Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliocre Structured version   Visualization version   GIF version

Theorem eliocre 45538
Description: A member of a left-open right-closed interval of reals is real. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
eliocre ((𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐶 ∈ ℝ)

Proof of Theorem eliocre
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ioc 13367 . . . . . . 7 (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
21elixx3g 13375 . . . . . 6 (𝐶 ∈ (𝐴(,]𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐶𝐵)))
32biimpi 216 . . . . 5 (𝐶 ∈ (𝐴(,]𝐵) → ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐶𝐵)))
43simpld 494 . . . 4 (𝐶 ∈ (𝐴(,]𝐵) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*))
54simp3d 1144 . . 3 (𝐶 ∈ (𝐴(,]𝐵) → 𝐶 ∈ ℝ*)
65adantl 481 . 2 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐶 ∈ ℝ*)
7 simpl 482 . 2 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐵 ∈ ℝ)
8 mnfxr 11292 . . . . 5 -∞ ∈ ℝ*
98a1i 11 . . . 4 (𝐶 ∈ (𝐴(,]𝐵) → -∞ ∈ ℝ*)
104simp1d 1142 . . . 4 (𝐶 ∈ (𝐴(,]𝐵) → 𝐴 ∈ ℝ*)
11 mnfle 13151 . . . . 5 (𝐴 ∈ ℝ* → -∞ ≤ 𝐴)
1210, 11syl 17 . . . 4 (𝐶 ∈ (𝐴(,]𝐵) → -∞ ≤ 𝐴)
133simprd 495 . . . . 5 (𝐶 ∈ (𝐴(,]𝐵) → (𝐴 < 𝐶𝐶𝐵))
1413simpld 494 . . . 4 (𝐶 ∈ (𝐴(,]𝐵) → 𝐴 < 𝐶)
159, 10, 5, 12, 14xrlelttrd 13176 . . 3 (𝐶 ∈ (𝐴(,]𝐵) → -∞ < 𝐶)
1615adantl 481 . 2 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴(,]𝐵)) → -∞ < 𝐶)
1713simprd 495 . . 3 (𝐶 ∈ (𝐴(,]𝐵) → 𝐶𝐵)
1817adantl 481 . 2 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐶𝐵)
19 xrre 13185 . 2 (((𝐶 ∈ ℝ*𝐵 ∈ ℝ) ∧ (-∞ < 𝐶𝐶𝐵)) → 𝐶 ∈ ℝ)
206, 7, 16, 18, 19syl22anc 838 1 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐶 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2108   class class class wbr 5119  (class class class)co 7405  cr 11128  -∞cmnf 11267  *cxr 11268   < clt 11269  cle 11270  (,]cioc 13363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-pre-lttri 11203  ax-pre-lttrn 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-ioc 13367
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator