![]() |
Metamath
Proof Explorer Theorem List (p. 134 of 474) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-29923) |
![]() (29924-31446) |
![]() (31447-47372) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | ndmioo 13301 | The open interval function's value is empty outside of its domain. (Contributed by NM, 21-Jun-2007.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ (¬ (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = ∅) | ||
Theorem | iooid 13302 | An open interval with identical lower and upper bounds is empty. (Contributed by NM, 21-Jun-2007.) (Revised by Mario Carneiro, 3-Nov-2013.) |
⊢ (𝐴(,)𝐴) = ∅ | ||
Theorem | elioo3g 13303 | Membership in a set of open intervals of extended reals. We use the fact that an operation's value is empty outside of its domain to show 𝐴 ∈ ℝ* and 𝐵 ∈ ℝ*. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.) |
⊢ (𝐶 ∈ (𝐴(,)𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) | ||
Theorem | elioore 13304 | A member of an open interval of reals is a real. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 3-Nov-2013.) |
⊢ (𝐴 ∈ (𝐵(,)𝐶) → 𝐴 ∈ ℝ) | ||
Theorem | lbioo 13305 | An open interval does not contain its left endpoint. (Contributed by Mario Carneiro, 29-Dec-2016.) |
⊢ ¬ 𝐴 ∈ (𝐴(,)𝐵) | ||
Theorem | ubioo 13306 | An open interval does not contain its right endpoint. (Contributed by Mario Carneiro, 29-Dec-2016.) |
⊢ ¬ 𝐵 ∈ (𝐴(,)𝐵) | ||
Theorem | iooval2 13307* | Value of the open interval function. (Contributed by NM, 6-Feb-2007.) (Revised by Mario Carneiro, 3-Nov-2013.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)}) | ||
Theorem | iooin 13308 | Intersection of two open intervals of extended reals. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 3-Nov-2013.) |
⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) = (if(𝐴 ≤ 𝐶, 𝐶, 𝐴)(,)if(𝐵 ≤ 𝐷, 𝐵, 𝐷))) | ||
Theorem | iooss1 13309 | Subset relationship for open intervals of extended reals. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 20-Feb-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → (𝐵(,)𝐶) ⊆ (𝐴(,)𝐶)) | ||
Theorem | iooss2 13310 | Subset relationship for open intervals of extended reals. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 3-Nov-2013.) |
⊢ ((𝐶 ∈ ℝ* ∧ 𝐵 ≤ 𝐶) → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐶)) | ||
Theorem | iocval 13311* | Value of the open-below, closed-above interval function. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴(,]𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 ≤ 𝐵)}) | ||
Theorem | icoval 13312* | Value of the closed-below, open-above interval function. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵)}) | ||
Theorem | iccval 13313* | Value of the closed interval function. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴[,]𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)}) | ||
Theorem | elioo1 13314 | Membership in an open interval of extended reals. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) | ||
Theorem | elioo2 13315 | Membership in an open interval of extended reals. (Contributed by NM, 6-Feb-2007.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) | ||
Theorem | elioc1 13316 | Membership in an open-below, closed-above interval of extended reals. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵))) | ||
Theorem | elico1 13317 | Membership in a closed-below, open-above interval of extended reals. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵))) | ||
Theorem | elicc1 13318 | Membership in a closed interval of extended reals. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | ||
Theorem | iccid 13319 | A closed interval with identical lower and upper bounds is a singleton. (Contributed by Jeff Hankins, 13-Jul-2009.) |
⊢ (𝐴 ∈ ℝ* → (𝐴[,]𝐴) = {𝐴}) | ||
Theorem | ico0 13320 | An empty open interval of extended reals. (Contributed by FL, 30-May-2014.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴[,)𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) | ||
Theorem | ioc0 13321 | An empty open interval of extended reals. (Contributed by FL, 30-May-2014.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴(,]𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) | ||
Theorem | icc0 13322 | An empty closed interval of extended reals. (Contributed by FL, 30-May-2014.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴)) | ||
Theorem | dfrp2 13323 | Alternate definition of the positive real numbers. (Contributed by Thierry Arnoux, 4-May-2020.) |
⊢ ℝ+ = (0(,)+∞) | ||
Theorem | elicod 13324 | Membership in a left-closed right-open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 ≤ 𝐶) & ⊢ (𝜑 → 𝐶 < 𝐵) ⇒ ⊢ (𝜑 → 𝐶 ∈ (𝐴[,)𝐵)) | ||
Theorem | icogelb 13325 | An element of a left-closed right-open interval is greater than or equal to its lower bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐴 ≤ 𝐶) | ||
Theorem | elicore 13326 | A member of a left-closed right-open interval of reals is real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 ∈ ℝ) | ||
Theorem | ubioc1 13327 | The upper bound belongs to an open-below, closed-above interval. See ubicc2 13392. (Contributed by FL, 29-May-2014.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → 𝐵 ∈ (𝐴(,]𝐵)) | ||
Theorem | lbico1 13328 | The lower bound belongs to a closed-below, open-above interval. See lbicc2 13391. (Contributed by FL, 29-May-2014.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → 𝐴 ∈ (𝐴[,)𝐵)) | ||
Theorem | iccleub 13329 | An element of a closed interval is less than or equal to its upper bound. (Contributed by Jeff Hankins, 14-Jul-2009.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ≤ 𝐵) | ||
Theorem | iccgelb 13330 | An element of a closed interval is more than or equal to its lower bound. (Contributed by Thierry Arnoux, 23-Dec-2016.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝐶) | ||
Theorem | elioo5 13331 | Membership in an open interval of extended reals. (Contributed by NM, 17-Aug-2008.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) | ||
Theorem | eliooxr 13332 | A nonempty open interval spans an interval of extended reals. (Contributed by NM, 17-Aug-2008.) |
⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*)) | ||
Theorem | eliooord 13333 | Ordering implied by a member of an open interval of reals. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 9-May-2014.) |
⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 < 𝐴 ∧ 𝐴 < 𝐶)) | ||
Theorem | elioo4g 13334 | Membership in an open interval of extended reals. (Contributed by NM, 8-Jun-2007.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ (𝐶 ∈ (𝐴(,)𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) | ||
Theorem | ioossre 13335 | An open interval is a set of reals. (Contributed by NM, 31-May-2007.) |
⊢ (𝐴(,)𝐵) ⊆ ℝ | ||
Theorem | ioosscn 13336 | An open interval is a set of complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝐴(,)𝐵) ⊆ ℂ | ||
Theorem | elioc2 13337 | Membership in an open-below, closed-above real interval. (Contributed by Paul Chapman, 30-Dec-2007.) (Revised by Mario Carneiro, 14-Jun-2014.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵))) | ||
Theorem | elico2 13338 | Membership in a closed-below, open-above real interval. (Contributed by Paul Chapman, 21-Jan-2008.) (Revised by Mario Carneiro, 14-Jun-2014.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵))) | ||
Theorem | elicc2 13339 | Membership in a closed real interval. (Contributed by Paul Chapman, 21-Sep-2007.) (Revised by Mario Carneiro, 14-Jun-2014.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | ||
Theorem | elicc2i 13340 | Inference for membership in a closed interval. (Contributed by Scott Fenton, 3-Jun-2013.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) | ||
Theorem | elicc4 13341 | Membership in a closed real interval. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Proof shortened by Mario Carneiro, 1-Jan-2017.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | ||
Theorem | iccss 13342 | Condition for a closed interval to be a subset of another closed interval. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 20-Feb-2015.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,]𝐵)) | ||
Theorem | iccssioo 13343 | Condition for a closed interval to be a subset of an open interval. (Contributed by Mario Carneiro, 20-Feb-2015.) |
⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐶 ∧ 𝐷 < 𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴(,)𝐵)) | ||
Theorem | icossico 13344 | Condition for a closed-below, open-above interval to be a subset of a closed-below, open-above interval. (Contributed by Thierry Arnoux, 21-Sep-2017.) |
⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵)) → (𝐶[,)𝐷) ⊆ (𝐴[,)𝐵)) | ||
Theorem | iccss2 13345 | Condition for a closed interval to be a subset of another closed interval. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ ((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,]𝐵)) | ||
Theorem | iccssico 13346 | Condition for a closed interval to be a subset of a half-open interval. (Contributed by Mario Carneiro, 9-Sep-2015.) |
⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 ≤ 𝐶 ∧ 𝐷 < 𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,)𝐵)) | ||
Theorem | iccssioo2 13347 | Condition for a closed interval to be a subset of an open interval. (Contributed by Mario Carneiro, 20-Feb-2015.) |
⊢ ((𝐶 ∈ (𝐴(,)𝐵) ∧ 𝐷 ∈ (𝐴(,)𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴(,)𝐵)) | ||
Theorem | iccssico2 13348 | Condition for a closed interval to be a subset of a closed-below, open-above interval. (Contributed by Mario Carneiro, 20-Feb-2015.) |
⊢ ((𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,)𝐵)) | ||
Theorem | ioomax 13349 | The open interval from minus to plus infinity. (Contributed by NM, 6-Feb-2007.) |
⊢ (-∞(,)+∞) = ℝ | ||
Theorem | iccmax 13350 | The closed interval from minus to plus infinity. (Contributed by Mario Carneiro, 4-Jul-2014.) |
⊢ (-∞[,]+∞) = ℝ* | ||
Theorem | ioopos 13351 | The set of positive reals expressed as an open interval. (Contributed by NM, 7-May-2007.) |
⊢ (0(,)+∞) = {𝑥 ∈ ℝ ∣ 0 < 𝑥} | ||
Theorem | ioorp 13352 | The set of positive reals expressed as an open interval. (Contributed by Steve Rodriguez, 25-Nov-2007.) |
⊢ (0(,)+∞) = ℝ+ | ||
Theorem | iooshf 13353 | Shift the arguments of the open interval function. (Contributed by NM, 17-Aug-2008.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 − 𝐵) ∈ (𝐶(,)𝐷) ↔ 𝐴 ∈ ((𝐶 + 𝐵)(,)(𝐷 + 𝐵)))) | ||
Theorem | iocssre 13354 | A closed-above interval with real upper bound is a set of reals. (Contributed by FL, 29-May-2014.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ) | ||
Theorem | icossre 13355 | A closed-below interval with real lower bound is a set of reals. (Contributed by Mario Carneiro, 14-Jun-2014.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ⊆ ℝ) | ||
Theorem | iccssre 13356 | A closed real interval is a set of reals. (Contributed by FL, 6-Jun-2007.) (Proof shortened by Paul Chapman, 21-Jan-2008.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) | ||
Theorem | iccssxr 13357 | A closed interval is a set of extended reals. (Contributed by FL, 28-Jul-2008.) (Revised by Mario Carneiro, 4-Jul-2014.) |
⊢ (𝐴[,]𝐵) ⊆ ℝ* | ||
Theorem | iocssxr 13358 | An open-below, closed-above interval is a subset of the extended reals. (Contributed by FL, 29-May-2014.) (Revised by Mario Carneiro, 4-Jul-2014.) |
⊢ (𝐴(,]𝐵) ⊆ ℝ* | ||
Theorem | icossxr 13359 | A closed-below, open-above interval is a subset of the extended reals. (Contributed by FL, 29-May-2014.) (Revised by Mario Carneiro, 4-Jul-2014.) |
⊢ (𝐴[,)𝐵) ⊆ ℝ* | ||
Theorem | ioossicc 13360 | An open interval is a subset of its closure. (Contributed by Paul Chapman, 18-Oct-2007.) |
⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) | ||
Theorem | iccssred 13361 | A closed real interval is a set of reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) | ||
Theorem | eliccxr 13362 | A member of a closed interval is an extended real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝐴 ∈ (𝐵[,]𝐶) → 𝐴 ∈ ℝ*) | ||
Theorem | icossicc 13363 | A closed-below, open-above interval is a subset of its closure. (Contributed by Thierry Arnoux, 25-Oct-2016.) |
⊢ (𝐴[,)𝐵) ⊆ (𝐴[,]𝐵) | ||
Theorem | iocssicc 13364 | A closed-above, open-below interval is a subset of its closure. (Contributed by Thierry Arnoux, 1-Apr-2017.) |
⊢ (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵) | ||
Theorem | ioossico 13365 | An open interval is a subset of its closure-below. (Contributed by Thierry Arnoux, 3-Mar-2017.) |
⊢ (𝐴(,)𝐵) ⊆ (𝐴[,)𝐵) | ||
Theorem | iocssioo 13366 | Condition for a closed interval to be a subset of an open interval. (Contributed by Thierry Arnoux, 29-Mar-2017.) |
⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 ≤ 𝐶 ∧ 𝐷 < 𝐵)) → (𝐶(,]𝐷) ⊆ (𝐴(,)𝐵)) | ||
Theorem | icossioo 13367 | Condition for a closed interval to be a subset of an open interval. (Contributed by Thierry Arnoux, 29-Mar-2017.) |
⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐶 ∧ 𝐷 ≤ 𝐵)) → (𝐶[,)𝐷) ⊆ (𝐴(,)𝐵)) | ||
Theorem | ioossioo 13368 | Condition for an open interval to be a subset of an open interval. (Contributed by Thierry Arnoux, 26-Sep-2017.) |
⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵)) → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) | ||
Theorem | iccsupr 13369* | A nonempty subset of a closed real interval satisfies the conditions for the existence of its supremum (see suprcl 12124). (Contributed by Paul Chapman, 21-Jan-2008.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵) ∧ 𝐶 ∈ 𝑆) → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥)) | ||
Theorem | elioopnf 13370 | Membership in an unbounded interval of extended reals. (Contributed by Mario Carneiro, 18-Jun-2014.) |
⊢ (𝐴 ∈ ℝ* → (𝐵 ∈ (𝐴(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 < 𝐵))) | ||
Theorem | elioomnf 13371 | Membership in an unbounded interval of extended reals. (Contributed by Mario Carneiro, 18-Jun-2014.) |
⊢ (𝐴 ∈ ℝ* → (𝐵 ∈ (-∞(,)𝐴) ↔ (𝐵 ∈ ℝ ∧ 𝐵 < 𝐴))) | ||
Theorem | elicopnf 13372 | Membership in a closed unbounded interval of reals. (Contributed by Mario Carneiro, 16-Sep-2014.) |
⊢ (𝐴 ∈ ℝ → (𝐵 ∈ (𝐴[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵))) | ||
Theorem | repos 13373 | Two ways of saying that a real number is positive. (Contributed by NM, 7-May-2007.) |
⊢ (𝐴 ∈ (0(,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | ||
Theorem | ioof 13374 | The set of open intervals of extended reals maps to subsets of reals. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) |
⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | ||
Theorem | iccf 13375 | The set of closed intervals of extended reals maps to subsets of extended reals. (Contributed by FL, 14-Jun-2007.) (Revised by Mario Carneiro, 3-Nov-2013.) |
⊢ [,]:(ℝ* × ℝ*)⟶𝒫 ℝ* | ||
Theorem | unirnioo 13376 | The union of the range of the open interval function. (Contributed by NM, 7-May-2007.) (Revised by Mario Carneiro, 30-Jan-2014.) |
⊢ ℝ = ∪ ran (,) | ||
Theorem | dfioo2 13377* | Alternate definition of the set of open intervals of extended reals. (Contributed by NM, 1-Mar-2007.) (Revised by Mario Carneiro, 1-Sep-2015.) |
⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑤 ∈ ℝ ∣ (𝑥 < 𝑤 ∧ 𝑤 < 𝑦)}) | ||
Theorem | ioorebas 13378 | Open intervals are elements of the set of all open intervals. (Contributed by Mario Carneiro, 26-Mar-2015.) |
⊢ (𝐴(,)𝐵) ∈ ran (,) | ||
Theorem | xrge0neqmnf 13379 | A nonnegative extended real is not equal to minus infinity. (Contributed by Thierry Arnoux, 9-Jun-2017.) (Proof shortened by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝐴 ∈ (0[,]+∞) → 𝐴 ≠ -∞) | ||
Theorem | xrge0nre 13380 | An extended real which is not a real is plus infinity. (Contributed by Thierry Arnoux, 16-Oct-2017.) |
⊢ ((𝐴 ∈ (0[,]+∞) ∧ ¬ 𝐴 ∈ ℝ) → 𝐴 = +∞) | ||
Theorem | elrege0 13381 | The predicate "is a nonnegative real". (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 18-Jun-2014.) |
⊢ (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) | ||
Theorem | nn0rp0 13382 | A nonnegative integer is a nonnegative real number. (Contributed by AV, 24-May-2020.) |
⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ (0[,)+∞)) | ||
Theorem | rge0ssre 13383 | Nonnegative real numbers are real numbers. (Contributed by Thierry Arnoux, 9-Sep-2018.) (Proof shortened by AV, 8-Sep-2019.) |
⊢ (0[,)+∞) ⊆ ℝ | ||
Theorem | elxrge0 13384 | Elementhood in the set of nonnegative extended reals. (Contributed by Mario Carneiro, 28-Jun-2014.) |
⊢ (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴)) | ||
Theorem | 0e0icopnf 13385 | 0 is a member of (0[,)+∞). (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ 0 ∈ (0[,)+∞) | ||
Theorem | 0e0iccpnf 13386 | 0 is a member of (0[,]+∞). (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ 0 ∈ (0[,]+∞) | ||
Theorem | ge0addcl 13387 | The nonnegative reals are closed under addition. (Contributed by Mario Carneiro, 19-Jun-2014.) |
⊢ ((𝐴 ∈ (0[,)+∞) ∧ 𝐵 ∈ (0[,)+∞)) → (𝐴 + 𝐵) ∈ (0[,)+∞)) | ||
Theorem | ge0mulcl 13388 | The nonnegative reals are closed under multiplication. (Contributed by Mario Carneiro, 19-Jun-2014.) |
⊢ ((𝐴 ∈ (0[,)+∞) ∧ 𝐵 ∈ (0[,)+∞)) → (𝐴 · 𝐵) ∈ (0[,)+∞)) | ||
Theorem | ge0xaddcl 13389 | The nonnegative reals are closed under addition. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) → (𝐴 +𝑒 𝐵) ∈ (0[,]+∞)) | ||
Theorem | ge0xmulcl 13390 | The nonnegative extended reals are closed under multiplication. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) → (𝐴 ·e 𝐵) ∈ (0[,]+∞)) | ||
Theorem | lbicc2 13391 | The lower bound of a closed interval is a member of it. (Contributed by Paul Chapman, 26-Nov-2007.) (Revised by FL, 29-May-2014.) (Revised by Mario Carneiro, 9-Sep-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) | ||
Theorem | ubicc2 13392 | The upper bound of a closed interval is a member of it. (Contributed by Paul Chapman, 26-Nov-2007.) (Revised by FL, 29-May-2014.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐵 ∈ (𝐴[,]𝐵)) | ||
Theorem | elicc01 13393 | Membership in the closed real interval between 0 and 1, also called the closed unit interval. (Contributed by AV, 20-Aug-2022.) |
⊢ (𝑋 ∈ (0[,]1) ↔ (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1)) | ||
Theorem | elunitrn 13394 | The closed unit interval is a subset of the set of the real numbers. Useful lemma for manipulating probabilities within the closed unit interval. (Contributed by Thierry Arnoux, 21-Dec-2016.) |
⊢ (𝐴 ∈ (0[,]1) → 𝐴 ∈ ℝ) | ||
Theorem | elunitcn 13395 | The closed unit interval is a subset of the set of the complex numbers. Useful lemma for manipulating probabilities within the closed unit interval. (Contributed by Thierry Arnoux, 21-Dec-2016.) |
⊢ (𝐴 ∈ (0[,]1) → 𝐴 ∈ ℂ) | ||
Theorem | 0elunit 13396 | Zero is an element of the closed unit interval. (Contributed by Scott Fenton, 11-Jun-2013.) |
⊢ 0 ∈ (0[,]1) | ||
Theorem | 1elunit 13397 | One is an element of the closed unit interval. (Contributed by Scott Fenton, 11-Jun-2013.) |
⊢ 1 ∈ (0[,]1) | ||
Theorem | iooneg 13398 | Membership in a negated open real interval. (Contributed by Paul Chapman, 26-Nov-2007.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ (𝐴(,)𝐵) ↔ -𝐶 ∈ (-𝐵(,)-𝐴))) | ||
Theorem | iccneg 13399 | Membership in a negated closed real interval. (Contributed by Paul Chapman, 26-Nov-2007.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ -𝐶 ∈ (-𝐵[,]-𝐴))) | ||
Theorem | icoshft 13400 | A shifted real is a member of a shifted, closed-below, open-above real interval. (Contributed by Paul Chapman, 25-Mar-2008.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 ∈ (𝐴[,)𝐵) → (𝑋 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶)))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |