| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eliocre | Structured version Visualization version GIF version | ||
| Description: A member of a left-open right-closed interval of reals is real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| eliocre | ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐶 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ioc 13260 | . . . . . . 7 ⊢ (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) | |
| 2 | 1 | elixx3g 13268 | . . . . . 6 ⊢ (𝐶 ∈ (𝐴(,]𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵))) |
| 3 | 2 | biimpi 216 | . . . . 5 ⊢ (𝐶 ∈ (𝐴(,]𝐵) → ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵))) |
| 4 | 3 | simpld 494 | . . . 4 ⊢ (𝐶 ∈ (𝐴(,]𝐵) → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*)) |
| 5 | 4 | simp3d 1144 | . . 3 ⊢ (𝐶 ∈ (𝐴(,]𝐵) → 𝐶 ∈ ℝ*) |
| 6 | 5 | adantl 481 | . 2 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐶 ∈ ℝ*) |
| 7 | simpl 482 | . 2 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐵 ∈ ℝ) | |
| 8 | mnfxr 11179 | . . . . 5 ⊢ -∞ ∈ ℝ* | |
| 9 | 8 | a1i 11 | . . . 4 ⊢ (𝐶 ∈ (𝐴(,]𝐵) → -∞ ∈ ℝ*) |
| 10 | 4 | simp1d 1142 | . . . 4 ⊢ (𝐶 ∈ (𝐴(,]𝐵) → 𝐴 ∈ ℝ*) |
| 11 | mnfle 13044 | . . . . 5 ⊢ (𝐴 ∈ ℝ* → -∞ ≤ 𝐴) | |
| 12 | 10, 11 | syl 17 | . . . 4 ⊢ (𝐶 ∈ (𝐴(,]𝐵) → -∞ ≤ 𝐴) |
| 13 | 3 | simprd 495 | . . . . 5 ⊢ (𝐶 ∈ (𝐴(,]𝐵) → (𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵)) |
| 14 | 13 | simpld 494 | . . . 4 ⊢ (𝐶 ∈ (𝐴(,]𝐵) → 𝐴 < 𝐶) |
| 15 | 9, 10, 5, 12, 14 | xrlelttrd 13069 | . . 3 ⊢ (𝐶 ∈ (𝐴(,]𝐵) → -∞ < 𝐶) |
| 16 | 15 | adantl 481 | . 2 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴(,]𝐵)) → -∞ < 𝐶) |
| 17 | 13 | simprd 495 | . . 3 ⊢ (𝐶 ∈ (𝐴(,]𝐵) → 𝐶 ≤ 𝐵) |
| 18 | 17 | adantl 481 | . 2 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐶 ≤ 𝐵) |
| 19 | xrre 13078 | . 2 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (-∞ < 𝐶 ∧ 𝐶 ≤ 𝐵)) → 𝐶 ∈ ℝ) | |
| 20 | 6, 7, 16, 18, 19 | syl22anc 838 | 1 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐶 ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2113 class class class wbr 5095 (class class class)co 7355 ℝcr 11015 -∞cmnf 11154 ℝ*cxr 11155 < clt 11156 ≤ cle 11157 (,]cioc 13256 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-pre-lttri 11090 ax-pre-lttrn 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-ioc 13260 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |