| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-ioo | Structured version Visualization version GIF version | ||
| Description: Define the set of open intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
| Ref | Expression |
|---|---|
| df-ioo | ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cioo 13312 | . 2 class (,) | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | cxr 11213 | . . 3 class ℝ* | |
| 5 | 2 | cv 1539 | . . . . . 6 class 𝑥 |
| 6 | vz | . . . . . . 7 setvar 𝑧 | |
| 7 | 6 | cv 1539 | . . . . . 6 class 𝑧 |
| 8 | clt 11214 | . . . . . 6 class < | |
| 9 | 5, 7, 8 | wbr 5109 | . . . . 5 wff 𝑥 < 𝑧 |
| 10 | 3 | cv 1539 | . . . . . 6 class 𝑦 |
| 11 | 7, 10, 8 | wbr 5109 | . . . . 5 wff 𝑧 < 𝑦 |
| 12 | 9, 11 | wa 395 | . . . 4 wff (𝑥 < 𝑧 ∧ 𝑧 < 𝑦) |
| 13 | 12, 6, 4 | crab 3408 | . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)} |
| 14 | 2, 3, 4, 4, 13 | cmpo 7391 | . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) |
| 15 | 1, 14 | wceq 1540 | 1 wff (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: iooex 13335 iooval 13336 ndmioo 13339 elioo3g 13341 iooin 13346 iooss1 13347 iooss2 13348 elioo1 13352 iccssioo 13382 ioossicc 13400 ioossico 13405 iocssioo 13406 icossioo 13407 ioossioo 13408 ioof 13414 ioounsn 13444 snunioo 13445 ioodisj 13449 ioojoin 13450 ioopnfsup 13832 leordtval 23106 icopnfcld 24661 iocmnfcld 24662 bndth 24863 ioombl 25472 ioorf 25480 ioorinv2 25482 ismbf3d 25561 dvfsumrlimge0 25943 dvfsumrlim2 25945 tanord1 26452 dvloglem 26563 rlimcnp 26881 rlimcnp2 26882 dchrisum0lem2a 27434 pnt 27531 joiniooico 32703 tpr2rico 33908 asindmre 37692 dvasin 37693 iocioodisjd 42303 ioossioc 45483 snunioo1 45503 ioossioobi 45508 |
| Copyright terms: Public domain | W3C validator |