MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioounsn Structured version   Visualization version   GIF version

Theorem ioounsn 13445
Description: The union of an open interval with its upper endpoint is a left-open right-closed interval. (Contributed by Jon Pennant, 8-Jun-2019.)
Assertion
Ref Expression
ioounsn ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))

Proof of Theorem ioounsn
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1137 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → 𝐵 ∈ ℝ*)
2 iccid 13358 . . . 4 (𝐵 ∈ ℝ* → (𝐵[,]𝐵) = {𝐵})
31, 2syl 17 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → (𝐵[,]𝐵) = {𝐵})
43uneq2d 4134 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ (𝐵[,]𝐵)) = ((𝐴(,)𝐵) ∪ {𝐵}))
5 simp1 1136 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → 𝐴 ∈ ℝ*)
6 simp3 1138 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → 𝐴 < 𝐵)
71xrleidd 13119 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → 𝐵𝐵)
8 df-ioo 13317 . . . 4 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
9 df-icc 13320 . . . 4 [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
10 xrlenlt 11246 . . . 4 ((𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐵𝑤 ↔ ¬ 𝑤 < 𝐵))
11 df-ioc 13318 . . . 4 (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
12 simpl1 1192 . . . . . 6 (((𝑤 ∈ ℝ*𝐵 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝑤 < 𝐵𝐵𝐵)) → 𝑤 ∈ ℝ*)
13 simpl2 1193 . . . . . 6 (((𝑤 ∈ ℝ*𝐵 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝑤 < 𝐵𝐵𝐵)) → 𝐵 ∈ ℝ*)
14 simprl 770 . . . . . 6 (((𝑤 ∈ ℝ*𝐵 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝑤 < 𝐵𝐵𝐵)) → 𝑤 < 𝐵)
1512, 13, 14xrltled 13117 . . . . 5 (((𝑤 ∈ ℝ*𝐵 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝑤 < 𝐵𝐵𝐵)) → 𝑤𝐵)
1615ex 412 . . . 4 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝑤 < 𝐵𝐵𝐵) → 𝑤𝐵))
17 xrltletr 13124 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → ((𝐴 < 𝐵𝐵𝑤) → 𝐴 < 𝑤))
188, 9, 10, 11, 16, 17ixxun 13329 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵𝐵)) → ((𝐴(,)𝐵) ∪ (𝐵[,]𝐵)) = (𝐴(,]𝐵))
195, 1, 1, 6, 7, 18syl32anc 1380 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ (𝐵[,]𝐵)) = (𝐴(,]𝐵))
204, 19eqtr3d 2767 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cun 3915  {csn 4592   class class class wbr 5110  (class class class)co 7390  *cxr 11214   < clt 11215  cle 11216  (,)cioo 13313  (,]cioc 13314  [,]cicc 13316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-pre-lttri 11149  ax-pre-lttrn 11150
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-ioo 13317  df-ioc 13318  df-icc 13320
This theorem is referenced by:  iocunico  43207  iocmbl  43209  limcicciooub  45642  limcresiooub  45647  ioccncflimc  45890  volioc  45977  fourierdlem33  46145  fourierdlem49  46160  fourierdlem93  46204  fouriersw  46236
  Copyright terms: Public domain W3C validator