![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-ioo | Structured version Visualization version GIF version |
Description: Define the set of open intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
Ref | Expression |
---|---|
df-ioo | ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cioo 12463 | . 2 class (,) | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | cxr 10390 | . . 3 class ℝ* | |
5 | 2 | cv 1655 | . . . . . 6 class 𝑥 |
6 | vz | . . . . . . 7 setvar 𝑧 | |
7 | 6 | cv 1655 | . . . . . 6 class 𝑧 |
8 | clt 10391 | . . . . . 6 class < | |
9 | 5, 7, 8 | wbr 4873 | . . . . 5 wff 𝑥 < 𝑧 |
10 | 3 | cv 1655 | . . . . . 6 class 𝑦 |
11 | 7, 10, 8 | wbr 4873 | . . . . 5 wff 𝑧 < 𝑦 |
12 | 9, 11 | wa 386 | . . . 4 wff (𝑥 < 𝑧 ∧ 𝑧 < 𝑦) |
13 | 12, 6, 4 | crab 3121 | . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)} |
14 | 2, 3, 4, 4, 13 | cmpt2 6907 | . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) |
15 | 1, 14 | wceq 1656 | 1 wff (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) |
Colors of variables: wff setvar class |
This definition is referenced by: iooex 12486 iooval 12487 ndmioo 12490 elioo3g 12492 iooin 12497 iooss1 12498 iooss2 12499 elioo1 12503 iccssioo 12530 ioossicc 12547 ioossico 12551 iocssioo 12552 icossioo 12553 ioossioo 12554 ioof 12560 ioounsn 12589 ioounsnOLD 12590 snunioo 12591 ioodisj 12595 ioojoin 12596 ioopnfsup 12958 leordtval 21388 icopnfcld 22941 iocmnfcld 22942 bndth 23127 ioombl 23731 ioorf 23739 ioorinv2 23741 ismbf3d 23820 dvfsumrlimge0 24192 dvfsumrlim2 24194 tanord1 24683 dvloglem 24793 rlimcnp 25105 rlimcnp2 25106 dchrisum0lem2a 25619 pnt 25716 joiniooico 30072 tpr2rico 30492 asindmre 34031 dvasin 34032 ioossioc 40505 snunioo1 40527 ioossioobi 40532 |
Copyright terms: Public domain | W3C validator |