![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-ioo | Structured version Visualization version GIF version |
Description: Define the set of open intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
Ref | Expression |
---|---|
df-ioo | ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cioo 13383 | . 2 class (,) | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | cxr 11291 | . . 3 class ℝ* | |
5 | 2 | cv 1535 | . . . . . 6 class 𝑥 |
6 | vz | . . . . . . 7 setvar 𝑧 | |
7 | 6 | cv 1535 | . . . . . 6 class 𝑧 |
8 | clt 11292 | . . . . . 6 class < | |
9 | 5, 7, 8 | wbr 5147 | . . . . 5 wff 𝑥 < 𝑧 |
10 | 3 | cv 1535 | . . . . . 6 class 𝑦 |
11 | 7, 10, 8 | wbr 5147 | . . . . 5 wff 𝑧 < 𝑦 |
12 | 9, 11 | wa 395 | . . . 4 wff (𝑥 < 𝑧 ∧ 𝑧 < 𝑦) |
13 | 12, 6, 4 | crab 3432 | . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)} |
14 | 2, 3, 4, 4, 13 | cmpo 7432 | . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) |
15 | 1, 14 | wceq 1536 | 1 wff (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) |
Colors of variables: wff setvar class |
This definition is referenced by: iooex 13406 iooval 13407 ndmioo 13410 elioo3g 13412 iooin 13417 iooss1 13418 iooss2 13419 elioo1 13423 iccssioo 13452 ioossicc 13469 ioossico 13474 iocssioo 13475 icossioo 13476 ioossioo 13477 ioof 13483 ioounsn 13513 snunioo 13514 ioodisj 13518 ioojoin 13519 ioopnfsup 13900 leordtval 23236 icopnfcld 24803 iocmnfcld 24804 bndth 25003 ioombl 25613 ioorf 25621 ioorinv2 25623 ismbf3d 25702 dvfsumrlimge0 26085 dvfsumrlim2 26087 tanord1 26593 dvloglem 26704 rlimcnp 27022 rlimcnp2 27023 dchrisum0lem2a 27575 pnt 27672 joiniooico 32782 tpr2rico 33872 asindmre 37689 dvasin 37690 iocioodisjd 42333 ioossioc 45444 snunioo1 45464 ioossioobi 45469 |
Copyright terms: Public domain | W3C validator |