Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-ioo | Structured version Visualization version GIF version |
Description: Define the set of open intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
Ref | Expression |
---|---|
df-ioo | ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cioo 13088 | . 2 class (,) | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | cxr 11017 | . . 3 class ℝ* | |
5 | 2 | cv 1538 | . . . . . 6 class 𝑥 |
6 | vz | . . . . . . 7 setvar 𝑧 | |
7 | 6 | cv 1538 | . . . . . 6 class 𝑧 |
8 | clt 11018 | . . . . . 6 class < | |
9 | 5, 7, 8 | wbr 5075 | . . . . 5 wff 𝑥 < 𝑧 |
10 | 3 | cv 1538 | . . . . . 6 class 𝑦 |
11 | 7, 10, 8 | wbr 5075 | . . . . 5 wff 𝑧 < 𝑦 |
12 | 9, 11 | wa 396 | . . . 4 wff (𝑥 < 𝑧 ∧ 𝑧 < 𝑦) |
13 | 12, 6, 4 | crab 3069 | . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)} |
14 | 2, 3, 4, 4, 13 | cmpo 7286 | . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) |
15 | 1, 14 | wceq 1539 | 1 wff (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) |
Colors of variables: wff setvar class |
This definition is referenced by: iooex 13111 iooval 13112 ndmioo 13115 elioo3g 13117 iooin 13122 iooss1 13123 iooss2 13124 elioo1 13128 iccssioo 13157 ioossicc 13174 ioossico 13179 iocssioo 13180 icossioo 13181 ioossioo 13182 ioof 13188 ioounsn 13218 snunioo 13219 ioodisj 13223 ioojoin 13224 ioopnfsup 13593 leordtval 22373 icopnfcld 23940 iocmnfcld 23941 bndth 24130 ioombl 24738 ioorf 24746 ioorinv2 24748 ismbf3d 24827 dvfsumrlimge0 25203 dvfsumrlim2 25205 tanord1 25702 dvloglem 25812 rlimcnp 26124 rlimcnp2 26125 dchrisum0lem2a 26674 pnt 26771 joiniooico 31104 tpr2rico 31871 asindmre 35869 dvasin 35870 ioossioc 43037 snunioo1 43057 ioossioobi 43062 |
Copyright terms: Public domain | W3C validator |