| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iocssicc | Structured version Visualization version GIF version | ||
| Description: A closed-above, open-below interval is a subset of its closure. (Contributed by Thierry Arnoux, 1-Apr-2017.) |
| Ref | Expression |
|---|---|
| iocssicc | ⊢ (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ioc 13247 | . 2 ⊢ (,] = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑥 ∈ ℝ* ∣ (𝑎 < 𝑥 ∧ 𝑥 ≤ 𝑏)}) | |
| 2 | df-icc 13249 | . 2 ⊢ [,] = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑥 ∈ ℝ* ∣ (𝑎 ≤ 𝑥 ∧ 𝑥 ≤ 𝑏)}) | |
| 3 | xrltle 13045 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐴 < 𝑤 → 𝐴 ≤ 𝑤)) | |
| 4 | idd 24 | . 2 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑤 ≤ 𝐵 → 𝑤 ≤ 𝐵)) | |
| 5 | 1, 2, 3, 4 | ixxssixx 13256 | 1 ⊢ (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2111 ⊆ wss 3902 class class class wbr 5091 (class class class)co 7346 ℝ*cxr 11142 < clt 11143 ≤ cle 11144 (,]cioc 13243 [,]cicc 13245 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-pre-lttri 11077 ax-pre-lttrn 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-ioc 13247 df-icc 13249 |
| This theorem is referenced by: xrge0iifcnv 33941 xrge0iifcv 33942 xrge0iifhom 33945 pnfneige0 33959 lmxrge0 33960 eliccelioc 45560 limcicciooub 45674 fourierdlem17 46161 fourierdlem35 46179 fourierdlem41 46185 fourierdlem48 46191 fourierdlem49 46192 fourierdlem51 46194 fourierdlem71 46214 fourierdlem102 46245 fourierdlem114 46257 sepfsepc 48958 |
| Copyright terms: Public domain | W3C validator |