Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ioossioc Structured version   Visualization version   GIF version

Theorem ioossioc 40358
Description: An open interval is a subset of its right closure. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
ioossioc (𝐴(,)𝐵) ⊆ (𝐴(,]𝐵)

Proof of Theorem ioossioc
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ioo 12384 . 2 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
2 df-ioc 12385 . 2 (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
3 idd 24 . 2 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴 < 𝑤𝐴 < 𝑤))
4 xrltle 12185 . 2 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤 < 𝐵𝑤𝐵))
51, 2, 3, 4ixxssixx 12394 1 (𝐴(,)𝐵) ⊆ (𝐴(,]𝐵)
Colors of variables: wff setvar class
Syntax hints:  wa 384  wcel 2155  wss 3734   class class class wbr 4811  (class class class)co 6844  *cxr 10329   < clt 10330  cle 10331  (,)cioo 12380  (,]cioc 12381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7149  ax-cnex 10247  ax-resscn 10248  ax-pre-lttri 10265  ax-pre-lttrn 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-op 4343  df-uni 4597  df-br 4812  df-opab 4874  df-mpt 4891  df-id 5187  df-po 5200  df-so 5201  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-ov 6847  df-oprab 6848  df-mpt2 6849  df-er 7949  df-en 8163  df-dom 8164  df-sdom 8165  df-pnf 10332  df-mnf 10333  df-xr 10334  df-ltxr 10335  df-le 10336  df-ioo 12384  df-ioc 12385
This theorem is referenced by:  iocnct  40408  limcresiooub  40515  ioccncflimc  40739  fourierdlem41  41005  fourierdlem46  41009  fourierdlem48  41011  fourierdlem49  41012  fouriersw  41088
  Copyright terms: Public domain W3C validator