MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snunioc Structured version   Visualization version   GIF version

Theorem snunioc 12869
Description: The closure of the open end of a left-open real interval. (Contributed by Thierry Arnoux, 28-Mar-2017.)
Assertion
Ref Expression
snunioc ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ({𝐴} ∪ (𝐴(,]𝐵)) = (𝐴[,]𝐵))

Proof of Theorem snunioc
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iccid 12786 . . . 4 (𝐴 ∈ ℝ* → (𝐴[,]𝐴) = {𝐴})
213ad2ant1 1129 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐴[,]𝐴) = {𝐴})
32uneq1d 4140 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴[,]𝐴) ∪ (𝐴(,]𝐵)) = ({𝐴} ∪ (𝐴(,]𝐵)))
4 simp1 1132 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ ℝ*)
5 simp2 1133 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ ℝ*)
6 xrleid 12547 . . . 4 (𝐴 ∈ ℝ*𝐴𝐴)
763ad2ant1 1129 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴𝐴)
8 simp3 1134 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴𝐵)
9 df-icc 12748 . . . 4 [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
10 df-ioc 12746 . . . 4 (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
11 xrltnle 10710 . . . 4 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴 < 𝑤 ↔ ¬ 𝑤𝐴))
12 xrletr 12554 . . . 4 ((𝑤 ∈ ℝ*𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝑤𝐴𝐴𝐵) → 𝑤𝐵))
13 simpl1 1187 . . . . . 6 (((𝐴 ∈ ℝ*𝐴 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝐴𝐴𝐴 < 𝑤)) → 𝐴 ∈ ℝ*)
14 simpl3 1189 . . . . . 6 (((𝐴 ∈ ℝ*𝐴 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝐴𝐴𝐴 < 𝑤)) → 𝑤 ∈ ℝ*)
15 simprr 771 . . . . . 6 (((𝐴 ∈ ℝ*𝐴 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝐴𝐴𝐴 < 𝑤)) → 𝐴 < 𝑤)
1613, 14, 15xrltled 12546 . . . . 5 (((𝐴 ∈ ℝ*𝐴 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝐴𝐴𝐴 < 𝑤)) → 𝐴𝑤)
1716ex 415 . . . 4 ((𝐴 ∈ ℝ*𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → ((𝐴𝐴𝐴 < 𝑤) → 𝐴𝑤))
189, 10, 11, 9, 12, 17ixxun 12757 . . 3 (((𝐴 ∈ ℝ*𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝐴𝐴𝐵)) → ((𝐴[,]𝐴) ∪ (𝐴(,]𝐵)) = (𝐴[,]𝐵))
194, 4, 5, 7, 8, 18syl32anc 1374 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴[,]𝐴) ∪ (𝐴(,]𝐵)) = (𝐴[,]𝐵))
203, 19eqtr3d 2860 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ({𝐴} ∪ (𝐴(,]𝐵)) = (𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  cun 3936  {csn 4569   class class class wbr 5068  (class class class)co 7158  *cxr 10676   < clt 10677  cle 10678  (,]cioc 12742  [,]cicc 12744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-pre-lttri 10613  ax-pre-lttrn 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-po 5476  df-so 5477  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-ioc 12746  df-icc 12748
This theorem is referenced by:  elntg2  26773  xrge0iifcnv  31178  xrge0iifiso  31180  xrge0iifhom  31182
  Copyright terms: Public domain W3C validator