![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eliocre | Structured version Visualization version GIF version |
Description: A member of a left-open right-closed interval of reals is real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
eliocre | ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐶 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ioc 13389 | . . . . . . 7 ⊢ (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) | |
2 | 1 | elixx3g 13397 | . . . . . 6 ⊢ (𝐶 ∈ (𝐴(,]𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵))) |
3 | 2 | biimpi 216 | . . . . 5 ⊢ (𝐶 ∈ (𝐴(,]𝐵) → ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵))) |
4 | 3 | simpld 494 | . . . 4 ⊢ (𝐶 ∈ (𝐴(,]𝐵) → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*)) |
5 | 4 | simp3d 1143 | . . 3 ⊢ (𝐶 ∈ (𝐴(,]𝐵) → 𝐶 ∈ ℝ*) |
6 | 5 | adantl 481 | . 2 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐶 ∈ ℝ*) |
7 | simpl 482 | . 2 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐵 ∈ ℝ) | |
8 | mnfxr 11316 | . . . . 5 ⊢ -∞ ∈ ℝ* | |
9 | 8 | a1i 11 | . . . 4 ⊢ (𝐶 ∈ (𝐴(,]𝐵) → -∞ ∈ ℝ*) |
10 | 4 | simp1d 1141 | . . . 4 ⊢ (𝐶 ∈ (𝐴(,]𝐵) → 𝐴 ∈ ℝ*) |
11 | mnfle 13174 | . . . . 5 ⊢ (𝐴 ∈ ℝ* → -∞ ≤ 𝐴) | |
12 | 10, 11 | syl 17 | . . . 4 ⊢ (𝐶 ∈ (𝐴(,]𝐵) → -∞ ≤ 𝐴) |
13 | 3 | simprd 495 | . . . . 5 ⊢ (𝐶 ∈ (𝐴(,]𝐵) → (𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵)) |
14 | 13 | simpld 494 | . . . 4 ⊢ (𝐶 ∈ (𝐴(,]𝐵) → 𝐴 < 𝐶) |
15 | 9, 10, 5, 12, 14 | xrlelttrd 13199 | . . 3 ⊢ (𝐶 ∈ (𝐴(,]𝐵) → -∞ < 𝐶) |
16 | 15 | adantl 481 | . 2 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴(,]𝐵)) → -∞ < 𝐶) |
17 | 13 | simprd 495 | . . 3 ⊢ (𝐶 ∈ (𝐴(,]𝐵) → 𝐶 ≤ 𝐵) |
18 | 17 | adantl 481 | . 2 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐶 ≤ 𝐵) |
19 | xrre 13208 | . 2 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (-∞ < 𝐶 ∧ 𝐶 ≤ 𝐵)) → 𝐶 ∈ ℝ) | |
20 | 6, 7, 16, 18, 19 | syl22anc 839 | 1 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐶 ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2106 class class class wbr 5148 (class class class)co 7431 ℝcr 11152 -∞cmnf 11291 ℝ*cxr 11292 < clt 11293 ≤ cle 11294 (,]cioc 13385 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-pre-lttri 11227 ax-pre-lttrn 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-ioc 13389 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |