| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ioounsn | Structured version Visualization version GIF version | ||
| Description: The union of an open interval with its upper endpoint is a left-open right-closed interval. (Contributed by Jon Pennant, 8-Jun-2019.) |
| Ref | Expression |
|---|---|
| ioounsn | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1137 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ*) | |
| 2 | iccid 13407 | . . . 4 ⊢ (𝐵 ∈ ℝ* → (𝐵[,]𝐵) = {𝐵}) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → (𝐵[,]𝐵) = {𝐵}) |
| 4 | 3 | uneq2d 4143 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ (𝐵[,]𝐵)) = ((𝐴(,)𝐵) ∪ {𝐵})) |
| 5 | simp1 1136 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ*) | |
| 6 | simp3 1138 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵) | |
| 7 | 1 | xrleidd 13168 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → 𝐵 ≤ 𝐵) |
| 8 | df-ioo 13366 | . . . 4 ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) | |
| 9 | df-icc 13369 | . . . 4 ⊢ [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) | |
| 10 | xrlenlt 11300 | . . . 4 ⊢ ((𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐵 ≤ 𝑤 ↔ ¬ 𝑤 < 𝐵)) | |
| 11 | df-ioc 13367 | . . . 4 ⊢ (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) | |
| 12 | simpl1 1192 | . . . . . 6 ⊢ (((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝑤 < 𝐵 ∧ 𝐵 ≤ 𝐵)) → 𝑤 ∈ ℝ*) | |
| 13 | simpl2 1193 | . . . . . 6 ⊢ (((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝑤 < 𝐵 ∧ 𝐵 ≤ 𝐵)) → 𝐵 ∈ ℝ*) | |
| 14 | simprl 770 | . . . . . 6 ⊢ (((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝑤 < 𝐵 ∧ 𝐵 ≤ 𝐵)) → 𝑤 < 𝐵) | |
| 15 | 12, 13, 14 | xrltled 13166 | . . . . 5 ⊢ (((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝑤 < 𝐵 ∧ 𝐵 ≤ 𝐵)) → 𝑤 ≤ 𝐵) |
| 16 | 15 | ex 412 | . . . 4 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝑤 < 𝐵 ∧ 𝐵 ≤ 𝐵) → 𝑤 ≤ 𝐵)) |
| 17 | xrltletr 13173 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → ((𝐴 < 𝐵 ∧ 𝐵 ≤ 𝑤) → 𝐴 < 𝑤)) | |
| 18 | 8, 9, 10, 11, 16, 17 | ixxun 13378 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐵)) → ((𝐴(,)𝐵) ∪ (𝐵[,]𝐵)) = (𝐴(,]𝐵)) |
| 19 | 5, 1, 1, 6, 7, 18 | syl32anc 1380 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ (𝐵[,]𝐵)) = (𝐴(,]𝐵)) |
| 20 | 4, 19 | eqtr3d 2772 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∪ cun 3924 {csn 4601 class class class wbr 5119 (class class class)co 7405 ℝ*cxr 11268 < clt 11269 ≤ cle 11270 (,)cioo 13362 (,]cioc 13363 [,]cicc 13365 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-pre-lttri 11203 ax-pre-lttrn 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-ioo 13366 df-ioc 13367 df-icc 13369 |
| This theorem is referenced by: iocunico 43235 iocmbl 43237 limcicciooub 45666 limcresiooub 45671 ioccncflimc 45914 volioc 46001 fourierdlem33 46169 fourierdlem49 46184 fourierdlem93 46228 fouriersw 46260 |
| Copyright terms: Public domain | W3C validator |