| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-ioo | Structured version Visualization version GIF version | ||
| Description: Define the set of open intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
| Ref | Expression |
|---|---|
| df-ioo | ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cioo 13360 | . 2 class (,) | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | cxr 11266 | . . 3 class ℝ* | |
| 5 | 2 | cv 1539 | . . . . . 6 class 𝑥 |
| 6 | vz | . . . . . . 7 setvar 𝑧 | |
| 7 | 6 | cv 1539 | . . . . . 6 class 𝑧 |
| 8 | clt 11267 | . . . . . 6 class < | |
| 9 | 5, 7, 8 | wbr 5119 | . . . . 5 wff 𝑥 < 𝑧 |
| 10 | 3 | cv 1539 | . . . . . 6 class 𝑦 |
| 11 | 7, 10, 8 | wbr 5119 | . . . . 5 wff 𝑧 < 𝑦 |
| 12 | 9, 11 | wa 395 | . . . 4 wff (𝑥 < 𝑧 ∧ 𝑧 < 𝑦) |
| 13 | 12, 6, 4 | crab 3415 | . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)} |
| 14 | 2, 3, 4, 4, 13 | cmpo 7405 | . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) |
| 15 | 1, 14 | wceq 1540 | 1 wff (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: iooex 13383 iooval 13384 ndmioo 13387 elioo3g 13389 iooin 13394 iooss1 13395 iooss2 13396 elioo1 13400 iccssioo 13430 ioossicc 13448 ioossico 13453 iocssioo 13454 icossioo 13455 ioossioo 13456 ioof 13462 ioounsn 13492 snunioo 13493 ioodisj 13497 ioojoin 13498 ioopnfsup 13879 leordtval 23149 icopnfcld 24704 iocmnfcld 24705 bndth 24906 ioombl 25516 ioorf 25524 ioorinv2 25526 ismbf3d 25605 dvfsumrlimge0 25987 dvfsumrlim2 25989 tanord1 26496 dvloglem 26607 rlimcnp 26925 rlimcnp2 26926 dchrisum0lem2a 27478 pnt 27575 joiniooico 32697 tpr2rico 33889 asindmre 37673 dvasin 37674 iocioodisjd 42316 ioossioc 45469 snunioo1 45489 ioossioobi 45494 |
| Copyright terms: Public domain | W3C validator |