| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-ioo | Structured version Visualization version GIF version | ||
| Description: Define the set of open intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
| Ref | Expression |
|---|---|
| df-ioo | ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cioo 13251 | . 2 class (,) | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | cxr 11151 | . . 3 class ℝ* | |
| 5 | 2 | cv 1540 | . . . . . 6 class 𝑥 |
| 6 | vz | . . . . . . 7 setvar 𝑧 | |
| 7 | 6 | cv 1540 | . . . . . 6 class 𝑧 |
| 8 | clt 11152 | . . . . . 6 class < | |
| 9 | 5, 7, 8 | wbr 5093 | . . . . 5 wff 𝑥 < 𝑧 |
| 10 | 3 | cv 1540 | . . . . . 6 class 𝑦 |
| 11 | 7, 10, 8 | wbr 5093 | . . . . 5 wff 𝑧 < 𝑦 |
| 12 | 9, 11 | wa 395 | . . . 4 wff (𝑥 < 𝑧 ∧ 𝑧 < 𝑦) |
| 13 | 12, 6, 4 | crab 3395 | . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)} |
| 14 | 2, 3, 4, 4, 13 | cmpo 7354 | . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) |
| 15 | 1, 14 | wceq 1541 | 1 wff (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: iooex 13274 iooval 13275 ndmioo 13278 elioo3g 13280 iooin 13285 iooss1 13286 iooss2 13287 elioo1 13291 iccssioo 13321 ioossicc 13339 ioossico 13344 iocssioo 13345 icossioo 13346 ioossioo 13347 ioof 13353 ioounsn 13383 snunioo 13384 ioodisj 13388 ioojoin 13389 ioopnfsup 13774 leordtval 23134 icopnfcld 24688 iocmnfcld 24689 bndth 24890 ioombl 25499 ioorf 25507 ioorinv2 25509 ismbf3d 25588 dvfsumrlimge0 25970 dvfsumrlim2 25972 tanord1 26479 dvloglem 26590 rlimcnp 26908 rlimcnp2 26909 dchrisum0lem2a 27461 pnt 27558 joiniooico 32764 tpr2rico 33932 asindmre 37749 dvasin 37750 iocioodisjd 42419 ioossioc 45597 snunioo1 45617 ioossioobi 45622 |
| Copyright terms: Public domain | W3C validator |