| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-ioo | Structured version Visualization version GIF version | ||
| Description: Define the set of open intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
| Ref | Expression |
|---|---|
| df-ioo | ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cioo 13266 | . 2 class (,) | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | cxr 11167 | . . 3 class ℝ* | |
| 5 | 2 | cv 1539 | . . . . . 6 class 𝑥 |
| 6 | vz | . . . . . . 7 setvar 𝑧 | |
| 7 | 6 | cv 1539 | . . . . . 6 class 𝑧 |
| 8 | clt 11168 | . . . . . 6 class < | |
| 9 | 5, 7, 8 | wbr 5095 | . . . . 5 wff 𝑥 < 𝑧 |
| 10 | 3 | cv 1539 | . . . . . 6 class 𝑦 |
| 11 | 7, 10, 8 | wbr 5095 | . . . . 5 wff 𝑧 < 𝑦 |
| 12 | 9, 11 | wa 395 | . . . 4 wff (𝑥 < 𝑧 ∧ 𝑧 < 𝑦) |
| 13 | 12, 6, 4 | crab 3396 | . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)} |
| 14 | 2, 3, 4, 4, 13 | cmpo 7355 | . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) |
| 15 | 1, 14 | wceq 1540 | 1 wff (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: iooex 13289 iooval 13290 ndmioo 13293 elioo3g 13295 iooin 13300 iooss1 13301 iooss2 13302 elioo1 13306 iccssioo 13336 ioossicc 13354 ioossico 13359 iocssioo 13360 icossioo 13361 ioossioo 13362 ioof 13368 ioounsn 13398 snunioo 13399 ioodisj 13403 ioojoin 13404 ioopnfsup 13786 leordtval 23116 icopnfcld 24671 iocmnfcld 24672 bndth 24873 ioombl 25482 ioorf 25490 ioorinv2 25492 ismbf3d 25571 dvfsumrlimge0 25953 dvfsumrlim2 25955 tanord1 26462 dvloglem 26573 rlimcnp 26891 rlimcnp2 26892 dchrisum0lem2a 27444 pnt 27541 joiniooico 32730 tpr2rico 33878 asindmre 37682 dvasin 37683 iocioodisjd 42293 ioossioc 45474 snunioo1 45494 ioossioobi 45499 |
| Copyright terms: Public domain | W3C validator |