| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-ioo | Structured version Visualization version GIF version | ||
| Description: Define the set of open intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
| Ref | Expression |
|---|---|
| df-ioo | ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cioo 13237 | . 2 class (,) | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | cxr 11137 | . . 3 class ℝ* | |
| 5 | 2 | cv 1540 | . . . . . 6 class 𝑥 |
| 6 | vz | . . . . . . 7 setvar 𝑧 | |
| 7 | 6 | cv 1540 | . . . . . 6 class 𝑧 |
| 8 | clt 11138 | . . . . . 6 class < | |
| 9 | 5, 7, 8 | wbr 5089 | . . . . 5 wff 𝑥 < 𝑧 |
| 10 | 3 | cv 1540 | . . . . . 6 class 𝑦 |
| 11 | 7, 10, 8 | wbr 5089 | . . . . 5 wff 𝑧 < 𝑦 |
| 12 | 9, 11 | wa 395 | . . . 4 wff (𝑥 < 𝑧 ∧ 𝑧 < 𝑦) |
| 13 | 12, 6, 4 | crab 3393 | . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)} |
| 14 | 2, 3, 4, 4, 13 | cmpo 7343 | . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) |
| 15 | 1, 14 | wceq 1541 | 1 wff (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: iooex 13260 iooval 13261 ndmioo 13264 elioo3g 13266 iooin 13271 iooss1 13272 iooss2 13273 elioo1 13277 iccssioo 13307 ioossicc 13325 ioossico 13330 iocssioo 13331 icossioo 13332 ioossioo 13333 ioof 13339 ioounsn 13369 snunioo 13370 ioodisj 13374 ioojoin 13375 ioopnfsup 13760 leordtval 23121 icopnfcld 24675 iocmnfcld 24676 bndth 24877 ioombl 25486 ioorf 25494 ioorinv2 25496 ismbf3d 25575 dvfsumrlimge0 25957 dvfsumrlim2 25959 tanord1 26466 dvloglem 26577 rlimcnp 26895 rlimcnp2 26896 dchrisum0lem2a 27448 pnt 27545 joiniooico 32747 tpr2rico 33915 asindmre 37722 dvasin 37723 iocioodisjd 42332 ioossioc 45511 snunioo1 45531 ioossioobi 45536 |
| Copyright terms: Public domain | W3C validator |