Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliocre Structured version   Visualization version   GIF version

Theorem eliocre 44776
Description: A member of a left-open right-closed interval of reals is real. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
eliocre ((𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐶 ∈ ℝ)

Proof of Theorem eliocre
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ioc 13332 . . . . . . 7 (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
21elixx3g 13340 . . . . . 6 (𝐶 ∈ (𝐴(,]𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐶𝐵)))
32biimpi 215 . . . . 5 (𝐶 ∈ (𝐴(,]𝐵) → ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐶𝐵)))
43simpld 494 . . . 4 (𝐶 ∈ (𝐴(,]𝐵) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*))
54simp3d 1141 . . 3 (𝐶 ∈ (𝐴(,]𝐵) → 𝐶 ∈ ℝ*)
65adantl 481 . 2 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐶 ∈ ℝ*)
7 simpl 482 . 2 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐵 ∈ ℝ)
8 mnfxr 11272 . . . . 5 -∞ ∈ ℝ*
98a1i 11 . . . 4 (𝐶 ∈ (𝐴(,]𝐵) → -∞ ∈ ℝ*)
104simp1d 1139 . . . 4 (𝐶 ∈ (𝐴(,]𝐵) → 𝐴 ∈ ℝ*)
11 mnfle 13117 . . . . 5 (𝐴 ∈ ℝ* → -∞ ≤ 𝐴)
1210, 11syl 17 . . . 4 (𝐶 ∈ (𝐴(,]𝐵) → -∞ ≤ 𝐴)
133simprd 495 . . . . 5 (𝐶 ∈ (𝐴(,]𝐵) → (𝐴 < 𝐶𝐶𝐵))
1413simpld 494 . . . 4 (𝐶 ∈ (𝐴(,]𝐵) → 𝐴 < 𝐶)
159, 10, 5, 12, 14xrlelttrd 13142 . . 3 (𝐶 ∈ (𝐴(,]𝐵) → -∞ < 𝐶)
1615adantl 481 . 2 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴(,]𝐵)) → -∞ < 𝐶)
1713simprd 495 . . 3 (𝐶 ∈ (𝐴(,]𝐵) → 𝐶𝐵)
1817adantl 481 . 2 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐶𝐵)
19 xrre 13151 . 2 (((𝐶 ∈ ℝ*𝐵 ∈ ℝ) ∧ (-∞ < 𝐶𝐶𝐵)) → 𝐶 ∈ ℝ)
206, 7, 16, 18, 19syl22anc 836 1 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐶 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1084  wcel 2098   class class class wbr 5141  (class class class)co 7404  cr 11108  -∞cmnf 11247  *cxr 11248   < clt 11249  cle 11250  (,]cioc 13328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-pre-lttri 11183  ax-pre-lttrn 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-po 5581  df-so 5582  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7407  df-oprab 7408  df-mpo 7409  df-1st 7971  df-2nd 7972  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-ioc 13332
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator