| Metamath
Proof Explorer Theorem List (p. 134 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30893) |
(30894-32416) |
(32417-49836) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | eliooxr 13301 | A nonempty open interval spans an interval of extended reals. (Contributed by NM, 17-Aug-2008.) |
| ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*)) | ||
| Theorem | eliooord 13302 | Ordering implied by a member of an open interval of reals. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 9-May-2014.) |
| ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 < 𝐴 ∧ 𝐴 < 𝐶)) | ||
| Theorem | elioo4g 13303 | Membership in an open interval of extended reals. (Contributed by NM, 8-Jun-2007.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐶 ∈ (𝐴(,)𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) | ||
| Theorem | ioossre 13304 | An open interval is a set of reals. (Contributed by NM, 31-May-2007.) |
| ⊢ (𝐴(,)𝐵) ⊆ ℝ | ||
| Theorem | ioosscn 13305 | An open interval is a set of complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝐴(,)𝐵) ⊆ ℂ | ||
| Theorem | elioc2 13306 | Membership in an open-below, closed-above real interval. (Contributed by Paul Chapman, 30-Dec-2007.) (Revised by Mario Carneiro, 14-Jun-2014.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵))) | ||
| Theorem | elico2 13307 | Membership in a closed-below, open-above real interval. (Contributed by Paul Chapman, 21-Jan-2008.) (Revised by Mario Carneiro, 14-Jun-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵))) | ||
| Theorem | elicc2 13308 | Membership in a closed real interval. (Contributed by Paul Chapman, 21-Sep-2007.) (Revised by Mario Carneiro, 14-Jun-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | ||
| Theorem | elicc2i 13309 | Inference for membership in a closed interval. (Contributed by Scott Fenton, 3-Jun-2013.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) | ||
| Theorem | elicc4 13310 | Membership in a closed real interval. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Proof shortened by Mario Carneiro, 1-Jan-2017.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | ||
| Theorem | iccss 13311 | Condition for a closed interval to be a subset of another closed interval. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 20-Feb-2015.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,]𝐵)) | ||
| Theorem | iccssioo 13312 | Condition for a closed interval to be a subset of an open interval. (Contributed by Mario Carneiro, 20-Feb-2015.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐶 ∧ 𝐷 < 𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴(,)𝐵)) | ||
| Theorem | icossico 13313 | Condition for a closed-below, open-above interval to be a subset of a closed-below, open-above interval. (Contributed by Thierry Arnoux, 21-Sep-2017.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵)) → (𝐶[,)𝐷) ⊆ (𝐴[,)𝐵)) | ||
| Theorem | iccss2 13314 | Condition for a closed interval to be a subset of another closed interval. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ ((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,]𝐵)) | ||
| Theorem | iccssico 13315 | Condition for a closed interval to be a subset of a half-open interval. (Contributed by Mario Carneiro, 9-Sep-2015.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 ≤ 𝐶 ∧ 𝐷 < 𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,)𝐵)) | ||
| Theorem | iccssioo2 13316 | Condition for a closed interval to be a subset of an open interval. (Contributed by Mario Carneiro, 20-Feb-2015.) |
| ⊢ ((𝐶 ∈ (𝐴(,)𝐵) ∧ 𝐷 ∈ (𝐴(,)𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴(,)𝐵)) | ||
| Theorem | iccssico2 13317 | Condition for a closed interval to be a subset of a closed-below, open-above interval. (Contributed by Mario Carneiro, 20-Feb-2015.) |
| ⊢ ((𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,)𝐵)) | ||
| Theorem | icossico2d 13318 | Condition for a closed-below, open-above interval to be a subset of a closed-below, open-above interval. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ≤ 𝐴) ⇒ ⊢ (𝜑 → (𝐴[,)𝐶) ⊆ (𝐵[,)𝐶)) | ||
| Theorem | ioomax 13319 | The open interval from minus to plus infinity. (Contributed by NM, 6-Feb-2007.) |
| ⊢ (-∞(,)+∞) = ℝ | ||
| Theorem | iccmax 13320 | The closed interval from minus to plus infinity. (Contributed by Mario Carneiro, 4-Jul-2014.) |
| ⊢ (-∞[,]+∞) = ℝ* | ||
| Theorem | ioopos 13321 | The set of positive reals expressed as an open interval. (Contributed by NM, 7-May-2007.) |
| ⊢ (0(,)+∞) = {𝑥 ∈ ℝ ∣ 0 < 𝑥} | ||
| Theorem | ioorp 13322 | The set of positive reals expressed as an open interval. (Contributed by Steve Rodriguez, 25-Nov-2007.) |
| ⊢ (0(,)+∞) = ℝ+ | ||
| Theorem | iooshf 13323 | Shift the arguments of the open interval function. (Contributed by NM, 17-Aug-2008.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 − 𝐵) ∈ (𝐶(,)𝐷) ↔ 𝐴 ∈ ((𝐶 + 𝐵)(,)(𝐷 + 𝐵)))) | ||
| Theorem | iocssre 13324 | A closed-above interval with real upper bound is a set of reals. (Contributed by FL, 29-May-2014.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ) | ||
| Theorem | icossre 13325 | A closed-below interval with real lower bound is a set of reals. (Contributed by Mario Carneiro, 14-Jun-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ⊆ ℝ) | ||
| Theorem | iccssre 13326 | A closed real interval is a set of reals. (Contributed by FL, 6-Jun-2007.) (Proof shortened by Paul Chapman, 21-Jan-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) | ||
| Theorem | iccssxr 13327 | A closed interval is a set of extended reals. (Contributed by FL, 28-Jul-2008.) (Revised by Mario Carneiro, 4-Jul-2014.) |
| ⊢ (𝐴[,]𝐵) ⊆ ℝ* | ||
| Theorem | iocssxr 13328 | An open-below, closed-above interval is a subset of the extended reals. (Contributed by FL, 29-May-2014.) (Revised by Mario Carneiro, 4-Jul-2014.) |
| ⊢ (𝐴(,]𝐵) ⊆ ℝ* | ||
| Theorem | icossxr 13329 | A closed-below, open-above interval is a subset of the extended reals. (Contributed by FL, 29-May-2014.) (Revised by Mario Carneiro, 4-Jul-2014.) |
| ⊢ (𝐴[,)𝐵) ⊆ ℝ* | ||
| Theorem | ioossicc 13330 | An open interval is a subset of its closure. (Contributed by Paul Chapman, 18-Oct-2007.) |
| ⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) | ||
| Theorem | iccssred 13331 | A closed real interval is a set of reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) | ||
| Theorem | eliccxr 13332 | A member of a closed interval is an extended real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝐴 ∈ (𝐵[,]𝐶) → 𝐴 ∈ ℝ*) | ||
| Theorem | icossicc 13333 | A closed-below, open-above interval is a subset of its closure. (Contributed by Thierry Arnoux, 25-Oct-2016.) |
| ⊢ (𝐴[,)𝐵) ⊆ (𝐴[,]𝐵) | ||
| Theorem | iocssicc 13334 | A closed-above, open-below interval is a subset of its closure. (Contributed by Thierry Arnoux, 1-Apr-2017.) |
| ⊢ (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵) | ||
| Theorem | ioossico 13335 | An open interval is a subset of its closure-below. (Contributed by Thierry Arnoux, 3-Mar-2017.) |
| ⊢ (𝐴(,)𝐵) ⊆ (𝐴[,)𝐵) | ||
| Theorem | iocssioo 13336 | Condition for a closed interval to be a subset of an open interval. (Contributed by Thierry Arnoux, 29-Mar-2017.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 ≤ 𝐶 ∧ 𝐷 < 𝐵)) → (𝐶(,]𝐷) ⊆ (𝐴(,)𝐵)) | ||
| Theorem | icossioo 13337 | Condition for a closed interval to be a subset of an open interval. (Contributed by Thierry Arnoux, 29-Mar-2017.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐶 ∧ 𝐷 ≤ 𝐵)) → (𝐶[,)𝐷) ⊆ (𝐴(,)𝐵)) | ||
| Theorem | ioossioo 13338 | Condition for an open interval to be a subset of an open interval. (Contributed by Thierry Arnoux, 26-Sep-2017.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵)) → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) | ||
| Theorem | iccsupr 13339* | A nonempty subset of a closed real interval satisfies the conditions for the existence of its supremum (see suprcl 12079). (Contributed by Paul Chapman, 21-Jan-2008.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵) ∧ 𝐶 ∈ 𝑆) → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥)) | ||
| Theorem | elioopnf 13340 | Membership in an unbounded interval of extended reals. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| ⊢ (𝐴 ∈ ℝ* → (𝐵 ∈ (𝐴(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 < 𝐵))) | ||
| Theorem | elioomnf 13341 | Membership in an unbounded interval of extended reals. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| ⊢ (𝐴 ∈ ℝ* → (𝐵 ∈ (-∞(,)𝐴) ↔ (𝐵 ∈ ℝ ∧ 𝐵 < 𝐴))) | ||
| Theorem | elicopnf 13342 | Membership in a closed unbounded interval of reals. (Contributed by Mario Carneiro, 16-Sep-2014.) |
| ⊢ (𝐴 ∈ ℝ → (𝐵 ∈ (𝐴[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵))) | ||
| Theorem | repos 13343 | Two ways of saying that a real number is positive. (Contributed by NM, 7-May-2007.) |
| ⊢ (𝐴 ∈ (0(,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | ||
| Theorem | ioof 13344 | The set of open intervals of extended reals maps to subsets of reals. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) |
| ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | ||
| Theorem | iccf 13345 | The set of closed intervals of extended reals maps to subsets of extended reals. (Contributed by FL, 14-Jun-2007.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| ⊢ [,]:(ℝ* × ℝ*)⟶𝒫 ℝ* | ||
| Theorem | unirnioo 13346 | The union of the range of the open interval function. (Contributed by NM, 7-May-2007.) (Revised by Mario Carneiro, 30-Jan-2014.) |
| ⊢ ℝ = ∪ ran (,) | ||
| Theorem | dfioo2 13347* | Alternate definition of the set of open intervals of extended reals. (Contributed by NM, 1-Mar-2007.) (Revised by Mario Carneiro, 1-Sep-2015.) |
| ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑤 ∈ ℝ ∣ (𝑥 < 𝑤 ∧ 𝑤 < 𝑦)}) | ||
| Theorem | ioorebas 13348 | Open intervals are elements of the set of all open intervals. (Contributed by Mario Carneiro, 26-Mar-2015.) |
| ⊢ (𝐴(,)𝐵) ∈ ran (,) | ||
| Theorem | xrge0neqmnf 13349 | A nonnegative extended real is not equal to minus infinity. (Contributed by Thierry Arnoux, 9-Jun-2017.) (Proof shortened by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝐴 ∈ (0[,]+∞) → 𝐴 ≠ -∞) | ||
| Theorem | xrge0nre 13350 | An extended real which is not a real is plus infinity. (Contributed by Thierry Arnoux, 16-Oct-2017.) |
| ⊢ ((𝐴 ∈ (0[,]+∞) ∧ ¬ 𝐴 ∈ ℝ) → 𝐴 = +∞) | ||
| Theorem | elrege0 13351 | The predicate "is a nonnegative real". (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 18-Jun-2014.) |
| ⊢ (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) | ||
| Theorem | nn0rp0 13352 | A nonnegative integer is a nonnegative real number. (Contributed by AV, 24-May-2020.) |
| ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ (0[,)+∞)) | ||
| Theorem | rge0ssre 13353 | Nonnegative real numbers are real numbers. (Contributed by Thierry Arnoux, 9-Sep-2018.) (Proof shortened by AV, 8-Sep-2019.) |
| ⊢ (0[,)+∞) ⊆ ℝ | ||
| Theorem | elxrge0 13354 | Elementhood in the set of nonnegative extended reals. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴)) | ||
| Theorem | 0e0icopnf 13355 | 0 is a member of (0[,)+∞). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ 0 ∈ (0[,)+∞) | ||
| Theorem | 0e0iccpnf 13356 | 0 is a member of (0[,]+∞). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ 0 ∈ (0[,]+∞) | ||
| Theorem | ge0addcl 13357 | The nonnegative reals are closed under addition. (Contributed by Mario Carneiro, 19-Jun-2014.) |
| ⊢ ((𝐴 ∈ (0[,)+∞) ∧ 𝐵 ∈ (0[,)+∞)) → (𝐴 + 𝐵) ∈ (0[,)+∞)) | ||
| Theorem | ge0mulcl 13358 | The nonnegative reals are closed under multiplication. (Contributed by Mario Carneiro, 19-Jun-2014.) |
| ⊢ ((𝐴 ∈ (0[,)+∞) ∧ 𝐵 ∈ (0[,)+∞)) → (𝐴 · 𝐵) ∈ (0[,)+∞)) | ||
| Theorem | ge0xaddcl 13359 | The nonnegative reals are closed under addition. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) → (𝐴 +𝑒 𝐵) ∈ (0[,]+∞)) | ||
| Theorem | ge0xmulcl 13360 | The nonnegative extended reals are closed under multiplication. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) → (𝐴 ·e 𝐵) ∈ (0[,]+∞)) | ||
| Theorem | lbicc2 13361 | The lower bound of a closed interval is a member of it. (Contributed by Paul Chapman, 26-Nov-2007.) (Revised by FL, 29-May-2014.) (Revised by Mario Carneiro, 9-Sep-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) | ||
| Theorem | ubicc2 13362 | The upper bound of a closed interval is a member of it. (Contributed by Paul Chapman, 26-Nov-2007.) (Revised by FL, 29-May-2014.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐵 ∈ (𝐴[,]𝐵)) | ||
| Theorem | elicc01 13363 | Membership in the closed real interval between 0 and 1, also called the closed unit interval. (Contributed by AV, 20-Aug-2022.) |
| ⊢ (𝑋 ∈ (0[,]1) ↔ (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1)) | ||
| Theorem | elunitrn 13364 | The closed unit interval is a subset of the set of the real numbers. Useful lemma for manipulating probabilities within the closed unit interval. (Contributed by Thierry Arnoux, 21-Dec-2016.) |
| ⊢ (𝐴 ∈ (0[,]1) → 𝐴 ∈ ℝ) | ||
| Theorem | elunitcn 13365 | The closed unit interval is a subset of the set of the complex numbers. Useful lemma for manipulating probabilities within the closed unit interval. (Contributed by Thierry Arnoux, 21-Dec-2016.) |
| ⊢ (𝐴 ∈ (0[,]1) → 𝐴 ∈ ℂ) | ||
| Theorem | 0elunit 13366 | Zero is an element of the closed unit interval. (Contributed by Scott Fenton, 11-Jun-2013.) |
| ⊢ 0 ∈ (0[,]1) | ||
| Theorem | 1elunit 13367 | One is an element of the closed unit interval. (Contributed by Scott Fenton, 11-Jun-2013.) |
| ⊢ 1 ∈ (0[,]1) | ||
| Theorem | iooneg 13368 | Membership in a negated open real interval. (Contributed by Paul Chapman, 26-Nov-2007.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ (𝐴(,)𝐵) ↔ -𝐶 ∈ (-𝐵(,)-𝐴))) | ||
| Theorem | iccneg 13369 | Membership in a negated closed real interval. (Contributed by Paul Chapman, 26-Nov-2007.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ -𝐶 ∈ (-𝐵[,]-𝐴))) | ||
| Theorem | icoshft 13370 | A shifted real is a member of a shifted, closed-below, open-above real interval. (Contributed by Paul Chapman, 25-Mar-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 ∈ (𝐴[,)𝐵) → (𝑋 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶)))) | ||
| Theorem | icoshftf1o 13371* | Shifting a closed-below, open-above interval is one-to-one onto. (Contributed by Paul Chapman, 25-Mar-2008.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ (𝐴[,)𝐵) ↦ (𝑥 + 𝐶)) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐹:(𝐴[,)𝐵)–1-1-onto→((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) | ||
| Theorem | icoun 13372 | The union of two adjacent left-closed right-open real intervals is a left-closed right-open real interval. (Contributed by Paul Chapman, 15-Mar-2008.) (Proof shortened by Mario Carneiro, 16-Jun-2014.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶)) → ((𝐴[,)𝐵) ∪ (𝐵[,)𝐶)) = (𝐴[,)𝐶)) | ||
| Theorem | icodisj 13373 | Adjacent left-closed right-open real intervals are disjoint. (Contributed by Mario Carneiro, 16-Jun-2014.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴[,)𝐵) ∩ (𝐵[,)𝐶)) = ∅) | ||
| Theorem | ioounsn 13374 | The union of an open interval with its upper endpoint is a left-open right-closed interval. (Contributed by Jon Pennant, 8-Jun-2019.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵)) | ||
| Theorem | snunioo 13375 | The closure of one end of an open real interval. (Contributed by Paul Chapman, 15-Mar-2008.) (Proof shortened by Mario Carneiro, 16-Jun-2014.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ({𝐴} ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵)) | ||
| Theorem | snunico 13376 | The closure of the open end of a right-open real interval. (Contributed by Mario Carneiro, 16-Jun-2014.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → ((𝐴[,)𝐵) ∪ {𝐵}) = (𝐴[,]𝐵)) | ||
| Theorem | snunioc 13377 | The closure of the open end of a left-open real interval. (Contributed by Thierry Arnoux, 28-Mar-2017.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → ({𝐴} ∪ (𝐴(,]𝐵)) = (𝐴[,]𝐵)) | ||
| Theorem | prunioo 13378 | The closure of an open real interval. (Contributed by Paul Chapman, 15-Mar-2008.) (Proof shortened by Mario Carneiro, 16-Jun-2014.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵)) | ||
| Theorem | ioodisj 13379 | If the upper bound of one open interval is less than or equal to the lower bound of the other, the intervals are disjoint. (Contributed by Jeff Hankins, 13-Jul-2009.) |
| ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) ∧ 𝐵 ≤ 𝐶) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) = ∅) | ||
| Theorem | ioojoin 13380 | Join two open intervals to create a third. (Contributed by NM, 11-Aug-2008.) (Proof shortened by Mario Carneiro, 16-Jun-2014.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ 𝐵 < 𝐶)) → (((𝐴(,)𝐵) ∪ {𝐵}) ∪ (𝐵(,)𝐶)) = (𝐴(,)𝐶)) | ||
| Theorem | difreicc 13381 | The class difference of ℝ and a closed interval. (Contributed by FL, 18-Jun-2007.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℝ ∖ (𝐴[,]𝐵)) = ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) | ||
| Theorem | iccsplit 13382 | Split a closed interval into the union of two closed intervals. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝐴[,]𝐵) = ((𝐴[,]𝐶) ∪ (𝐶[,]𝐵))) | ||
| Theorem | iccshftr 13383 | Membership in a shifted interval. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝐴 + 𝑅) = 𝐶 & ⊢ (𝐵 + 𝑅) = 𝐷 ⇒ ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 + 𝑅) ∈ (𝐶[,]𝐷))) | ||
| Theorem | iccshftri 13384 | Membership in a shifted interval. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝑅 ∈ ℝ & ⊢ (𝐴 + 𝑅) = 𝐶 & ⊢ (𝐵 + 𝑅) = 𝐷 ⇒ ⊢ (𝑋 ∈ (𝐴[,]𝐵) → (𝑋 + 𝑅) ∈ (𝐶[,]𝐷)) | ||
| Theorem | iccshftl 13385 | Membership in a shifted interval. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝐴 − 𝑅) = 𝐶 & ⊢ (𝐵 − 𝑅) = 𝐷 ⇒ ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 − 𝑅) ∈ (𝐶[,]𝐷))) | ||
| Theorem | iccshftli 13386 | Membership in a shifted interval. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝑅 ∈ ℝ & ⊢ (𝐴 − 𝑅) = 𝐶 & ⊢ (𝐵 − 𝑅) = 𝐷 ⇒ ⊢ (𝑋 ∈ (𝐴[,]𝐵) → (𝑋 − 𝑅) ∈ (𝐶[,]𝐷)) | ||
| Theorem | iccdil 13387 | Membership in a dilated interval. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝐴 · 𝑅) = 𝐶 & ⊢ (𝐵 · 𝑅) = 𝐷 ⇒ ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 · 𝑅) ∈ (𝐶[,]𝐷))) | ||
| Theorem | iccdili 13388 | Membership in a dilated interval. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝑅 ∈ ℝ+ & ⊢ (𝐴 · 𝑅) = 𝐶 & ⊢ (𝐵 · 𝑅) = 𝐷 ⇒ ⊢ (𝑋 ∈ (𝐴[,]𝐵) → (𝑋 · 𝑅) ∈ (𝐶[,]𝐷)) | ||
| Theorem | icccntr 13389 | Membership in a contracted interval. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝐴 / 𝑅) = 𝐶 & ⊢ (𝐵 / 𝑅) = 𝐷 ⇒ ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 / 𝑅) ∈ (𝐶[,]𝐷))) | ||
| Theorem | icccntri 13390 | Membership in a contracted interval. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝑅 ∈ ℝ+ & ⊢ (𝐴 / 𝑅) = 𝐶 & ⊢ (𝐵 / 𝑅) = 𝐷 ⇒ ⊢ (𝑋 ∈ (𝐴[,]𝐵) → (𝑋 / 𝑅) ∈ (𝐶[,]𝐷)) | ||
| Theorem | divelunit 13391 | A condition for a ratio to be a member of the closed unit interval. (Contributed by Scott Fenton, 11-Jun-2013.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐴 / 𝐵) ∈ (0[,]1) ↔ 𝐴 ≤ 𝐵)) | ||
| Theorem | lincmb01cmp 13392 | A linear combination of two reals which lies in the interval between them. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 8-Sep-2015.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐵)) ∈ (𝐴[,]𝐵)) | ||
| Theorem | iccf1o 13393* | Describe a bijection from [0, 1] to an arbitrary nontrivial closed interval [𝐴, 𝐵]. (Contributed by Mario Carneiro, 8-Sep-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴))) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐹:(0[,]1)–1-1-onto→(𝐴[,]𝐵) ∧ ◡𝐹 = (𝑦 ∈ (𝐴[,]𝐵) ↦ ((𝑦 − 𝐴) / (𝐵 − 𝐴))))) | ||
| Theorem | iccen 13394 | Any nontrivial closed interval is equinumerous to the unit interval. (Contributed by Mario Carneiro, 26-Jul-2014.) (Revised by Mario Carneiro, 8-Sep-2015.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (0[,]1) ≈ (𝐴[,]𝐵)) | ||
| Theorem | xov1plusxeqvd 13395 | A complex number 𝑋 is positive real iff 𝑋 / (1 + 𝑋) is in (0(,)1). Deduction form. (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ≠ -1) ⇒ ⊢ (𝜑 → (𝑋 ∈ ℝ+ ↔ (𝑋 / (1 + 𝑋)) ∈ (0(,)1))) | ||
| Theorem | unitssre 13396 | (0[,]1) is a subset of the reals. (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ (0[,]1) ⊆ ℝ | ||
| Theorem | unitsscn 13397 | The closed unit interval is a subset of the set of the complex numbers. Useful lemma for manipulating probabilities within the closed unit interval. (Contributed by Thierry Arnoux, 12-Dec-2016.) |
| ⊢ (0[,]1) ⊆ ℂ | ||
| Theorem | supicc 13398 | Supremum of a bounded set of real numbers. (Contributed by Thierry Arnoux, 17-May-2019.) |
| ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ⊆ (𝐵[,]𝐶)) & ⊢ (𝜑 → 𝐴 ≠ ∅) ⇒ ⊢ (𝜑 → sup(𝐴, ℝ, < ) ∈ (𝐵[,]𝐶)) | ||
| Theorem | supiccub 13399 | The supremum of a bounded set of real numbers is an upper bound. (Contributed by Thierry Arnoux, 20-May-2019.) |
| ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ⊆ (𝐵[,]𝐶)) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → 𝐷 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐷 ≤ sup(𝐴, ℝ, < )) | ||
| Theorem | supicclub 13400* | The supremum of a bounded set of real numbers is the least upper bound. (Contributed by Thierry Arnoux, 23-May-2019.) |
| ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ⊆ (𝐵[,]𝐶)) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → 𝐷 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝐷 < sup(𝐴, ℝ, < ) ↔ ∃𝑧 ∈ 𝐴 𝐷 < 𝑧)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |