HomeHome Metamath Proof Explorer
Theorem List (p. 134 of 466)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29289)
  Hilbert Space Explorer  Hilbert Space Explorer
(29290-30812)
  Users' Mathboxes  Users' Mathboxes
(30813-46532)
 

Theorem List for Metamath Proof Explorer - 13301-13400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremfzsubel 13301 Membership of a difference in a finite set of sequential integers. (Contributed by NM, 30-Jul-2005.)
(((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐽 ∈ (𝑀...𝑁) ↔ (𝐽𝐾) ∈ ((𝑀𝐾)...(𝑁𝐾))))
 
Theoremfzopth 13302 A finite set of sequential integers has the ordered pair property (compare opth 5392) under certain conditions. (Contributed by NM, 31-Oct-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝑁 ∈ (ℤ𝑀) → ((𝑀...𝑁) = (𝐽...𝐾) ↔ (𝑀 = 𝐽𝑁 = 𝐾)))
 
Theoremfzass4 13303 Two ways to express a nondecreasing sequence of four integers. (Contributed by Stefan O'Rear, 15-Aug-2015.)
((𝐵 ∈ (𝐴...𝐷) ∧ 𝐶 ∈ (𝐵...𝐷)) ↔ (𝐵 ∈ (𝐴...𝐶) ∧ 𝐶 ∈ (𝐴...𝐷)))
 
Theoremfzss1 13304 Subset relationship for finite sets of sequential integers. (Contributed by NM, 28-Sep-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2015.)
(𝐾 ∈ (ℤ𝑀) → (𝐾...𝑁) ⊆ (𝑀...𝑁))
 
Theoremfzss2 13305 Subset relationship for finite sets of sequential integers. (Contributed by NM, 4-Oct-2005.) (Revised by Mario Carneiro, 30-Apr-2015.)
(𝑁 ∈ (ℤ𝐾) → (𝑀...𝐾) ⊆ (𝑀...𝑁))
 
Theoremfzssuz 13306 A finite set of sequential integers is a subset of an upper set of integers. (Contributed by NM, 28-Oct-2005.)
(𝑀...𝑁) ⊆ (ℤ𝑀)
 
Theoremfzsn 13307 A finite interval of integers with one element. (Contributed by Jeff Madsen, 2-Sep-2009.)
(𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
 
Theoremfzssp1 13308 Subset relationship for finite sets of sequential integers. (Contributed by NM, 21-Jul-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝑀...𝑁) ⊆ (𝑀...(𝑁 + 1))
 
Theoremfzssnn 13309 Finite sets of sequential integers starting from a natural are a subset of the positive integers. (Contributed by Thierry Arnoux, 4-Aug-2017.)
(𝑀 ∈ ℕ → (𝑀...𝑁) ⊆ ℕ)
 
Theoremssfzunsnext 13310 A subset of a finite sequence of integers extended by an integer is a subset of a (possibly extended) finite sequence of integers. (Contributed by AV, 13-Nov-2021.)
((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → (𝑆 ∪ {𝐼}) ⊆ (if(𝐼𝑀, 𝐼, 𝑀)...if(𝐼𝑁, 𝑁, 𝐼)))
 
Theoremssfzunsn 13311 A subset of a finite sequence of integers extended by an integer is a subset of a (possibly extended) finite sequence of integers. (Contributed by AV, 8-Jun-2021.) (Proof shortened by AV, 13-Nov-2021.)
((𝑆 ⊆ (𝑀...𝑁) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (ℤ𝑀)) → (𝑆 ∪ {𝐼}) ⊆ (𝑀...if(𝐼𝑁, 𝑁, 𝐼)))
 
Theoremfzsuc 13312 Join a successor to the end of a finite set of sequential integers. (Contributed by NM, 19-Jul-2008.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝑁 ∈ (ℤ𝑀) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}))
 
Theoremfzpred 13313 Join a predecessor to the beginning of a finite set of sequential integers. (Contributed by AV, 24-Aug-2019.)
(𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = ({𝑀} ∪ ((𝑀 + 1)...𝑁)))
 
Theoremfzpreddisj 13314 A finite set of sequential integers is disjoint with its predecessor. (Contributed by AV, 24-Aug-2019.)
(𝑁 ∈ (ℤ𝑀) → ({𝑀} ∩ ((𝑀 + 1)...𝑁)) = ∅)
 
Theoremelfzp1 13315 Append an element to a finite set of sequential integers. (Contributed by NM, 19-Sep-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2015.)
(𝑁 ∈ (ℤ𝑀) → (𝐾 ∈ (𝑀...(𝑁 + 1)) ↔ (𝐾 ∈ (𝑀...𝑁) ∨ 𝐾 = (𝑁 + 1))))
 
Theoremfzp1ss 13316 Subset relationship for finite sets of sequential integers. (Contributed by NM, 26-Jul-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝑀 ∈ ℤ → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
 
Theoremfzelp1 13317 Membership in a set of sequential integers with an appended element. (Contributed by NM, 7-Dec-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (𝑀...(𝑁 + 1)))
 
Theoremfzp1elp1 13318 Add one to an element of a finite set of integers. (Contributed by Jeff Madsen, 6-Jun-2010.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝐾 ∈ (𝑀...𝑁) → (𝐾 + 1) ∈ (𝑀...(𝑁 + 1)))
 
Theoremfznatpl1 13319 Shift membership in a finite sequence of naturals. (Contributed by Scott Fenton, 17-Jul-2013.)
((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (𝐼 + 1) ∈ (1...𝑁))
 
Theoremfzpr 13320 A finite interval of integers with two elements. (Contributed by Jeff Madsen, 2-Sep-2009.)
(𝑀 ∈ ℤ → (𝑀...(𝑀 + 1)) = {𝑀, (𝑀 + 1)})
 
Theoremfztp 13321 A finite interval of integers with three elements. (Contributed by NM, 13-Sep-2011.) (Revised by Mario Carneiro, 7-Mar-2014.)
(𝑀 ∈ ℤ → (𝑀...(𝑀 + 2)) = {𝑀, (𝑀 + 1), (𝑀 + 2)})
 
Theoremfz12pr 13322 An integer range between 1 and 2 is a pair. (Contributed by AV, 11-Jan-2023.)
(1...2) = {1, 2}
 
Theoremfzsuc2 13323 Join a successor to the end of a finite set of sequential integers. (Contributed by Mario Carneiro, 7-Mar-2014.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 − 1))) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}))
 
Theoremfzp1disj 13324 (𝑀...(𝑁 + 1)) is the disjoint union of (𝑀...𝑁) with {(𝑁 + 1)}. (Contributed by Mario Carneiro, 7-Mar-2014.)
((𝑀...𝑁) ∩ {(𝑁 + 1)}) = ∅
 
Theoremfzdifsuc 13325 Remove a successor from the end of a finite set of sequential integers. (Contributed by AV, 4-Sep-2019.)
(𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))
 
Theoremfzprval 13326* Two ways of defining the first two values of a sequence on . (Contributed by NM, 5-Sep-2011.)
(∀𝑥 ∈ (1...2)(𝐹𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵))
 
Theoremfztpval 13327* Two ways of defining the first three values of a sequence on . (Contributed by NM, 13-Sep-2011.)
(∀𝑥 ∈ (1...3)(𝐹𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵 ∧ (𝐹‘3) = 𝐶))
 
Theoremfzrev 13328 Reversal of start and end of a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.)
(((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐾 ∈ ((𝐽𝑁)...(𝐽𝑀)) ↔ (𝐽𝐾) ∈ (𝑀...𝑁)))
 
Theoremfzrev2 13329 Reversal of start and end of a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.)
(((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐽𝐾) ∈ ((𝐽𝑁)...(𝐽𝑀))))
 
Theoremfzrev2i 13330 Reversal of start and end of a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.)
((𝐽 ∈ ℤ ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐽𝐾) ∈ ((𝐽𝑁)...(𝐽𝑀)))
 
Theoremfzrev3 13331 The "complement" of a member of a finite set of sequential integers. (Contributed by NM, 20-Nov-2005.)
(𝐾 ∈ ℤ → (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 + 𝑁) − 𝐾) ∈ (𝑀...𝑁)))
 
Theoremfzrev3i 13332 The "complement" of a member of a finite set of sequential integers. (Contributed by NM, 20-Nov-2005.)
(𝐾 ∈ (𝑀...𝑁) → ((𝑀 + 𝑁) − 𝐾) ∈ (𝑀...𝑁))
 
Theoremfznn 13333 Finite set of sequential integers starting at 1. (Contributed by NM, 31-Aug-2011.) (Revised by Mario Carneiro, 18-Jun-2015.)
(𝑁 ∈ ℤ → (𝐾 ∈ (1...𝑁) ↔ (𝐾 ∈ ℕ ∧ 𝐾𝑁)))
 
Theoremelfz1b 13334 Membership in a 1-based finite set of sequential integers. (Contributed by AV, 30-Oct-2018.) (Proof shortened by AV, 23-Jan-2022.)
(𝑁 ∈ (1...𝑀) ↔ (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀))
 
Theoremelfz1uz 13335 Membership in a 1-based finite set of sequential integers with an upper integer. (Contributed by AV, 23-Jan-2022.)
((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) → 𝑁 ∈ (1...𝑀))
 
Theoremelfzm11 13336 Membership in a finite set of sequential integers. (Contributed by Paul Chapman, 21-Mar-2011.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...(𝑁 − 1)) ↔ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾 < 𝑁)))
 
Theoremuzsplit 13337 Express an upper integer set as the disjoint (see uzdisj 13338) union of the first 𝑁 values and the rest. (Contributed by Mario Carneiro, 24-Apr-2014.)
(𝑁 ∈ (ℤ𝑀) → (ℤ𝑀) = ((𝑀...(𝑁 − 1)) ∪ (ℤ𝑁)))
 
Theoremuzdisj 13338 The first 𝑁 elements of an upper integer set are distinct from any later members. (Contributed by Mario Carneiro, 24-Apr-2014.)
((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) = ∅
 
Theoremfseq1p1m1 13339 Add/remove an item to/from the end of a finite sequence. (Contributed by Paul Chapman, 17-Nov-2012.) (Revised by Mario Carneiro, 7-Mar-2014.)
𝐻 = {⟨(𝑁 + 1), 𝐵⟩}       (𝑁 ∈ ℕ0 → ((𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻)) ↔ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))))
 
Theoremfseq1m1p1 13340 Add/remove an item to/from the end of a finite sequence. (Contributed by Paul Chapman, 17-Nov-2012.)
𝐻 = {⟨𝑁, 𝐵⟩}       (𝑁 ∈ ℕ → ((𝐹:(1...(𝑁 − 1))⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻)) ↔ (𝐺:(1...𝑁)⟶𝐴 ∧ (𝐺𝑁) = 𝐵𝐹 = (𝐺 ↾ (1...(𝑁 − 1))))))
 
Theoremfz1sbc 13341* Quantification over a one-member finite set of sequential integers in terms of substitution. (Contributed by NM, 28-Nov-2005.)
(𝑁 ∈ ℤ → (∀𝑘 ∈ (𝑁...𝑁)𝜑[𝑁 / 𝑘]𝜑))
 
Theoremelfzp1b 13342 An integer is a member of a 0-based finite set of sequential integers iff its successor is a member of the corresponding 1-based set. (Contributed by Paul Chapman, 22-Jun-2011.)
((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (0...(𝑁 − 1)) ↔ (𝐾 + 1) ∈ (1...𝑁)))
 
Theoremelfzm1b 13343 An integer is a member of a 1-based finite set of sequential integers iff its predecessor is a member of the corresponding 0-based set. (Contributed by Paul Chapman, 22-Jun-2011.)
((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (1...𝑁) ↔ (𝐾 − 1) ∈ (0...(𝑁 − 1))))
 
Theoremelfzp12 13344 Options for membership in a finite interval of integers. (Contributed by Jeff Madsen, 18-Jun-2010.)
(𝑁 ∈ (ℤ𝑀) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)...𝑁))))
 
Theoremfzm1 13345 Choices for an element of a finite interval of integers. (Contributed by Jeff Madsen, 2-Sep-2009.)
(𝑁 ∈ (ℤ𝑀) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = 𝑁)))
 
Theoremfzneuz 13346 No finite set of sequential integers equals an upper set of integers. (Contributed by NM, 11-Dec-2005.)
((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → ¬ (𝑀...𝑁) = (ℤ𝐾))
 
Theoremfznuz 13347 Disjointness of the upper integers and a finite sequence. (Contributed by Mario Carneiro, 30-Jun-2013.) (Revised by Mario Carneiro, 24-Aug-2013.)
(𝐾 ∈ (𝑀...𝑁) → ¬ 𝐾 ∈ (ℤ‘(𝑁 + 1)))
 
Theoremuznfz 13348 Disjointness of the upper integers and a finite sequence. (Contributed by Mario Carneiro, 24-Aug-2013.)
(𝐾 ∈ (ℤ𝑁) → ¬ 𝐾 ∈ (𝑀...(𝑁 − 1)))
 
Theoremfzp1nel 13349 One plus the upper bound of a finite set of integers is not a member of that set. (Contributed by Scott Fenton, 16-Dec-2017.)
¬ (𝑁 + 1) ∈ (𝑀...𝑁)
 
Theoremfzrevral 13350* Reversal of scanning order inside of a universal quantification restricted to a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 ↔ ∀𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))[(𝐾𝑘) / 𝑗]𝜑))
 
Theoremfzrevral2 13351* Reversal of scanning order inside of a universal quantification restricted to a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀))𝜑 ↔ ∀𝑘 ∈ (𝑀...𝑁)[(𝐾𝑘) / 𝑗]𝜑))
 
Theoremfzrevral3 13352* Reversal of scanning order inside of a universal quantification restricted to a finite set of sequential integers. (Contributed by NM, 20-Nov-2005.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 ↔ ∀𝑘 ∈ (𝑀...𝑁)[((𝑀 + 𝑁) − 𝑘) / 𝑗]𝜑))
 
Theoremfzshftral 13353* Shift the scanning order inside of a universal quantification restricted to a finite set of sequential integers. (Contributed by NM, 27-Nov-2005.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))[(𝑘𝐾) / 𝑗]𝜑))
 
Theoremige2m1fz1 13354 Membership of an integer greater than 1 decreased by 1 in a 1-based finite set of sequential integers. (Contributed by Alexander van der Vekens, 14-Sep-2018.)
(𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ (1...𝑁))
 
Theoremige2m1fz 13355 Membership in a 0-based finite set of sequential integers. (Contributed by Alexander van der Vekens, 18-Jun-2018.) (Proof shortened by Alexander van der Vekens, 15-Sep-2018.)
((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ (0...𝑁))
 
5.5.6  Finite intervals of nonnegative integers

Finite intervals of nonnegative integers (or "finite sets of sequential nonnegative integers") are finite intervals of integers with 0 as lower bound: (0...𝑁), usually abbreviated by "fz0".

 
Theoremelfz2nn0 13356 Membership in a finite set of sequential nonnegative integers. (Contributed by NM, 16-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁))
 
Theoremfznn0 13357 Characterization of a finite set of sequential nonnegative integers. (Contributed by NM, 1-Aug-2005.)
(𝑁 ∈ ℕ0 → (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℕ0𝐾𝑁)))
 
Theoremelfznn0 13358 A member of a finite set of sequential nonnegative integers is a nonnegative integer. (Contributed by NM, 5-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0)
 
Theoremelfz3nn0 13359 The upper bound of a nonempty finite set of sequential nonnegative integers is a nonnegative integer. (Contributed by NM, 16-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℕ0)
 
Theoremfz0ssnn0 13360 Finite sets of sequential nonnegative integers starting with 0 are subsets of NN0. (Contributed by JJ, 1-Jun-2021.)
(0...𝑁) ⊆ ℕ0
 
Theoremfz1ssfz0 13361 Subset relationship for finite sets of sequential integers. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(1...𝑁) ⊆ (0...𝑁)
 
Theorem0elfz 13362 0 is an element of a finite set of sequential nonnegative integers with a nonnegative integer as upper bound. (Contributed by AV, 6-Apr-2018.)
(𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁))
 
Theoremnn0fz0 13363 A nonnegative integer is always part of the finite set of sequential nonnegative integers with this integer as upper bound. (Contributed by Scott Fenton, 21-Mar-2018.)
(𝑁 ∈ ℕ0𝑁 ∈ (0...𝑁))
 
Theoremelfz0add 13364 An element of a finite set of sequential nonnegative integers is an element of an extended finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 28-Mar-2018.) (Proof shortened by OpenAI, 25-Mar-2020.)
((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝑁 ∈ (0...𝐴) → 𝑁 ∈ (0...(𝐴 + 𝐵))))
 
Theoremfz0sn 13365 An integer range from 0 to 0 is a singleton. (Contributed by AV, 18-Apr-2021.)
(0...0) = {0}
 
Theoremfz0tp 13366 An integer range from 0 to 2 is an unordered triple. (Contributed by Alexander van der Vekens, 1-Feb-2018.)
(0...2) = {0, 1, 2}
 
Theoremfz0to3un2pr 13367 An integer range from 0 to 3 is the union of two unordered pairs. (Contributed by AV, 7-Feb-2021.)
(0...3) = ({0, 1} ∪ {2, 3})
 
Theoremfz0to4untppr 13368 An integer range from 0 to 4 is the union of a triple and a pair. (Contributed by Alexander van der Vekens, 13-Aug-2017.)
(0...4) = ({0, 1, 2} ∪ {3, 4})
 
Theoremelfz0ubfz0 13369 An element of a finite set of sequential nonnegative integers is an element of a finite set of sequential nonnegative integers with the upper bound being an element of the finite set of sequential nonnegative integers with the same lower bound as for the first interval and the element under consideration as upper bound. (Contributed by Alexander van der Vekens, 3-Apr-2018.)
((𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁)) → 𝐾 ∈ (0...𝐿))
 
Theoremelfz0fzfz0 13370 A member of a finite set of sequential nonnegative integers is a member of a finite set of sequential nonnegative integers with a member of a finite set of sequential nonnegative integers starting at the upper bound of the first interval. (Contributed by Alexander van der Vekens, 27-May-2018.)
((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → 𝑀 ∈ (0...𝑁))
 
Theoremfz0fzelfz0 13371 If a member of a finite set of sequential integers with a lower bound being a member of a finite set of sequential nonnegative integers with the same upper bound, this member is also a member of the finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 21-Apr-2018.)
((𝑁 ∈ (0...𝑅) ∧ 𝑀 ∈ (𝑁...𝑅)) → 𝑀 ∈ (0...𝑅))
 
Theoremfznn0sub2 13372 Subtraction closure for a member of a finite set of sequential nonnegative integers. (Contributed by NM, 26-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝐾 ∈ (0...𝑁) → (𝑁𝐾) ∈ (0...𝑁))
 
Theoremuzsubfz0 13373 Membership of an integer greater than L decreased by L in a finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 16-Sep-2018.)
((𝐿 ∈ ℕ0𝑁 ∈ (ℤ𝐿)) → (𝑁𝐿) ∈ (0...𝑁))
 
Theoremfz0fzdiffz0 13374 The difference of an integer in a finite set of sequential nonnegative integers and and an integer of a finite set of sequential integers with the same upper bound and the nonnegative integer as lower bound is a member of the finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 6-Jun-2018.)
((𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐾𝑀) ∈ (0...𝑁))
 
Theoremelfzmlbm 13375 Subtracting the lower bound of a finite set of sequential integers from an element of this set. (Contributed by Alexander van der Vekens, 29-Mar-2018.) (Proof shortened by OpenAI, 25-Mar-2020.)
(𝐾 ∈ (𝑀...𝑁) → (𝐾𝑀) ∈ (0...(𝑁𝑀)))
 
Theoremelfzmlbp 13376 Subtracting the lower bound of a finite set of sequential integers from an element of this set. (Contributed by Alexander van der Vekens, 29-Mar-2018.)
((𝑁 ∈ ℤ ∧ 𝐾 ∈ (𝑀...(𝑀 + 𝑁))) → (𝐾𝑀) ∈ (0...𝑁))
 
Theoremfzctr 13377 Lemma for theorems about the central binomial coefficient. (Contributed by Mario Carneiro, 8-Mar-2014.) (Revised by Mario Carneiro, 2-Aug-2014.)
(𝑁 ∈ ℕ0𝑁 ∈ (0...(2 · 𝑁)))
 
Theoremdifelfzle 13378 The difference of two integers from a finite set of sequential nonnegative integers is also element of this finite set of sequential integers. (Contributed by Alexander van der Vekens, 12-Jun-2018.)
((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ 𝐾𝑀) → (𝑀𝐾) ∈ (0...𝑁))
 
Theoremdifelfznle 13379 The difference of two integers from a finite set of sequential nonnegative integers increased by the upper bound is also element of this finite set of sequential integers. (Contributed by Alexander van der Vekens, 12-Jun-2018.)
((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → ((𝑀 + 𝑁) − 𝐾) ∈ (0...𝑁))
 
Theoremnn0split 13380 Express the set of nonnegative integers as the disjoint (see nn0disj 13381) union of the first 𝑁 + 1 values and the rest. (Contributed by AV, 8-Nov-2019.)
(𝑁 ∈ ℕ0 → ℕ0 = ((0...𝑁) ∪ (ℤ‘(𝑁 + 1))))
 
Theoremnn0disj 13381 The first 𝑁 + 1 elements of the set of nonnegative integers are distinct from any later members. (Contributed by AV, 8-Nov-2019.)
((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) = ∅
 
Theoremfz0sn0fz1 13382 A finite set of sequential nonnegative integers is the union of the singleton containing 0 and a finite set of sequential positive integers. (Contributed by AV, 20-Mar-2021.)
(𝑁 ∈ ℕ0 → (0...𝑁) = ({0} ∪ (1...𝑁)))
 
Theoremfvffz0 13383 The function value of a function from a finite interval of nonnegative integers. (Contributed by AV, 13-Feb-2021.)
(((𝑁 ∈ ℕ0𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ 𝑃:(0...𝑁)⟶𝑉) → (𝑃𝐼) ∈ 𝑉)
 
Theorem1fv 13384 A function on a singleton. (Contributed by Alexander van der Vekens, 3-Dec-2017.) (Proof shortened by AV, 18-Apr-2021.)
((𝑁𝑉𝑃 = {⟨0, 𝑁⟩}) → (𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁))
 
Theorem4fvwrd4 13385* The first four function values of a word of length at least 4. (Contributed by Alexander van der Vekens, 18-Nov-2017.)
((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → ∃𝑎𝑉𝑏𝑉𝑐𝑉𝑑𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)))
 
Theorem2ffzeq 13386* Two functions over 0-based finite set of sequential integers are equal if and only if their domains have the same length and the function values are the same at each position. (Contributed by Alexander van der Vekens, 30-Jun-2018.)
((𝑀 ∈ ℕ0𝐹:(0...𝑀)⟶𝑋𝑃:(0...𝑁)⟶𝑌) → (𝐹 = 𝑃 ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0...𝑀)(𝐹𝑖) = (𝑃𝑖))))
 
Theorempreduz 13387 The value of the predecessor class over an upper integer set. (Contributed by Scott Fenton, 16-May-2014.)
(𝑁 ∈ (ℤ𝑀) → Pred( < , (ℤ𝑀), 𝑁) = (𝑀...(𝑁 − 1)))
 
Theoremprednn 13388 The value of the predecessor class over the naturals. (Contributed by Scott Fenton, 6-Aug-2013.)
(𝑁 ∈ ℕ → Pred( < , ℕ, 𝑁) = (1...(𝑁 − 1)))
 
Theoremprednn0 13389 The value of the predecessor class over 0. (Contributed by Scott Fenton, 9-May-2014.)
(𝑁 ∈ ℕ0 → Pred( < , ℕ0, 𝑁) = (0...(𝑁 − 1)))
 
Theorempredfz 13390 Calculate the predecessor of an integer under a finite set of integers. (Contributed by Scott Fenton, 8-Aug-2013.) (Proof shortened by Mario Carneiro, 3-May-2015.)
(𝐾 ∈ (𝑀...𝑁) → Pred( < , (𝑀...𝑁), 𝐾) = (𝑀...(𝐾 − 1)))
 
5.5.7  Half-open integer ranges
 
Syntaxcfzo 13391 Syntax for half-open integer ranges.
class ..^
 
Definitiondf-fzo 13392* Define a function generating sets of integers using a half-open range. Read (𝑀..^𝑁) as the integers from 𝑀 up to, but not including, 𝑁; contrast with (𝑀...𝑁) df-fz 13249, which includes 𝑁. Not including the endpoint simplifies a number of formulas related to cardinality and splitting; contrast fzosplit 13429 with fzsplit 13291, for instance. (Contributed by Stefan O'Rear, 14-Aug-2015.)
..^ = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ (𝑚...(𝑛 − 1)))
 
Theoremfzof 13393 Functionality of the half-open integer set function. (Contributed by Stefan O'Rear, 14-Aug-2015.)
..^:(ℤ × ℤ)⟶𝒫 ℤ
 
Theoremelfzoel1 13394 Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.)
(𝐴 ∈ (𝐵..^𝐶) → 𝐵 ∈ ℤ)
 
Theoremelfzoel2 13395 Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.)
(𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ)
 
Theoremelfzoelz 13396 Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.)
(𝐴 ∈ (𝐵..^𝐶) → 𝐴 ∈ ℤ)
 
Theoremfzoval 13397 Value of the half-open integer set in terms of the closed integer set. (Contributed by Stefan O'Rear, 14-Aug-2015.)
(𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
 
Theoremelfzo 13398 Membership in a half-open finite set of integers. (Contributed by Stefan O'Rear, 15-Aug-2015.)
((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀..^𝑁) ↔ (𝑀𝐾𝐾 < 𝑁)))
 
Theoremelfzo2 13399 Membership in a half-open integer interval. (Contributed by Mario Carneiro, 29-Sep-2015.)
(𝐾 ∈ (𝑀..^𝑁) ↔ (𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁))
 
Theoremelfzouz 13400 Membership in a half-open integer interval. (Contributed by Mario Carneiro, 29-Sep-2015.)
(𝐾 ∈ (𝑀..^𝑁) → 𝐾 ∈ (ℤ𝑀))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46532
  Copyright terms: Public domain < Previous  Next >