Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliocre Structured version   Visualization version   GIF version

Theorem eliocre 45528
Description: A member of a left-open right-closed interval of reals is real. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
eliocre ((𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐶 ∈ ℝ)

Proof of Theorem eliocre
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ioc 13242 . . . . . . 7 (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
21elixx3g 13250 . . . . . 6 (𝐶 ∈ (𝐴(,]𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐶𝐵)))
32biimpi 216 . . . . 5 (𝐶 ∈ (𝐴(,]𝐵) → ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐶𝐵)))
43simpld 494 . . . 4 (𝐶 ∈ (𝐴(,]𝐵) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*))
54simp3d 1144 . . 3 (𝐶 ∈ (𝐴(,]𝐵) → 𝐶 ∈ ℝ*)
65adantl 481 . 2 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐶 ∈ ℝ*)
7 simpl 482 . 2 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐵 ∈ ℝ)
8 mnfxr 11161 . . . . 5 -∞ ∈ ℝ*
98a1i 11 . . . 4 (𝐶 ∈ (𝐴(,]𝐵) → -∞ ∈ ℝ*)
104simp1d 1142 . . . 4 (𝐶 ∈ (𝐴(,]𝐵) → 𝐴 ∈ ℝ*)
11 mnfle 13026 . . . . 5 (𝐴 ∈ ℝ* → -∞ ≤ 𝐴)
1210, 11syl 17 . . . 4 (𝐶 ∈ (𝐴(,]𝐵) → -∞ ≤ 𝐴)
133simprd 495 . . . . 5 (𝐶 ∈ (𝐴(,]𝐵) → (𝐴 < 𝐶𝐶𝐵))
1413simpld 494 . . . 4 (𝐶 ∈ (𝐴(,]𝐵) → 𝐴 < 𝐶)
159, 10, 5, 12, 14xrlelttrd 13051 . . 3 (𝐶 ∈ (𝐴(,]𝐵) → -∞ < 𝐶)
1615adantl 481 . 2 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴(,]𝐵)) → -∞ < 𝐶)
1713simprd 495 . . 3 (𝐶 ∈ (𝐴(,]𝐵) → 𝐶𝐵)
1817adantl 481 . 2 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐶𝐵)
19 xrre 13060 . 2 (((𝐶 ∈ ℝ*𝐵 ∈ ℝ) ∧ (-∞ < 𝐶𝐶𝐵)) → 𝐶 ∈ ℝ)
206, 7, 16, 18, 19syl22anc 838 1 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐶 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2110   class class class wbr 5089  (class class class)co 7341  cr 10997  -∞cmnf 11136  *cxr 11137   < clt 11138  cle 11139  (,]cioc 13238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-pre-lttri 11072  ax-pre-lttrn 11073
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-ioc 13242
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator