MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iocssicc Structured version   Visualization version   GIF version

Theorem iocssicc 13477
Description: A closed-above, open-below interval is a subset of its closure. (Contributed by Thierry Arnoux, 1-Apr-2017.)
Assertion
Ref Expression
iocssicc (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵)

Proof of Theorem iocssicc
Dummy variables 𝑎 𝑏 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ioc 13392 . 2 (,] = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑥 ∈ ℝ* ∣ (𝑎 < 𝑥𝑥𝑏)})
2 df-icc 13394 . 2 [,] = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑥 ∈ ℝ* ∣ (𝑎𝑥𝑥𝑏)})
3 xrltle 13191 . 2 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴 < 𝑤𝐴𝑤))
4 idd 24 . 2 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤𝐵𝑤𝐵))
51, 2, 3, 4ixxssixx 13401 1 (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵)
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2108  wss 3951   class class class wbr 5143  (class class class)co 7431  *cxr 11294   < clt 11295  cle 11296  (,]cioc 13388  [,]cicc 13390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-pre-lttri 11229  ax-pre-lttrn 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-ioc 13392  df-icc 13394
This theorem is referenced by:  xrge0iifcnv  33932  xrge0iifcv  33933  xrge0iifhom  33936  pnfneige0  33950  lmxrge0  33951  eliccelioc  45534  limcicciooub  45652  fourierdlem17  46139  fourierdlem35  46157  fourierdlem41  46163  fourierdlem48  46169  fourierdlem49  46170  fourierdlem51  46172  fourierdlem71  46192  fourierdlem102  46223  fourierdlem114  46235  sepfsepc  48825
  Copyright terms: Public domain W3C validator