Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lbioc Structured version   Visualization version   GIF version

Theorem lbioc 44898
Description: A left-open right-closed interval does not contain its left endpoint. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
lbioc ¬ 𝐴 ∈ (𝐴(,]𝐵)

Proof of Theorem lbioc
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ioc 13361 . . . . 5 (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
21elixx3g 13369 . . . 4 (𝐴 ∈ (𝐴(,]𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 ∈ ℝ*) ∧ (𝐴 < 𝐴𝐴𝐵)))
32biimpi 215 . . 3 (𝐴 ∈ (𝐴(,]𝐵) → ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 ∈ ℝ*) ∧ (𝐴 < 𝐴𝐴𝐵)))
43simprld 771 . 2 (𝐴 ∈ (𝐴(,]𝐵) → 𝐴 < 𝐴)
51elmpocl1 7663 . . 3 (𝐴 ∈ (𝐴(,]𝐵) → 𝐴 ∈ ℝ*)
6 xrltnr 13131 . . 3 (𝐴 ∈ ℝ* → ¬ 𝐴 < 𝐴)
75, 6syl 17 . 2 (𝐴 ∈ (𝐴(,]𝐵) → ¬ 𝐴 < 𝐴)
84, 7pm2.65i 193 1 ¬ 𝐴 ∈ (𝐴(,]𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  w3a 1085  wcel 2099  {crab 3429   class class class wbr 5148  (class class class)co 7420  *cxr 11277   < clt 11278  cle 11279  (,]cioc 13357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11194  ax-resscn 11195  ax-pre-lttri 11212  ax-pre-lttrn 11213
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-po 5590  df-so 5591  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-ov 7423  df-oprab 7424  df-mpo 7425  df-1st 7993  df-2nd 7994  df-er 8724  df-en 8964  df-dom 8965  df-sdom 8966  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-ioc 13361
This theorem is referenced by:  fouriersw  45619
  Copyright terms: Public domain W3C validator