MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iocssicc Structured version   Visualization version   GIF version

Theorem iocssicc 13098
Description: A closed-above, open-below interval is a subset of its closure. (Contributed by Thierry Arnoux, 1-Apr-2017.)
Assertion
Ref Expression
iocssicc (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵)

Proof of Theorem iocssicc
Dummy variables 𝑎 𝑏 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ioc 13013 . 2 (,] = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑥 ∈ ℝ* ∣ (𝑎 < 𝑥𝑥𝑏)})
2 df-icc 13015 . 2 [,] = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑥 ∈ ℝ* ∣ (𝑎𝑥𝑥𝑏)})
3 xrltle 12812 . 2 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴 < 𝑤𝐴𝑤))
4 idd 24 . 2 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤𝐵𝑤𝐵))
51, 2, 3, 4ixxssixx 13022 1 (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵)
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2108  wss 3883   class class class wbr 5070  (class class class)co 7255  *cxr 10939   < clt 10940  cle 10941  (,]cioc 13009  [,]cicc 13011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-pre-lttri 10876  ax-pre-lttrn 10877
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-ioc 13013  df-icc 13015
This theorem is referenced by:  xrge0iifcnv  31785  xrge0iifcv  31786  xrge0iifhom  31789  pnfneige0  31803  lmxrge0  31804  eliccelioc  42949  limcicciooub  43068  fourierdlem17  43555  fourierdlem35  43573  fourierdlem41  43579  fourierdlem48  43585  fourierdlem49  43586  fourierdlem51  43588  fourierdlem71  43608  fourierdlem102  43639  fourierdlem114  43651  sepfsepc  46109
  Copyright terms: Public domain W3C validator