Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-ioo | Structured version Visualization version GIF version |
Description: Define the set of open intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
Ref | Expression |
---|---|
df-ioo | ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cioo 13008 | . 2 class (,) | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | cxr 10939 | . . 3 class ℝ* | |
5 | 2 | cv 1538 | . . . . . 6 class 𝑥 |
6 | vz | . . . . . . 7 setvar 𝑧 | |
7 | 6 | cv 1538 | . . . . . 6 class 𝑧 |
8 | clt 10940 | . . . . . 6 class < | |
9 | 5, 7, 8 | wbr 5070 | . . . . 5 wff 𝑥 < 𝑧 |
10 | 3 | cv 1538 | . . . . . 6 class 𝑦 |
11 | 7, 10, 8 | wbr 5070 | . . . . 5 wff 𝑧 < 𝑦 |
12 | 9, 11 | wa 395 | . . . 4 wff (𝑥 < 𝑧 ∧ 𝑧 < 𝑦) |
13 | 12, 6, 4 | crab 3067 | . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)} |
14 | 2, 3, 4, 4, 13 | cmpo 7257 | . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) |
15 | 1, 14 | wceq 1539 | 1 wff (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) |
Colors of variables: wff setvar class |
This definition is referenced by: iooex 13031 iooval 13032 ndmioo 13035 elioo3g 13037 iooin 13042 iooss1 13043 iooss2 13044 elioo1 13048 iccssioo 13077 ioossicc 13094 ioossico 13099 iocssioo 13100 icossioo 13101 ioossioo 13102 ioof 13108 ioounsn 13138 snunioo 13139 ioodisj 13143 ioojoin 13144 ioopnfsup 13512 leordtval 22272 icopnfcld 23837 iocmnfcld 23838 bndth 24027 ioombl 24634 ioorf 24642 ioorinv2 24644 ismbf3d 24723 dvfsumrlimge0 25099 dvfsumrlim2 25101 tanord1 25598 dvloglem 25708 rlimcnp 26020 rlimcnp2 26021 dchrisum0lem2a 26570 pnt 26667 joiniooico 30997 tpr2rico 31764 asindmre 35787 dvasin 35788 ioossioc 42920 snunioo1 42940 ioossioobi 42945 |
Copyright terms: Public domain | W3C validator |