Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lbioc Structured version   Visualization version   GIF version

Theorem lbioc 40378
Description: A left-open right-closed interval does not contain its left endpoint. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
lbioc ¬ 𝐴 ∈ (𝐴(,]𝐵)

Proof of Theorem lbioc
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ioc 12382 . . . . 5 (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
21elixx3g 12390 . . . 4 (𝐴 ∈ (𝐴(,]𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 ∈ ℝ*) ∧ (𝐴 < 𝐴𝐴𝐵)))
32biimpi 207 . . 3 (𝐴 ∈ (𝐴(,]𝐵) → ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 ∈ ℝ*) ∧ (𝐴 < 𝐴𝐴𝐵)))
43simprld 788 . 2 (𝐴 ∈ (𝐴(,]𝐵) → 𝐴 < 𝐴)
51elmpt2cl1 7075 . . 3 (𝐴 ∈ (𝐴(,]𝐵) → 𝐴 ∈ ℝ*)
6 xrltnr 12153 . . 3 (𝐴 ∈ ℝ* → ¬ 𝐴 < 𝐴)
75, 6syl 17 . 2 (𝐴 ∈ (𝐴(,]𝐵) → ¬ 𝐴 < 𝐴)
84, 7pm2.65i 185 1 ¬ 𝐴 ∈ (𝐴(,]𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 384  w3a 1107  wcel 2155  {crab 3059   class class class wbr 4809  (class class class)co 6842  *cxr 10327   < clt 10328  cle 10329  (,]cioc 12378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-pre-lttri 10263  ax-pre-lttrn 10264
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-po 5198  df-so 5199  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-1st 7366  df-2nd 7367  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-ioc 12382
This theorem is referenced by:  fouriersw  41085
  Copyright terms: Public domain W3C validator