MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioounsn Structured version   Visualization version   GIF version

Theorem ioounsn 12855
Description: The union of an open interval with its upper endpoint is a left-open right-closed interval. (Contributed by Jon Pennant, 8-Jun-2019.)
Assertion
Ref Expression
ioounsn ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))

Proof of Theorem ioounsn
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1134 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → 𝐵 ∈ ℝ*)
2 iccid 12771 . . . 4 (𝐵 ∈ ℝ* → (𝐵[,]𝐵) = {𝐵})
31, 2syl 17 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → (𝐵[,]𝐵) = {𝐵})
43uneq2d 4090 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ (𝐵[,]𝐵)) = ((𝐴(,)𝐵) ∪ {𝐵}))
5 simp1 1133 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → 𝐴 ∈ ℝ*)
6 simp3 1135 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → 𝐴 < 𝐵)
71xrleidd 12533 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → 𝐵𝐵)
8 df-ioo 12730 . . . 4 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
9 df-icc 12733 . . . 4 [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
10 xrlenlt 10695 . . . 4 ((𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐵𝑤 ↔ ¬ 𝑤 < 𝐵))
11 df-ioc 12731 . . . 4 (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
12 simpl1 1188 . . . . . 6 (((𝑤 ∈ ℝ*𝐵 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝑤 < 𝐵𝐵𝐵)) → 𝑤 ∈ ℝ*)
13 simpl2 1189 . . . . . 6 (((𝑤 ∈ ℝ*𝐵 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝑤 < 𝐵𝐵𝐵)) → 𝐵 ∈ ℝ*)
14 simprl 770 . . . . . 6 (((𝑤 ∈ ℝ*𝐵 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝑤 < 𝐵𝐵𝐵)) → 𝑤 < 𝐵)
1512, 13, 14xrltled 12531 . . . . 5 (((𝑤 ∈ ℝ*𝐵 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝑤 < 𝐵𝐵𝐵)) → 𝑤𝐵)
1615ex 416 . . . 4 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝑤 < 𝐵𝐵𝐵) → 𝑤𝐵))
17 xrltletr 12538 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → ((𝐴 < 𝐵𝐵𝑤) → 𝐴 < 𝑤))
188, 9, 10, 11, 16, 17ixxun 12742 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵𝐵)) → ((𝐴(,)𝐵) ∪ (𝐵[,]𝐵)) = (𝐴(,]𝐵))
195, 1, 1, 6, 7, 18syl32anc 1375 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ (𝐵[,]𝐵)) = (𝐴(,]𝐵))
204, 19eqtr3d 2835 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  cun 3879  {csn 4525   class class class wbr 5030  (class class class)co 7135  *cxr 10663   < clt 10664  cle 10665  (,)cioo 12726  (,]cioc 12727  [,]cicc 12729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-pre-lttri 10600  ax-pre-lttrn 10601
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-ioo 12730  df-ioc 12731  df-icc 12733
This theorem is referenced by:  iocunico  40161  iocmbl  40163  limcicciooub  42279  limcresiooub  42284  ioccncflimc  42527  volioc  42614  fourierdlem33  42782  fourierdlem49  42797  fourierdlem93  42841  fouriersw  42873
  Copyright terms: Public domain W3C validator