| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snunioc | Structured version Visualization version GIF version | ||
| Description: The closure of the open end of a left-open real interval. (Contributed by Thierry Arnoux, 28-Mar-2017.) |
| Ref | Expression |
|---|---|
| snunioc | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → ({𝐴} ∪ (𝐴(,]𝐵)) = (𝐴[,]𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccid 13357 | . . . 4 ⊢ (𝐴 ∈ ℝ* → (𝐴[,]𝐴) = {𝐴}) | |
| 2 | 1 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → (𝐴[,]𝐴) = {𝐴}) |
| 3 | 2 | uneq1d 4132 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → ((𝐴[,]𝐴) ∪ (𝐴(,]𝐵)) = ({𝐴} ∪ (𝐴(,]𝐵))) |
| 4 | simp1 1136 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ ℝ*) | |
| 5 | simp2 1137 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐵 ∈ ℝ*) | |
| 6 | xrleid 13117 | . . . 4 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ 𝐴) | |
| 7 | 6 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ 𝐴) |
| 8 | simp3 1138 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ 𝐵) | |
| 9 | df-icc 13319 | . . . 4 ⊢ [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) | |
| 10 | df-ioc 13317 | . . . 4 ⊢ (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) | |
| 11 | xrltnle 11247 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐴 < 𝑤 ↔ ¬ 𝑤 ≤ 𝐴)) | |
| 12 | xrletr 13124 | . . . 4 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝑤 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵) → 𝑤 ≤ 𝐵)) | |
| 13 | simpl1 1192 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) ∧ (𝐴 ≤ 𝐴 ∧ 𝐴 < 𝑤)) → 𝐴 ∈ ℝ*) | |
| 14 | simpl3 1194 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) ∧ (𝐴 ≤ 𝐴 ∧ 𝐴 < 𝑤)) → 𝑤 ∈ ℝ*) | |
| 15 | simprr 772 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) ∧ (𝐴 ≤ 𝐴 ∧ 𝐴 < 𝑤)) → 𝐴 < 𝑤) | |
| 16 | 13, 14, 15 | xrltled 13116 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) ∧ (𝐴 ≤ 𝐴 ∧ 𝐴 < 𝑤)) → 𝐴 ≤ 𝑤) |
| 17 | 16 | ex 412 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → ((𝐴 ≤ 𝐴 ∧ 𝐴 < 𝑤) → 𝐴 ≤ 𝑤)) |
| 18 | 9, 10, 11, 9, 12, 17 | ixxun 13328 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵)) → ((𝐴[,]𝐴) ∪ (𝐴(,]𝐵)) = (𝐴[,]𝐵)) |
| 19 | 4, 4, 5, 7, 8, 18 | syl32anc 1380 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → ((𝐴[,]𝐴) ∪ (𝐴(,]𝐵)) = (𝐴[,]𝐵)) |
| 20 | 3, 19 | eqtr3d 2767 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → ({𝐴} ∪ (𝐴(,]𝐵)) = (𝐴[,]𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∪ cun 3914 {csn 4591 class class class wbr 5109 (class class class)co 7389 ℝ*cxr 11213 < clt 11214 ≤ cle 11215 (,]cioc 13313 [,]cicc 13315 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-pre-lttri 11148 ax-pre-lttrn 11149 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-po 5548 df-so 5549 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-ioc 13317 df-icc 13319 |
| This theorem is referenced by: elntg2 28918 xrge0iifcnv 33929 xrge0iifiso 33931 xrge0iifhom 33933 |
| Copyright terms: Public domain | W3C validator |