Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ioounsn | Structured version Visualization version GIF version |
Description: The union of an open interval with its upper endpoint is a left-open right-closed interval. (Contributed by Jon Pennant, 8-Jun-2019.) |
Ref | Expression |
---|---|
ioounsn | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1135 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ*) | |
2 | iccid 13053 | . . . 4 ⊢ (𝐵 ∈ ℝ* → (𝐵[,]𝐵) = {𝐵}) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → (𝐵[,]𝐵) = {𝐵}) |
4 | 3 | uneq2d 4093 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ (𝐵[,]𝐵)) = ((𝐴(,)𝐵) ∪ {𝐵})) |
5 | simp1 1134 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ*) | |
6 | simp3 1136 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵) | |
7 | 1 | xrleidd 12815 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → 𝐵 ≤ 𝐵) |
8 | df-ioo 13012 | . . . 4 ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) | |
9 | df-icc 13015 | . . . 4 ⊢ [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) | |
10 | xrlenlt 10971 | . . . 4 ⊢ ((𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐵 ≤ 𝑤 ↔ ¬ 𝑤 < 𝐵)) | |
11 | df-ioc 13013 | . . . 4 ⊢ (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) | |
12 | simpl1 1189 | . . . . . 6 ⊢ (((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝑤 < 𝐵 ∧ 𝐵 ≤ 𝐵)) → 𝑤 ∈ ℝ*) | |
13 | simpl2 1190 | . . . . . 6 ⊢ (((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝑤 < 𝐵 ∧ 𝐵 ≤ 𝐵)) → 𝐵 ∈ ℝ*) | |
14 | simprl 767 | . . . . . 6 ⊢ (((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝑤 < 𝐵 ∧ 𝐵 ≤ 𝐵)) → 𝑤 < 𝐵) | |
15 | 12, 13, 14 | xrltled 12813 | . . . . 5 ⊢ (((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝑤 < 𝐵 ∧ 𝐵 ≤ 𝐵)) → 𝑤 ≤ 𝐵) |
16 | 15 | ex 412 | . . . 4 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝑤 < 𝐵 ∧ 𝐵 ≤ 𝐵) → 𝑤 ≤ 𝐵)) |
17 | xrltletr 12820 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → ((𝐴 < 𝐵 ∧ 𝐵 ≤ 𝑤) → 𝐴 < 𝑤)) | |
18 | 8, 9, 10, 11, 16, 17 | ixxun 13024 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐵)) → ((𝐴(,)𝐵) ∪ (𝐵[,]𝐵)) = (𝐴(,]𝐵)) |
19 | 5, 1, 1, 6, 7, 18 | syl32anc 1376 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ (𝐵[,]𝐵)) = (𝐴(,]𝐵)) |
20 | 4, 19 | eqtr3d 2780 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∪ cun 3881 {csn 4558 class class class wbr 5070 (class class class)co 7255 ℝ*cxr 10939 < clt 10940 ≤ cle 10941 (,)cioo 13008 (,]cioc 13009 [,]cicc 13011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-ioo 13012 df-ioc 13013 df-icc 13015 |
This theorem is referenced by: iocunico 40958 iocmbl 40960 limcicciooub 43068 limcresiooub 43073 ioccncflimc 43316 volioc 43403 fourierdlem33 43571 fourierdlem49 43586 fourierdlem93 43630 fouriersw 43662 |
Copyright terms: Public domain | W3C validator |