| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eliocre | Structured version Visualization version GIF version | ||
| Description: A member of a left-open right-closed interval of reals is real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| eliocre | ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐶 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ioc 13311 | . . . . . . 7 ⊢ (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) | |
| 2 | 1 | elixx3g 13319 | . . . . . 6 ⊢ (𝐶 ∈ (𝐴(,]𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵))) |
| 3 | 2 | biimpi 216 | . . . . 5 ⊢ (𝐶 ∈ (𝐴(,]𝐵) → ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵))) |
| 4 | 3 | simpld 494 | . . . 4 ⊢ (𝐶 ∈ (𝐴(,]𝐵) → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*)) |
| 5 | 4 | simp3d 1144 | . . 3 ⊢ (𝐶 ∈ (𝐴(,]𝐵) → 𝐶 ∈ ℝ*) |
| 6 | 5 | adantl 481 | . 2 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐶 ∈ ℝ*) |
| 7 | simpl 482 | . 2 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐵 ∈ ℝ) | |
| 8 | mnfxr 11231 | . . . . 5 ⊢ -∞ ∈ ℝ* | |
| 9 | 8 | a1i 11 | . . . 4 ⊢ (𝐶 ∈ (𝐴(,]𝐵) → -∞ ∈ ℝ*) |
| 10 | 4 | simp1d 1142 | . . . 4 ⊢ (𝐶 ∈ (𝐴(,]𝐵) → 𝐴 ∈ ℝ*) |
| 11 | mnfle 13095 | . . . . 5 ⊢ (𝐴 ∈ ℝ* → -∞ ≤ 𝐴) | |
| 12 | 10, 11 | syl 17 | . . . 4 ⊢ (𝐶 ∈ (𝐴(,]𝐵) → -∞ ≤ 𝐴) |
| 13 | 3 | simprd 495 | . . . . 5 ⊢ (𝐶 ∈ (𝐴(,]𝐵) → (𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵)) |
| 14 | 13 | simpld 494 | . . . 4 ⊢ (𝐶 ∈ (𝐴(,]𝐵) → 𝐴 < 𝐶) |
| 15 | 9, 10, 5, 12, 14 | xrlelttrd 13120 | . . 3 ⊢ (𝐶 ∈ (𝐴(,]𝐵) → -∞ < 𝐶) |
| 16 | 15 | adantl 481 | . 2 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴(,]𝐵)) → -∞ < 𝐶) |
| 17 | 13 | simprd 495 | . . 3 ⊢ (𝐶 ∈ (𝐴(,]𝐵) → 𝐶 ≤ 𝐵) |
| 18 | 17 | adantl 481 | . 2 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐶 ≤ 𝐵) |
| 19 | xrre 13129 | . 2 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (-∞ < 𝐶 ∧ 𝐶 ≤ 𝐵)) → 𝐶 ∈ ℝ) | |
| 20 | 6, 7, 16, 18, 19 | syl22anc 838 | 1 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐶 ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5107 (class class class)co 7387 ℝcr 11067 -∞cmnf 11206 ℝ*cxr 11207 < clt 11208 ≤ cle 11209 (,]cioc 13307 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-ioc 13311 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |