| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-ioo | Structured version Visualization version GIF version | ||
| Description: Define the set of open intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
| Ref | Expression |
|---|---|
| df-ioo | ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cioo 13306 | . 2 class (,) | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | cxr 11207 | . . 3 class ℝ* | |
| 5 | 2 | cv 1539 | . . . . . 6 class 𝑥 |
| 6 | vz | . . . . . . 7 setvar 𝑧 | |
| 7 | 6 | cv 1539 | . . . . . 6 class 𝑧 |
| 8 | clt 11208 | . . . . . 6 class < | |
| 9 | 5, 7, 8 | wbr 5107 | . . . . 5 wff 𝑥 < 𝑧 |
| 10 | 3 | cv 1539 | . . . . . 6 class 𝑦 |
| 11 | 7, 10, 8 | wbr 5107 | . . . . 5 wff 𝑧 < 𝑦 |
| 12 | 9, 11 | wa 395 | . . . 4 wff (𝑥 < 𝑧 ∧ 𝑧 < 𝑦) |
| 13 | 12, 6, 4 | crab 3405 | . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)} |
| 14 | 2, 3, 4, 4, 13 | cmpo 7389 | . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) |
| 15 | 1, 14 | wceq 1540 | 1 wff (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: iooex 13329 iooval 13330 ndmioo 13333 elioo3g 13335 iooin 13340 iooss1 13341 iooss2 13342 elioo1 13346 iccssioo 13376 ioossicc 13394 ioossico 13399 iocssioo 13400 icossioo 13401 ioossioo 13402 ioof 13408 ioounsn 13438 snunioo 13439 ioodisj 13443 ioojoin 13444 ioopnfsup 13826 leordtval 23100 icopnfcld 24655 iocmnfcld 24656 bndth 24857 ioombl 25466 ioorf 25474 ioorinv2 25476 ismbf3d 25555 dvfsumrlimge0 25937 dvfsumrlim2 25939 tanord1 26446 dvloglem 26557 rlimcnp 26875 rlimcnp2 26876 dchrisum0lem2a 27428 pnt 27525 joiniooico 32697 tpr2rico 33902 asindmre 37697 dvasin 37698 iocioodisjd 42308 ioossioc 45490 snunioo1 45510 ioossioobi 45515 |
| Copyright terms: Public domain | W3C validator |