MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioounsn Structured version   Visualization version   GIF version

Theorem ioounsn 13492
Description: The union of an open interval with its upper endpoint is a left-open right-closed interval. (Contributed by Jon Pennant, 8-Jun-2019.)
Assertion
Ref Expression
ioounsn ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))

Proof of Theorem ioounsn
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1134 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → 𝐵 ∈ ℝ*)
2 iccid 13407 . . . 4 (𝐵 ∈ ℝ* → (𝐵[,]𝐵) = {𝐵})
31, 2syl 17 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → (𝐵[,]𝐵) = {𝐵})
43uneq2d 4162 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ (𝐵[,]𝐵)) = ((𝐴(,)𝐵) ∪ {𝐵}))
5 simp1 1133 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → 𝐴 ∈ ℝ*)
6 simp3 1135 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → 𝐴 < 𝐵)
71xrleidd 13169 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → 𝐵𝐵)
8 df-ioo 13366 . . . 4 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
9 df-icc 13369 . . . 4 [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
10 xrlenlt 11315 . . . 4 ((𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐵𝑤 ↔ ¬ 𝑤 < 𝐵))
11 df-ioc 13367 . . . 4 (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
12 simpl1 1188 . . . . . 6 (((𝑤 ∈ ℝ*𝐵 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝑤 < 𝐵𝐵𝐵)) → 𝑤 ∈ ℝ*)
13 simpl2 1189 . . . . . 6 (((𝑤 ∈ ℝ*𝐵 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝑤 < 𝐵𝐵𝐵)) → 𝐵 ∈ ℝ*)
14 simprl 769 . . . . . 6 (((𝑤 ∈ ℝ*𝐵 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝑤 < 𝐵𝐵𝐵)) → 𝑤 < 𝐵)
1512, 13, 14xrltled 13167 . . . . 5 (((𝑤 ∈ ℝ*𝐵 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝑤 < 𝐵𝐵𝐵)) → 𝑤𝐵)
1615ex 411 . . . 4 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝑤 < 𝐵𝐵𝐵) → 𝑤𝐵))
17 xrltletr 13174 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → ((𝐴 < 𝐵𝐵𝑤) → 𝐴 < 𝑤))
188, 9, 10, 11, 16, 17ixxun 13378 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵𝐵)) → ((𝐴(,)𝐵) ∪ (𝐵[,]𝐵)) = (𝐴(,]𝐵))
195, 1, 1, 6, 7, 18syl32anc 1375 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ (𝐵[,]𝐵)) = (𝐴(,]𝐵))
204, 19eqtr3d 2769 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  cun 3945  {csn 4630   class class class wbr 5150  (class class class)co 7424  *cxr 11283   < clt 11284  cle 11285  (,)cioo 13362  (,]cioc 13363  [,]cicc 13365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-cnex 11200  ax-resscn 11201  ax-pre-lttri 11218  ax-pre-lttrn 11219
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-br 5151  df-opab 5213  df-mpt 5234  df-id 5578  df-po 5592  df-so 5593  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-ov 7427  df-oprab 7428  df-mpo 7429  df-er 8729  df-en 8969  df-dom 8970  df-sdom 8971  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-ioo 13366  df-ioc 13367  df-icc 13369
This theorem is referenced by:  iocunico  42642  iocmbl  42644  limcicciooub  45027  limcresiooub  45032  ioccncflimc  45275  volioc  45362  fourierdlem33  45530  fourierdlem49  45545  fourierdlem93  45589  fouriersw  45621
  Copyright terms: Public domain W3C validator