MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snunioc Structured version   Visualization version   GIF version

Theorem snunioc 13382
Description: The closure of the open end of a left-open real interval. (Contributed by Thierry Arnoux, 28-Mar-2017.)
Assertion
Ref Expression
snunioc ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ({𝐴} ∪ (𝐴(,]𝐵)) = (𝐴[,]𝐵))

Proof of Theorem snunioc
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iccid 13292 . . . 4 (𝐴 ∈ ℝ* → (𝐴[,]𝐴) = {𝐴})
213ad2ant1 1133 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐴[,]𝐴) = {𝐴})
32uneq1d 4116 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴[,]𝐴) ∪ (𝐴(,]𝐵)) = ({𝐴} ∪ (𝐴(,]𝐵)))
4 simp1 1136 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ ℝ*)
5 simp2 1137 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ ℝ*)
6 xrleid 13052 . . . 4 (𝐴 ∈ ℝ*𝐴𝐴)
763ad2ant1 1133 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴𝐴)
8 simp3 1138 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴𝐵)
9 df-icc 13254 . . . 4 [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
10 df-ioc 13252 . . . 4 (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
11 xrltnle 11186 . . . 4 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴 < 𝑤 ↔ ¬ 𝑤𝐴))
12 xrletr 13059 . . . 4 ((𝑤 ∈ ℝ*𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝑤𝐴𝐴𝐵) → 𝑤𝐵))
13 simpl1 1192 . . . . . 6 (((𝐴 ∈ ℝ*𝐴 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝐴𝐴𝐴 < 𝑤)) → 𝐴 ∈ ℝ*)
14 simpl3 1194 . . . . . 6 (((𝐴 ∈ ℝ*𝐴 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝐴𝐴𝐴 < 𝑤)) → 𝑤 ∈ ℝ*)
15 simprr 772 . . . . . 6 (((𝐴 ∈ ℝ*𝐴 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝐴𝐴𝐴 < 𝑤)) → 𝐴 < 𝑤)
1613, 14, 15xrltled 13051 . . . . 5 (((𝐴 ∈ ℝ*𝐴 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝐴𝐴𝐴 < 𝑤)) → 𝐴𝑤)
1716ex 412 . . . 4 ((𝐴 ∈ ℝ*𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → ((𝐴𝐴𝐴 < 𝑤) → 𝐴𝑤))
189, 10, 11, 9, 12, 17ixxun 13263 . . 3 (((𝐴 ∈ ℝ*𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝐴𝐴𝐵)) → ((𝐴[,]𝐴) ∪ (𝐴(,]𝐵)) = (𝐴[,]𝐵))
194, 4, 5, 7, 8, 18syl32anc 1380 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴[,]𝐴) ∪ (𝐴(,]𝐵)) = (𝐴[,]𝐵))
203, 19eqtr3d 2770 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ({𝐴} ∪ (𝐴(,]𝐵)) = (𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  cun 3896  {csn 4575   class class class wbr 5093  (class class class)co 7352  *cxr 11152   < clt 11153  cle 11154  (,]cioc 13248  [,]cicc 13250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-pre-lttri 11087  ax-pre-lttrn 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-ioc 13252  df-icc 13254
This theorem is referenced by:  elntg2  28965  xrge0iifcnv  33967  xrge0iifiso  33969  xrge0iifhom  33971
  Copyright terms: Public domain W3C validator