![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-ioo | Structured version Visualization version GIF version |
Description: Define the set of open intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
Ref | Expression |
---|---|
df-ioo | ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cioo 13407 | . 2 class (,) | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | cxr 11323 | . . 3 class ℝ* | |
5 | 2 | cv 1536 | . . . . . 6 class 𝑥 |
6 | vz | . . . . . . 7 setvar 𝑧 | |
7 | 6 | cv 1536 | . . . . . 6 class 𝑧 |
8 | clt 11324 | . . . . . 6 class < | |
9 | 5, 7, 8 | wbr 5166 | . . . . 5 wff 𝑥 < 𝑧 |
10 | 3 | cv 1536 | . . . . . 6 class 𝑦 |
11 | 7, 10, 8 | wbr 5166 | . . . . 5 wff 𝑧 < 𝑦 |
12 | 9, 11 | wa 395 | . . . 4 wff (𝑥 < 𝑧 ∧ 𝑧 < 𝑦) |
13 | 12, 6, 4 | crab 3443 | . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)} |
14 | 2, 3, 4, 4, 13 | cmpo 7450 | . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) |
15 | 1, 14 | wceq 1537 | 1 wff (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) |
Colors of variables: wff setvar class |
This definition is referenced by: iooex 13430 iooval 13431 ndmioo 13434 elioo3g 13436 iooin 13441 iooss1 13442 iooss2 13443 elioo1 13447 iccssioo 13476 ioossicc 13493 ioossico 13498 iocssioo 13499 icossioo 13500 ioossioo 13501 ioof 13507 ioounsn 13537 snunioo 13538 ioodisj 13542 ioojoin 13543 ioopnfsup 13915 leordtval 23242 icopnfcld 24809 iocmnfcld 24810 bndth 25009 ioombl 25619 ioorf 25627 ioorinv2 25629 ismbf3d 25708 dvfsumrlimge0 26091 dvfsumrlim2 26093 tanord1 26597 dvloglem 26708 rlimcnp 27026 rlimcnp2 27027 dchrisum0lem2a 27579 pnt 27676 joiniooico 32779 tpr2rico 33858 asindmre 37663 dvasin 37664 ioossioc 45410 snunioo1 45430 ioossioobi 45435 |
Copyright terms: Public domain | W3C validator |