![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-ioo | Structured version Visualization version GIF version |
Description: Define the set of open intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
Ref | Expression |
---|---|
df-ioo | ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cioo 13328 | . 2 class (,) | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | cxr 11251 | . . 3 class ℝ* | |
5 | 2 | cv 1540 | . . . . . 6 class 𝑥 |
6 | vz | . . . . . . 7 setvar 𝑧 | |
7 | 6 | cv 1540 | . . . . . 6 class 𝑧 |
8 | clt 11252 | . . . . . 6 class < | |
9 | 5, 7, 8 | wbr 5148 | . . . . 5 wff 𝑥 < 𝑧 |
10 | 3 | cv 1540 | . . . . . 6 class 𝑦 |
11 | 7, 10, 8 | wbr 5148 | . . . . 5 wff 𝑧 < 𝑦 |
12 | 9, 11 | wa 396 | . . . 4 wff (𝑥 < 𝑧 ∧ 𝑧 < 𝑦) |
13 | 12, 6, 4 | crab 3432 | . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)} |
14 | 2, 3, 4, 4, 13 | cmpo 7413 | . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) |
15 | 1, 14 | wceq 1541 | 1 wff (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) |
Colors of variables: wff setvar class |
This definition is referenced by: iooex 13351 iooval 13352 ndmioo 13355 elioo3g 13357 iooin 13362 iooss1 13363 iooss2 13364 elioo1 13368 iccssioo 13397 ioossicc 13414 ioossico 13419 iocssioo 13420 icossioo 13421 ioossioo 13422 ioof 13428 ioounsn 13458 snunioo 13459 ioodisj 13463 ioojoin 13464 ioopnfsup 13833 leordtval 22937 icopnfcld 24504 iocmnfcld 24505 bndth 24698 ioombl 25306 ioorf 25314 ioorinv2 25316 ismbf3d 25395 dvfsumrlimge0 25771 dvfsumrlim2 25773 tanord1 26270 dvloglem 26380 rlimcnp 26694 rlimcnp2 26695 dchrisum0lem2a 27244 pnt 27341 joiniooico 32240 tpr2rico 33178 asindmre 36874 dvasin 36875 ioossioc 44504 snunioo1 44524 ioossioobi 44529 |
Copyright terms: Public domain | W3C validator |