functions. (Contributed by AV, 2-Oct-2019.) (Proof shortened by JJ, 2-Aug-2021.) |
⊢ 𝑈 = ∪ 𝑓 ∈ 𝑀 (𝑓 supp 𝑍) & ⊢ 𝑆 = sup(𝑈, ℝ, < ) ⇒ ⊢ ((𝑀 ⊆ (𝑅 ↑m ℕ0) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉) → ((∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅) → ∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑆))) | ||
Theorem | fsuppmapnn0fiubex 13399* | If all functions of a finite set of functions over the nonnegative integers are finitely supported, then the support of all these functions is contained in a finite set of sequential integers starting at 0. (Contributed by AV, 2-Oct-2019.) |
⊢ ((𝑀 ⊆ (𝑅 ↑m ℕ0) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉) → (∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 → ∃𝑚 ∈ ℕ0 ∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚))) | ||
Theorem | fsuppmapnn0fiub0 13400* | If all functions of a finite set of functions over the nonnegative integers are finitely supported, then all these functions are zero for all integers greater than a fixed integer. (Contributed by AV, 3-Oct-2019.) |
⊢ ((𝑀 ⊆ (𝑅 ↑m ℕ0) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉) → (∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 → ∃𝑚 ∈ ℕ0 ∀𝑓 ∈ 𝑀 ∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝑓‘𝑥) = 𝑍))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |